The mass concentration of particulate matter (PM) has been systematically used in epidemiological studies as exposure indicator, to relate airborne concentrations with a wide variety of human health effects, which can be hardly explained by using this single parameter. In fact, PM is a “particle cocktail” that includes a complex mixture of compounds with a wide range of sizes, chemical compositions and emission sources. Current research hypothesizes that many of the adverse health effects are derived from oxidative stress in biological systems caused by the deposition of PM into the lungs. This emerging hypothesis is called the oxidative stress paradigm. In this commentary article we analize how this new paradigm could help to answer the as-of-yet unanswered questions related to the mechanism of action of PM pollution on human health. Acellular oxidative potential (OP) assays have been emerged as a promising approach to quantify the PM potential to induce oxidative stress and to relate it with the chemical composition and size distribution of PM. Recent researches have shown that the OP is related to the presence of metals, organic carbon, polyaromatic hydrocarbons and quinones. However, the association between PM and particle-induced toxicity is still largely unknown. Therefore, additional research is needed to identify the specific PM characteristic(s), such as its specific size, emission source or chemical content, which contribute the most to its redox activity. Thus, the OP measurements provide information that allows us to evaluate and integrate the toxic potential of PM in a unique parameter, whose relationships with emission sources, size distribution and/or chemical composition should be faced in the near future.