Submitted:
12 February 2026
Posted:
13 February 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Molecular and Epigenetic Mechanisms of Doxorubicin-Induced Cardiotoxicity and the Cardioprotective Role of Metformin
2.1. Doxorubicin-Induced Cardiotoxicity: Clinical and Molecular Perspectives
2.2. Epigenetic Alterations in Doxorubicin-Induced Cardiac Injury
2.3. DNA Methylation: Biological Significance and Mechanistic Insights
2.4. Mechanism of Action of Metformin
2.5. Metformin as an Epigenetic Modulator
2.6. Epigenetic Crosstalk Between Doxorubicin and Metformin
2.7. H9c2 Cardiomyoblasts as a Model for Epigenetic Cardiotoxicity Studies
2.8. Knowledge Gaps and Rationale of the Study
2.9. Study Design
2.10. Experimental Groups
2.11. Cell Culture
2.12. Preparation and Treatment of Drugs
2.13. Treatment Design and Dose Selection for Genome-Wide DNA Methylation Analysis
2.14. DNA Extraction and Bisulfite Conversion
2.15. Whole-Genome Bisulfite Sequencing (WGBS)
2.16. Statistical Analysis
3. Results
3.1. Selection of Experimental Conditions for Genome-Wide DNA Methylation Analysis




3.2. International Patterns of DNA Methylation in Treatment Groups
3.3. Identification of Differentially Methylated Regions in Metformin-Treated Cells
3.4. Data Quality Assessment of Methylation Data



3.5. High-Dose Metformin Induces Differential DNA Methylation
3.6. Differential DNA Methylation Following Low-Dose Metformin Exposure



3.7. Hierarchical Clustering Analysis of Differentially Methylated Regions
3.8. Dose-Dependent Epigenetic Responses to Metformin
3.9. Comparison of the Most and Least Epigenetically Affected Genes in LD and HD Groups
3.10. Pathway Changes After Metformin Treatment for Low and High Doses



4. Conclusion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ajzashokhi, A. H.; Bostan, H. B.; Jomezadeh, V.; Hayes, A. W.; Karimi, G. A review on the cardioprotective mechanisms of metformin against doxorubicin. Human & Experimental Toxicology 2020, 39(3), 237–248. [Google Scholar]
- Baccarelli, A. A.; Byun, H. M. Platelet mitochondrial DNA methylation: A potential biomarker of cardiovascular disease. Clinical Epigenetics 2021, 13, 41. [Google Scholar] [CrossRef]
- Bauer, M. A.; Todorova, V. K.; Stone, A.; Carter, W.; Plotkin, M. D.; Hsu, P. C. ... Makhoul, I. Genome-wide DNA methylation signatures predict the early asymptomatic doxorubicin-induced cardiotoxicity in breast cancer. Cancers 2021, 13(24), 6291. [Google Scholar] [CrossRef] [PubMed]
- Bestor, T. H. The DNA methyltransferases of mammals. Human Molecular Genetics 2000, 9(16), 2395–2402. [Google Scholar] [CrossRef] [PubMed]
- Bird, A. DNA methylation patterns and epigenetic memory. Genes & Development 2002, 16(1), 6–21. [Google Scholar] [CrossRef]
- Brownlee, M. The pathobiology of diabetic complications: A unifying mechanism. Diabetes 2005, 54(6), 1615–1625. [Google Scholar] [CrossRef]
- Chen, Y.; Li, S.; Wang, M.; Chen, X. Cardioprotective effects of metformin: Focus on AMPK signalling and mitochondrial homeostasis. Pharmacological Research 2023, 188, 106647. [Google Scholar] [CrossRef]
- Cuyàs, E.; Verdura, S.; Llorach-Parés, L.; Fernández-Arroyo, S.; Joven, J.; Martin-Castillo, B.; Menendez, J. A. Metformin is a direct SIRT1-activating compound: Computational modelling and experimental validation. Frontiers in Endocrinology 2020, 11, 273. [Google Scholar] [CrossRef]
- Fresno Vara, J. A.; Casado, E.; de Castro, J.; Cejas, P.; Belda-Iniesta, C.; González-Barón, M. PI3K/Akt signalling pathway and cancer. Cancer Treatment Reviews 2004, 30(2), 193–204. [Google Scholar] [CrossRef]
- Frommer, M.; McDonald, L. E.; Millar, D. S.; Collis, C. M.; Watt, F.; Grigg, G. W.; Molloy, P. L.; Paul, C. L. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proceedings of the National Academy of Sciences 1992, 89(5), 1827–1831. [Google Scholar] [CrossRef]
- Greco, C. M.; Kunderfranco, P.; Condorelli, G. Epigenetic modifications in cardiovascular disease. Nature Reviews Cardiology 2021, 18(1), 30–45. [Google Scholar] [CrossRef]
- Hescheler, J.; Meyer, R.; Plant, S.; Krautwurst, D.; Rosenthal, W.; Schultz, G. Morphological, biochemical, and electrophysiological characterization of a clonal cell line from rat heart. Circulation Research 1991, 69(6), 1476–1486. [Google Scholar] [CrossRef] [PubMed]
- Huang, D. W.; Sherman, B. T.; Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols 2009, 4(1), 44–57. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Yusuf, N.; Ahmad, A.; Hoda, M. N. Epigenetic regulation of cardiotoxicity induced by doxorubicin. Cardiovascular Toxicology 2019, 19(6), 533–543. [Google Scholar] [CrossRef]
- Li, L. C.; Dahiya, R. MethPrimer: Designing primers for methylation PCRs. Bioinformatics 2002, 18(11), 1427–1431. [Google Scholar] [CrossRef]
- Lipshultz, S. E.; Franco, V. I.; Miller, T. L.; Colan, S. D.; Sallan, S. E. Cardiovascular disease in adult survivors of childhood cancer. Annual Review of Medicine 2013, 64, 161–176. [Google Scholar] [CrossRef]
- Lister, P. D.; Wolter, D. J.; Hanson, N. D. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clinical microbiology reviews 2009, 22(4), 582–610. [Google Scholar] [CrossRef]
- Littler, N.; Mullen, M.; Beckett, H.; Freshney, A.; Pinder, L. Benchmarking school nursing practice: the North West Regional Benchmarking Group. British Journal of School Nursing 2016, 11(3), 131–134. [Google Scholar] [CrossRef]
- Lyu, Y. L.; Kerrigan, J. E.; Lin, C. P.; Azarova, A. M.; Tsai, Y. C.; Ban, Y.; Liu, L. F. Topoisomerase IIβ-mediated DNA double-strand breaks: A mechanism for doxorubicin-induced cardiotoxicity. Proceedings of the National Academy of Sciences 2023, 120(4), e2214789120. [Google Scholar] [CrossRef]
- Meder, B.; Haas, J.; Sedaghat-Hamedani, F.; Kayvanpour, E.; Frese, K.; Lai, A. ... Katus, H.A. Epigenome-wide association study identifies cardiac gene patterning and a novel class of biomarkers for heart failure. Circulation 2021, 141(7), 598–610. [Google Scholar] [CrossRef]
- Octavia, Y.; Tocchetti, C. G.; Gabrielson, K. L.; Janssens, S.; Crijns, H. J.; Moens, A. L. Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. Journal of Molecular and Cellular Cardiology 2012, 52(6), 1213–1225. [Google Scholar] [CrossRef] [PubMed]
- Pang, L.; Cai, Y.; Tang, E. H. C.; Irwin, M. G. Metformin protects against doxorubicin-induced cardiotoxicity through AMPK-dependent pathways. Cardiovascular Research 2020, 116(3), 655–666. [Google Scholar] [CrossRef]
- Papait, R.; Serio, S.; Pagiatakis, C.; Rusconi, F.; Condorelli, G. Histone and DNA methylation in cardiac development, homeostasis, and disease. Trends in Genetics 2020, 36(5), 324–336. [Google Scholar] [CrossRef]
- Pépin, J. L.; Eastwood, P.; Eckert, D. J. Novel avenues to approach non-CPAP therapy and implement comprehensive obstructive sleep apnoea care. European Respiratory Journal 2022, 59(6). [Google Scholar] [CrossRef]
- Pernicova, I.; Korbonits, M. Metformin—Mode of action and clinical implications for diabetes and cancer. Nature Reviews Endocrinology 2014, 10(3), 143–156. [Google Scholar] [CrossRef]
- Swain, S. M.; Whaley, F. S.; Ewer, M. S. Congestive heart failure in patients treated with doxorubicin. Cancer 2003, 97(11), 2869–2879. [Google Scholar] [CrossRef]
- Viollet, B.; Guigas, B.; Sanz García, N.; Leclerc, J.; Foretz, M.; Andreelli, F. Cellular and molecular mechanisms of metformin: An overview. Clinical Science 2012, 122(6), 253–270. [Google Scholar] [CrossRef]
- Wallace, K. B.; Sardão, V. A.; Oliveira, P. J. Mitochondrial determinants of doxorubicin-induced cardiomyopathy. Circulation Research 2020, 126(7), 926–941. [Google Scholar] [CrossRef]
- Yang, X.; Wang, Y.; Li, J.; Wang, H. Metformin regulates DNMT expression and DNA methylation in oxidative stress–induced cardiac injury. Epigenomics 2023, 15(9), 745–760. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, X.; Bawa-Khalfe, T.; Lu, L. S.; Lyu, Y. L.; Liu, L. F.; Yeh, E. T. H. Molecular basis of doxorubicin-induced cardiotoxicity. Nature Medicine 2021, 18(11), 1639–1642. [Google Scholar] [CrossRef]
- Zhong, T.; Men, Y.; Lu, L.; Geng, T.; Zhou, J.; Mitsuhashi, A.; Zhao, Y. Metformin alters DNA methylation and chromatin accessibility in metabolic and cancer-related pathways. Clinical Epigenetics 2022, 14, 68. [Google Scholar] [CrossRef]
- Zhou, G.; Myers, R.; Li, Y.; Chen, Y.; Shen, X.; Fenyk-Melody, J.; Moller, D. E. Role of AMP-activated protein kinase in the mechanism of metformin action. Journal of Clinical Investigation 2021, 131(1), e142196. [Google Scholar] [CrossRef]
- Zhou, G.; Myers, R.; Li, Y.; Chen, Y.; Shen, X.; Fenyk-Melody, J.; Wu, M.; Ventre, J.; Doebber, T.; Fujii, N.; Musi, N.; Hirshman, M. F.; Goodyear, L. J.; Moller, D. E. Role of AMP-activated protein kinase in mechanism of metformin action. Journal of Clinical Investigation 2001, 108(8), 1167–1174. [Google Scholar] [CrossRef]
- Minotti, G.; Menna, P.; Salvatorelli, E.; Cairo, G.; Gianni, L. Anthracyclines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacological Reviews 2004, 56(2), 185–229. [Google Scholar] [CrossRef]
- Lister, R.; Pelizzola, M.; Dowen, R.H.; Hawkins, R.D.; Hon, G.; Tonti-Filippini, J.; Ecker, J.R. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009, 462, 315–322. [Google Scholar] [CrossRef]








| Category | Gene | nDMRs | Methylation Direction | Biological Function |
| Most affected | GAB2 | 89 | Hypomethylated | Signal transduction adaptor; regulates PI3K/AKT and MAPK pathways, cell survival and proliferation |
| Most affected | TENM4 | 87 | Hypomethylated | Neuronal development, axon guidance, and cell–cell adhesion |
| Most affected | DLG2 | 65 | Hypermethylated | Synaptic scaffolding protein; essential for neurotransmission and synapse organization |
| Most affected | NARS2 | 56 | Hypomethylated | Mitochondrial tRNA synthetase; required for mitochondrial protein synthesis and energy production |
| Most affected | ZFP536 | 47 | Hypermethylated | Transcription factor involved in neuronal differentiation and brain development |
| Most affected | CSRP3 | 1 | Hypomethylated | Cytoskeletal protein important for cardiac and skeletal muscle structure |
| Least affected | LRRC10B | 1 | Hypomethylated | Cardiac-specific protein involved in heart development and contractility |
| Least affected | Other single-DMR genes | 1 | Hypomethylated | Represent minimal epigenetic alteration with limited regulatory impact |
| Category | Gene | nDMRs | Methylation Direction | Biological Function |
| Most affected | GLIS3 | 1 | Hypermethylated |
Transcription factor regulating insulin signaling, neurodevelopment, and cell differentiation |
| Most affected | ZDHHC13 | 1 | Hypomethylated | Palmitoyltransferase involved in protein lipid modification and neuronal signaling |
| Most affected | TCP1 | 1 | Hypermethylated | Molecular chaperone involved in protein folding and cytoskeleton assembly |
| Most affected | GARRE1 | 1 | Hypermethylated | Regulates cell proliferation and cytoskeletal organization |
| Most affected | TM6SF1 | 1 | Hypomethylated | Membrane protein associated with lipid metabolism and ER function |
| Least affected | Other single-DMR genes | 1 | Minor change | Show background-level methylation variation with negligible functional effect |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
