Preprint Technical Note Version 1 NOT YET PEER-REVIEWED

Toughness of Railroad Concrete Crossties with Holes and Web Opening

Version 1 : Received: 4 August 2016 / Approved: 5 August 2016 / Online: 5 August 2016 (08:06:33 CEST)

A peer-reviewed article of this Preprint also exists.

Gamage, E.K.; Kaewunruen, S.; Remennikov, A.M.; Ishida, T. Toughness of Railroad Concrete Crossties with Holes and Web Openings. Infrastructures 2017, 2, 3. Gamage, E.K.; Kaewunruen, S.; Remennikov, A.M.; Ishida, T. Toughness of Railroad Concrete Crossties with Holes and Web Openings. Infrastructures 2017, 2, 3.

Journal reference: Infrastructures 2017, 2, 3
DOI: 10.3390/infrastructures2010003

Abstract

Prestressed concrete sleepers (or railroad ties) are principally designed in order to carry wheel loads from the rails to the ground of railway tracks. Their design takes into account static and dynamic loading conditions. In spite of the most common use of the prestressed concrete crossties in railway tracks, there have always been many demands from rail engineers to improve serviceability and functionality of concrete crossties. For example, signaling, fiber optic, equipment cables are often damaged either by ballast corners or by tamping machine. There has been a need to re-design concrete crosstie to cater cables internally so that they would not experience detrimental or harsh environments. Also, many concrete crossties need a retrofit for automatic train control device and similar signaling equipment. In contrast, the effects of holes and web openings on structural capacity of concrete crossties have not been thoroughly investigated. This paper accordingly highlights the effect of holes and web openings on the toughness and ductility of concrete crossties. The outcome of this research enables better decision making process for retrofiting prestressed concrete crossties with holes and web opening in practice.

Subject Areas

Concrete sleeper; crosstie; design standard; holes; web opening; railway infrastructure; static performance

Readers' Comments and Ratings (0)

Discuss and rate this article
Views 0
Downloads 0
Comments 0
Metrics 0
Discuss and rate this article

×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.