Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Batch Fermentation Options for High Titer Bioethanol Production from a SPORL Pretreated Douglas-fir Forest Residue without Detoxification

Version 1 : Received: 6 August 2016 / Approved: 8 August 2016 / Online: 8 August 2016 (10:39:56 CEST)

A peer-reviewed article of this Preprint also exists.

Yang, M.; Ji, H.; Zhu, J. Batch Fermentation Options for High Titer Bioethanol Production from a SPORL Pretreated Douglas-Fir Forest Residue without Detoxification. Fermentation 2016, 2, 16. Yang, M.; Ji, H.; Zhu, J. Batch Fermentation Options for High Titer Bioethanol Production from a SPORL Pretreated Douglas-Fir Forest Residue without Detoxification. Fermentation 2016, 2, 16.

Abstract

This study evaluated batch fermentation modes, namely, separate hydrolysis and fermentation (SHF), Quasi-simultaneous saccharification and fermentation (Q-SSF), and simultaneous saccharification and fermentation (SSF), and fermentation conditions, i.e., enzyme and yeast loadings, nutrient supplementation and sterilization, on high titer bioethanol production from SPORL-pretreated Douglas-fir forest residue without detoxification. The result indicated Q-SSF and SSF were obviously superior to SHF operation in terms of ethanol yield. The enzyme loading showed a strong positive correlation between enzyme loading and the ethanol yield. The nutrient supplementation and sterility was not necessary for ethanol production from SPORL-pretreated Douglas-fir. The yeast loading showed no significant influence on the ethanol yield for typical SSF conditions. The terminal ethanol titer of 43.2 g/L, or 75.1% theoretical based on glucose, mannose, and xylose theoretical was achieved when SSF was conducted at the condition of following: whole slurry solids loading of 15%, enzyme loading of 20 FPU/g glucan, 1.8 g/kg (wet) yeast loading, without nutrition supplementation and sterilization, at 38°C, on shake flask at 150 rpm for 96h. It is believed that with mechanical mixing, enzyme loading can be substantially reduced with affect ethanol yield by using a long fermentation time.

Keywords

forest residue; pretreatment; liquefaction; enzymatic hydrolysis/saccharification; fermentation; high titer bioethanol; detoxification

Subject

Biology and Life Sciences, Biology and Biotechnology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.