Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Curcumin Ameliorates Furazolidone Induced DNA Damage and Apoptosis in Human Hepatocyte L02 Cells via Inhibiting ROS Production and Mitochondrial Pathway

Version 1 : Received: 1 August 2016 / Approved: 2 August 2016 / Online: 2 August 2016 (05:59:38 CEST)

A peer-reviewed article of this Preprint also exists.

Dai, C.; Li, D.; Gong, L.; Xiao, X.; Tang, S. Curcumin Ameliorates Furazolidone-Induced DNA Damage and Apoptosis in Human Hepatocyte L02 Cells by Inhibiting ROS Production and Mitochondrial Pathway. Molecules 2016, 21, 1061. Dai, C.; Li, D.; Gong, L.; Xiao, X.; Tang, S. Curcumin Ameliorates Furazolidone-Induced DNA Damage and Apoptosis in Human Hepatocyte L02 Cells by Inhibiting ROS Production and Mitochondrial Pathway. Molecules 2016, 21, 1061.

Abstract

Furazolidone (FZD) is a synthetic nitrofuran with the antiprotozoal and antibacterial activity. The proper mechanism of FZD induced toxicity is still unclear. This study aimed to investigate the protective effect of curcumin on FZD induced oxidative stress, DNA injury and apoptosis in human hepatocyte L02 cells. The results showed that curcumin treatment significantly ameliorated FZD induced cytotoxicity, characterized by decreasing the production of reactive oxygen species (ROS) and malondialdehyde, as well as increasing superoxide dismutase, catalase activities and glutathione contents. Moreover, curcumin pretreatment significantly inhibited FZD induced the loss of mitochondrial membrane potential, the activation caspase-9 and -3 and apoptosis. Comet assay showed that curcumin attenuated FZD induced DNA injury in a dose-dependent manner. Correspondingly, curcumin markedly reversed the up-regulation of p53, Bax, caspase-9 and -3 mRNA expressions and the down-regulation of Bcl-2 mRNA (all p<0.05 or 0.01). These results reveal that curcumin protects against FZD induced oxidative stress, DNA injury and cell apoptosis via inhibiting oxidative stress and mitochondrial pathway, which may be attributed to ROS scavenging and anti-oxidative ability of curcumin. Importantly, our study highlights that curcumin may be a potential way to prevent FZD-mediated oxidative DNA injury and apoptosis in human or animals.

Keywords

curcumin; furazolidone; oxidative stress; DNA damage; mitochondrial pathway

Subject

Medicine and Pharmacology, Pharmacology and Toxicology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.