Preprint
Article

Imperfection Sensitivity of Nonlinear Vibration of Curved Single-Walled Carbon Nanotubes Based on Nonlocal Timoshenko Beam Theory

This version is not peer-reviewed.

Submitted:

17 September 2016

Posted:

18 September 2016

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Imperfection sensitivity of large amplitude vibration of curved single-walled carbon nanotubes (SWCNTs) is considered in this study. The SWCNT is modeled as a Timoshenko nano-beam and its curved shape is included as an initial geometric imperfection term in the displacement field. Geometric nonlinearities of von Kármán type and nonlocal elasticity theory of Eringen are employed to derive governing equations of motion of nano-beam. Spatial discretization of governing equations and associated boundary conditions is performed using differential quadrature (DQ) method and the corresponding nonlinear eigenvalue problem is iteratively solved. Effects of value and location of the geometric imperfection, and the nonlocal small-scale parameter on the nonlinear frequency ratio and imperfection sensitivity of a curved SWCNT for various boundary conditions are investigated. The results show that the geometric imperfection plays a significant role in the nonlinear vibration characteristics of curved SWCNTs.
Keywords: 
Subject: 
Engineering  -   Mechanical Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated