Submitted:
06 February 2026
Posted:
06 February 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Overview of MIF
2.1. Structure and Isoforms
2.2. Signaling
2.3. Catalytic Activities
3. MIF Promoter Polymorphisms and Their Clinical Implications
4. MIF and Inflammatory Diseases
5. MIF and Cancer
5.1. Molecular Mechanisms of MIF-Driven Tumorigenesis
5.2. MIF–CD74 Signaling and Resistance to Immune Checkpoint Blockade
5.3. MIF Overexpression and Clinical Associations Across Cancer Types
6. MIF and Lung Cancer
7. Therapeutic Targeting of MIF
7.1. Small-Molecule MIF Inhibitors
7.2. Monoclonal Antibodies and Nanobodies
7.3. Peptide Inhibitors
8. Future Perspectives
Author Contributions
Data Availability Statement
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
| 4-IPP | 4-iodo-6-phenylpyrimidine |
| AP1 | Activator Protein 1 |
| AP4 | Activator Protein 4 |
| CMFT | 1-methoxy-5-formyl-4,6,8-trihydroxyphenazine |
| cPLA2 | Cytosolic Phospholipase A2 |
| CXCL8 | C-X-C motif Chemokine Ligand 8 |
| CXCR | C-X-C Chemokine Receptor |
| EMT | epithelial-to-Mesenchymal Transition |
| ERK | Extracellular Signal-Regulated Kinase |
| FEV1 | Forced Expiratory Volume in 1 second |
| HIF-1α | Hypoxia-Inducible Factor 1α |
| JNK | c-Jun N-terminal Kinase |
| LLC | Lewis Lung Carcinoma |
| MAPK | Mitogen-Activated Protein Kinase |
| MIF | Macrophage Migration Inhibitory Factor |
| MOG | Myelin Oligodendrocyte Glycoprotein |
| NF-κB | Nuclear Factor kappa B |
| NSCLC | Non-Small Cell Lung Cancer |
| oxMIF | oxidized MIF |
| PD-1 | Programmed Cell Death Protein-1 |
| PD-L1 | Programmed Death-Ligand-1 |
| PI3K/Akt | Phosphatidylinositol-3-Kinase/Protein Kinase B |
| RA | Rheumatoid Arthritis |
| rhMIF | recombinant human MIF |
| SCLC | Small cell Lung Cancer |
| SLE | Systemic Lupus Erythematosus |
| SNP | Single-Nucleotide Polymorphism |
| TIMP1 | Tissue Inhibitor of Metalloproteinase-1 |
| TNF-α | Tumor Necrosis Factor-alpha |
| VEGF | Vascular Endothelial Growth Factor |
References
- Torre, L.A.; Siegel, R.L.; Jemal, A. Lung Cancer Statistics. Adv Exp Med Biol 2016, 893, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J Clin 2011, 61, 69–90. [Google Scholar] [CrossRef] [PubMed]
- Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J Clin 2015, 65, 87–108. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Bade, B.C.; Dela Cruz, C.S. Lung Cancer 2020: Epidemiology, Etiology, and Prevention. Clin Chest Med 2020, 41, 1–24. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, Y.; Liu, J.; Feng, L.; Yu, J.; Chen, D. Global burden of lung cancer in 2022 and projections to 2050: Incidence and mortality estimates from GLOBOCAN. Cancer Epidemiol 2024, 93, 102693. [Google Scholar] [CrossRef]
- Siegel, R.; Ward, E.; Brawley, O.; Jemal, A. Cancer statistics, 2011: The impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin 2011, 61, 212–236. [Google Scholar] [CrossRef]
- Dela Cruz, C.S.; Tanoue, L.T.; Matthay, R.A. Lung cancer: Epidemiology, etiology, and prevention. Clin Chest Med 2011, 32, 605–644. [Google Scholar] [CrossRef]
- Siegel, R.L.; Kratzer, T.B.; Giaquinto, A.N.; Sung, H.; Jemal, A. Cancer statistics, 2025. CA Cancer J Clin 2025, 75, 10–45. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yan, B.; He, S. Advances and challenges in the treatment of lung cancer. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 2023, 169, 115891. [Google Scholar] [CrossRef]
- Lu, T.; Yang, X.; Huang, Y.; Zhao, M.; Li, M.; Ma, K.; Yin, J.; Zhan, C.; Wang, Q. Trends in the incidence, treatment, and survival of patients with lung cancer in the last four decades. Cancer Manag Res 2019, 11, 943–953. [Google Scholar] [CrossRef] [PubMed]
- Thai, A.A.; Solomon, B.J.; Sequist, L.V.; Gainor, J.F.; Heist, R.S. Lung cancer. Lancet (London, England) 2021, 398, 535–554. [Google Scholar] [CrossRef]
- Wathoni, N.; Puluhulawa, L.E.; Joni, I.M.; Muchtaridi, M.; Mohammed, A.F.A.; Elamin, K.M.; Milanda, T.; Gozali, D. Monoclonal antibody as a targeting mediator for nanoparticle targeted delivery system for lung cancer. Drug Deliv 2022, 29, 2959–2970. [Google Scholar] [CrossRef]
- Schabath, M.B.; Cote, M.L. Cancer Progress and Priorities: Lung Cancer. Cancer Epidemiol Biomarkers Prev 2019, 28, 1563–1579. [Google Scholar] [CrossRef]
- Allemani, C.; Matsuda, T.; Di Carlo, V.; Harewood, R.; Matz, M.; Nikšić, M.; Bonaventure, A.; Valkov, M.; Johnson, C.J.; Estève, J.; et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): Analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet (London, England) 2018, 391, 1023–1075. [Google Scholar] [CrossRef]
- Allemani, C.; Weir, H.K.; Carreira, H.; Harewood, R.; Spika, D.; Wang, X.S.; Bannon, F.; Ahn, J.V.; Johnson, C.J.; Bonaventure, A.; et al. Global surveillance of cancer survival 1995-2009: Analysis of individual data for 25,676,887 patients from 279 population-based registries in 67 countries (CONCORD-2). Lancet (London, England) 2015, 385, 977–1010. [Google Scholar] [CrossRef]
- Bi, J.H.; Tuo, J.Y.; Xiao, Y.X.; Tang, D.D.; Zhou, X.H.; Jiang, Y.F.; Ji, X.W.; Tan, Y.T.; Yuan, H.Y.; Xiang, Y.B. Observed and relative survival trends of lung cancer: A systematic review of population-based cancer registration data. Thorac Cancer 2024, 15, 142–151. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J Clin 2019, 69, 7–34. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, D.C.; Shi, L.; Zhu, B.; Min, Z.; Jin, J. Genome analyses identify the genetic modification of lung cancer subtypes. Semin Cancer Biol 2017, 42, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Rina, A.; Maffeo, D.; Minnai, F.; Esposito, M.; Palmieri, M.; Serio, V.B.; Rosati, D.; Mari, F.; Frullanti, E.; Colombo, F. The Genetic Analysis and Clinical Therapy in Lung Cancer: Current Advances and Future Directions. Cancers (Basel) 2024, 16. [Google Scholar] [CrossRef] [PubMed]
- Smolarz, B.; Łukasiewicz, H.; Samulak, D.; Piekarska, E.; Kołaciński, R.; Romanowicz, H. Lung Cancer-Epidemiology, Pathogenesis, Treatment and Molecular Aspect (Review of Literature). International journal of molecular sciences 2025, 26. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Ashwood, L.M.; Kondrashova, O.; Strasser, A.; Kelly, G.; Sutherland, K.D. Breathing new insights into the role of mutant p53 in lung cancer. Oncogene 2025, 44, 115–129. [Google Scholar] [CrossRef]
- Saleh, M.M.; Scheffler, M.; Merkelbach-Bruse, S.; Scheel, A.H.; Ulmer, B.; Wolf, J.; Buettner, R. Comprehensive Analysis of TP53 and KEAP1 Mutations and Their Impact on Survival in Localized- and Advanced-Stage NSCLC. J Thorac Oncol 2022, 17, 76–88. [Google Scholar] [CrossRef]
- Kaye, F.J. RB and cyclin dependent kinase pathways: Defining a distinction between RB and p16 loss in lung cancer. Oncogene 2002, 21, 6908–6914. [Google Scholar] [CrossRef]
- Kontomanolis, E.N.; Koutras, A.; Syllaios, A.; Schizas, D.; Mastoraki, A.; Garmpis, N.; Diakosavvas, M.; Angelou, K.; Tsatsaris, G.; Pagkalos, A.; et al. Role of Oncogenes and Tumor-suppressor Genes in Carcinogenesis: A Review. Anticancer Res 2020, 40, 6009–6015. [Google Scholar] [CrossRef]
- Apte, R.S.; Chen, D.S.; Ferrara, N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell 2019, 176, 1248–1264. [Google Scholar] [CrossRef]
- Bloom, B.R.; Bennett, B. Mechanism of a reaction in vitro associated with delayed-type hypersensitivity. Science (New York, N.Y.) 1966, 153, 80–82. [Google Scholar] [CrossRef]
- Kasama, T.; Ohtsuka, K.; Sato, M.; Takahashi, R.; Wakabayashi, K.; Kobayashi, K. Macrophage migration inhibitory factor: A multifunctional cytokine in rheumatic diseases. Arthritis 2010, 2010, 106202. [Google Scholar] [CrossRef]
- Weiser, W.Y.; Temple, P.A.; Witek-Giannotti, J.S.; Remold, H.G.; Clark, S.C.; David, J.R. Molecular cloning of a cDNA encoding a human macrophage migration inhibitory factor. Proceedings of the National Academy of Sciences of the United States of America 1989, 86, 7522–7526. [Google Scholar] [CrossRef] [PubMed]
- Calandra, T.; Bernhagen, J.; Mitchell, R.A.; Bucala, R. The macrophage is an important and previously unrecognized source of macrophage migration inhibitory factor. The Journal of experimental medicine 1994, 179, 1895–1902. [Google Scholar] [CrossRef] [PubMed]
- Bernhagen, J.; Calandra, T.; Mitchell, R.; Martin, S.; Tracey, K.; Voelter, W.; Manogue, K.; Cerami, A.; Bucala, R. MIF is a pituitary-derived cytokine that potentiates lethal endotoxaemia. Nature 1993, 365, 756–759. [Google Scholar] [CrossRef] [PubMed]
- Leng, L.; Metz, C.N.; Fang, Y.; Xu, J.; Donnelly, S.; Baugh, J.; Delohery, T.; Chen, Y.; Mitchell, R.A.; Bucala, R. MIF signal transduction initiated by binding to CD74. The Journal of experimental medicine 2003, 197, 1467–1476. [Google Scholar] [CrossRef]
- Sugimoto, H.; Taniguchi, M.; Nakagawa, A.; Tanaka, I.; Suzuki, M.; Nishihira, J. Crystal structure of human D-dopachrome tautomerase, a homologue of macrophage migration inhibitory factor, at 1.54 A resolution. Biochemistry 1999, 38, 3268–3279. [Google Scholar] [CrossRef]
- Michelet, C.; Danchin, E.G.; Jaouannet, M.; Bernhagen, J.; Panstruga, R.; Kogel, K.-H.; Keller, H.; Coustau, C. Cross-kingdom analysis of diversity, evolutionary history, and site selection within the eukaryotic macrophage migration inhibitory factor superfamily. Genes 2019, 10, 740. [Google Scholar] [CrossRef]
- Schinagl, A.; Kerschbaumer, R.J.; Sabarth, N.; Douillard, P.; Scholz, P.; Voelkel, D.; Hollerweger, J.C.; Goettig, P.; Brandstetter, H.; Scheiflinger, F. Role of the cysteine 81 residue of macrophage migration inhibitory factor as a molecular redox switch. Biochemistry 2018, 57, 1523–1532. [Google Scholar] [CrossRef]
- Skeens, E.; Gadzuk-Shea, M.; Shah, D.; Bhandari, V.; Schweppe, D.K.; Berlow, R.B.; Lisi, G.P. Redox-dependent structure and dynamics of macrophage migration inhibitory factor reveal sites of latent allostery. Structure 2022, 30, 840–850. e846. [Google Scholar] [CrossRef]
- Thiele, M.; Donnelly, S.C.; Mitchell, R.A. OxMIF: A druggable isoform of macrophage migration inhibitory factor in cancer and inflammatory diseases. J Immunother Cancer 2022, 10. [Google Scholar] [CrossRef]
- Thiele, M.; Kerschbaumer, R.J.; Tam, F.W.; Völkel, D.; Douillard, P.; Schinagl, A.; Kühnel, H.; Smith, J.; McDaid, J.P.; Bhangal, G. Selective targeting of a disease-related conformational isoform of macrophage migration inhibitory factor ameliorates inflammatory conditions. The Journal of Immunology 2015, 195, 2343–2352. [Google Scholar] [CrossRef]
- Dickerhof, N.; Schindler, L.; Bernhagen, J.; Kettle, A.J.; Hampton, M.B. Macrophage migration inhibitory factor (MIF) is rendered enzymatically inactive by myeloperoxidase-derived oxidants but retains its immunomodulatory function. Free Radical Biology and Medicine 2015, 89, 498–511. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, R.A.; Metz, C.N.; Peng, T.; Bucala, R. Sustained mitogen-activated protein kinase (MAPK) and cytoplasmic phospholipase A2 activation by macrophage migration inhibitory factor (MIF). Regulatory role in cell proliferation and glucocorticoid action. The Journal of Biological Chemistry 1999, 274, 18100–18106. [Google Scholar] [CrossRef] [PubMed]
- Bloom, J.; Sun, S.; Al-Abed, Y. MIF, a controversial cytokine: A review of structural features, challenges, and opportunities for drug development. Expert Opin Ther Targets 2016, 20, 1463–1475. [Google Scholar] [CrossRef] [PubMed]
- Swantek, J.L.; Cobb, M.H.; Geppert, T.D. Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) is required for lipopolysaccharide stimulation of tumor necrosis factor alpha (TNF-alpha) translation: Glucocorticoids inhibit TNF-alpha translation by blocking JNK/SAPK. Mol Cell Biol 1997, 17, 6274–6282. [Google Scholar] [CrossRef]
- Jankauskas, S.S.; Wong, D.W.; Bucala, R.; Djudjaj, S.; Boor, P. Evolving complexity of MIF signaling. Cellular signalling 2019, 57, 76–88. [Google Scholar] [CrossRef]
- Conroy, H.; Mawhinney, L.; Donnelly, S.C. Inflammation and cancer: Macrophage migration inhibitory factor (MIF)--the potential missing link. Qjm 2010, 103, 831–836. [Google Scholar] [CrossRef]
- Rosengren, E.; Aman, P.; Thelin, S.; Hansson, C.; Ahlfors, S.; Björk, P.; Jacobsson, L.; Rorsman, H. The macrophage migration inhibitory factor MIF is a phenylpyruvate tautomerase. FEBS letters 1997, 417, 85–88. [Google Scholar] [CrossRef]
- Kleemann, R.; Kapurniotu, A.; Frank, R.W.; Gessner, A.; Mischke, R.; Flieger, O.; Jüttner, S.; Brunner, H.; Bernhagen, J. Disulfide analysis reveals a role for macrophage migration inhibitory factor (MIF) as thiol-protein oxidoreductase. J Mol Biol 1998, 280, 85–102. [Google Scholar] [CrossRef]
- Thiele, M.; Bernhagen, J. Link between macrophage migration inhibitory factor and cellular redox regulation. Antioxidants & redox signaling 2005, 7, 1234–1248. [Google Scholar] [CrossRef]
- Matsunaga, J.; Sinha, D.; Pannell, L.; Santis, C.; Solano, F.; Wistow, G.J.; Hearing, V.J. Enzyme activity of macrophage migration inhibitory factor toward oxidized catecholamines. The Journal of Biological Chemistry 1999, 274, 3268–3271. [Google Scholar] [CrossRef]
- Fingerle-Rowson, G.; Kaleswarapu, D.R.; Schlander, C.; Kabgani, N.; Brocks, T.; Reinart, N.; Busch, R.; Schütz, A.; Lue, H.; Du, X.; et al. A tautomerase-null macrophage migration-inhibitory factor (MIF) gene knock-in mouse model reveals that protein interactions and not enzymatic activity mediate MIF-dependent growth regulation. Mol Cell Biol 2009, 29, 1922–1932. [Google Scholar] [CrossRef] [PubMed]
- Rajasekaran, D.; Zierow, S.; Syed, M.; Bucala, R.; Bhandari, V.; Lolis, E.J. Targeting distinct tautomerase sites of D-DT and MIF with a single molecule for inhibition of neutrophil lung recruitment. FASEB journal: Official publication of the Federation of American Societies for Experimental Biology 2014, 28, 4961–4971. [Google Scholar] [CrossRef] [PubMed]
- Cournia, Z.; Leng, L.; Gandavadi, S.; Du, X.; Bucala, R.; Jorgensen, W.L. Discovery of human macrophage migration inhibitory factor (MIF)-CD74 antagonists via virtual screening. Journal of medicinal chemistry 2009, 52, 416–424. [Google Scholar] [CrossRef] [PubMed]
- Pantouris, G.; Syed, M.A.; Fan, C.; Rajasekaran, D.; Cho, T.Y.; Rosenberg, E.M., Jr.; Bucala, R.; Bhandari, V.; Lolis, E.J. An Analysis of MIF Structural Features that Control Functional Activation of CD74. Chem Biol 2015, 22, 1197–1205. [Google Scholar] [CrossRef]
- El-Turk, F.; Cascella, M.; Ouertatani-Sakouhi, H.; Narayanan, R.L.; Leng, L.; Bucala, R.; Zweckstetter, M.; Rothlisberger, U.; Lashuel, H.A. The conformational flexibility of the carboxy terminal residues 105-114 is a key modulator of the catalytic activity and stability of macrophage migration inhibitory factor. Biochemistry 2008, 47, 10740–10756. [Google Scholar] [CrossRef]
- Al-Abed, Y.; Dabideen, D.; Aljabari, B.; Valster, A.; Messmer, D.; Ochani, M.; Tanovic, M.; Ochani, K.; Bacher, M.; Nicoletti, F.; et al. ISO-1 binding to the tautomerase active site of MIF inhibits its pro-inflammatory activity and increases survival in severe sepsis. The Journal of Biological Chemistry 2005, 280, 36541–36544. [Google Scholar] [CrossRef]
- Adamali, H.; Armstrong, M.E.; McLaughlin, A.M.; Cooke, G.; McKone, E.; Costello, C.M.; Gallagher, C.G.; Leng, L.; Baugh, J.A.; Fingerle-Rowson, G.; et al. Macrophage migration inhibitory factor enzymatic activity, lung inflammation, and cystic fibrosis. American journal of respiratory and critical care medicine 2012, 186, 162–169. [Google Scholar] [CrossRef]
- Tynan, A.; Mawhinney, L.; Armstrong, M.E.; O'Reilly, C.; Kennedy, S.; Caraher, E.; Jülicher, K.; O'Dwyer, D.; Maher, L.; Schaffer, K.; et al. Macrophage migration inhibitory factor enhances Pseudomonas aeruginosa biofilm formation, potentially contributing to cystic fibrosis pathogenesis. FASEB journal: Official publication of the Federation of American Societies for Experimental Biology 2017, 31, 5102–5110. [Google Scholar] [CrossRef]
- Winner, M.; Meier, J.; Zierow, S.; Rendon, B.E.; Crichlow, G.V.; Riggs, R.; Bucala, R.; Leng, L.; Smith, N.; Lolis, E.; et al. A novel, macrophage migration inhibitory factor suicide substrate inhibits motility and growth of lung cancer cells. Cancer research 2008, 68, 7253–7257. [Google Scholar] [CrossRef]
- Mawhinney, L.; Armstrong, M.E.; C, O.R.; Bucala, R.; Leng, L.; Fingerle-Rowson, G.; Fayne, D.; Keane, M.P.; Tynan, A.; Maher, L.; et al. Macrophage migration inhibitory factor (MIF) enzymatic activity and lung cancer. Mol Med 2015, 20, 729–735. [Google Scholar] [CrossRef]
- Xu, L.; Li, Y.; Sun, H.; Zhen, X.; Qiao, C.; Tian, S.; Hou, T. Current developments of macrophage migration inhibitory factor (MIF) inhibitors. Drug discovery today 2013, 18, 592–600. [Google Scholar] [CrossRef] [PubMed]
- Camacho Meza, G.; Avalos Navarro, G.; De La Cruz Mosso, U.; Ramírez Patiño, R.; Muñoz Valle, J.F.; Bautista Herrera, L.A. Macrophage migration inhibitory factor: Exploring physiological roles and comparing health benefits against oncogenic and autoimmune risks (Review). International journal of molecular medicine 2025, 56. [Google Scholar] [CrossRef] [PubMed]
- Donn, R.; Alourfi, Z.; De Benedetti, F.; Meazza, C.; Zeggini, E.; Lunt, M.; Stevens, A.; Shelley, E.; Lamb, R.; Ollier, W.E.; et al. Mutation screening of the macrophage migration inhibitory factor gene: Positive association of a functional polymorphism of macrophage migration inhibitory factor with juvenile idiopathic arthritis. Arthritis and rheumatism 2002, 46, 2402–2409. [Google Scholar] [CrossRef] [PubMed]
- Radstake, T.R.; Sweep, F.C.; Welsing, P.; Franke, B.; Vermeulen, S.H.; Geurts-Moespot, A.; Calandra, T.; Donn, R.; van Riel, P.L. Correlation of rheumatoid arthritis severity with the genetic functional variants and circulating levels of macrophage migration inhibitory factor. Arthritis and rheumatism 2005, 52, 3020–3029. [Google Scholar] [CrossRef]
- Baugh, J.A.; Chitnis, S.; Donnelly, S.C.; Monteiro, J.; Lin, X.; Plant, B.J.; Wolfe, F.; Gregersen, P.K.; Bucala, R. A functional promoter polymorphism in the macrophage migration inhibitory factor (MIF) gene associated with disease severity in rheumatoid arthritis. Genes Immun 2002, 3, 170–176. [Google Scholar] [CrossRef]
- Llamas-Covarrubias, M.A.; Valle, Y.; Bucala, R.; Navarro-Hernández, R.E.; Palafox-Sánchez, C.A.; Padilla-Gutiérrez, J.R.; Parra-Rojas, I.; Bernard-Medina, A.G.; Reyes-Castillo, Z.; Muñoz-Valle, J.F. Macrophage migration inhibitory factor (MIF): Genetic evidence for participation in early onset and early stage rheumatoid arthritis. Cytokine 2013, 61, 759–765. [Google Scholar] [CrossRef]
- Sreih, A.; Ezzeddine, R.; Leng, L.; LaChance, A.; Yu, G.; Mizue, Y.; Subrahmanyan, L.; Pons-Estel, B.A.; Abelson, A.K.; Gunnarsson, I.; et al. Dual effect of the macrophage migration inhibitory factor gene on the development and severity of human systemic lupus erythematosus. Arthritis and rheumatism 2011, 63, 3942–3951. [Google Scholar] [CrossRef]
- Yao, J.; Leng, L.; Sauler, M.; Fu, W.; Zheng, J.; Zhang, Y.; Du, X.; Yu, X.; Lee, P.; Bucala, R. Transcription factor ICBP90 regulates the MIF promoter and immune susceptibility locus. The Journal of clinical investigation 2016, 126, 732–744. [Google Scholar] [CrossRef]
- Valdez, C.N.; Sánchez-Zuno, G.A.; Bucala, R.; Tran, T.T. Macrophage Migration Inhibitory Factor (MIF) and D-Dopachrome Tautomerase (DDT): Pathways to Tumorigenesis and Therapeutic Opportunities. International journal of molecular sciences 2024, 25. [Google Scholar] [CrossRef]
- Illescas, O.; Gomez-Verjan, J.C.; García-Velázquez, L.; Govezensky, T.; Rodriguez-Sosa, M. Macrophage Migration Inhibitory Factor -173 G/C Polymorphism: A Global Meta-Analysis across the Disease Spectrum. Frontiers in genetics 2018, 9, 55. [Google Scholar] [CrossRef]
- Du, X.; Li, R.; Song, S.; Ma, L.; Xue, H. The Role of MIF-173G/C Gene Polymorphism in the Susceptibility of Autoimmune Diseases. Mediators of inflammation 2020, 2020, 7825072. [Google Scholar] [CrossRef]
- Fouda, H.; Ibrahim, W.N.; Shi, Z.; Alahmadi, F.; Almohammadi, Y.; Al-Haidose, A.; Abdallah, A.M. Impact of the MIF -173G/C variant on cardiovascular disease risk: A meta-analysis of 9,047 participants. Frontiers in cardiovascular medicine 2024, 11, 1323423. [Google Scholar] [CrossRef]
- Shan, Z.X.; Fu, Y.H.; Yu, X.Y.; Deng, C.Y.; Tan, H.H.; Lin, Q.X.; Yu, H.M.; Lin, S.G. Association of the polymorphism of macrophage migration inhibitory factor gene with coronary heart disease in Chinese population. Zhonghua yi xue yi chuan xue za zhi = Zhonghua yixue yichuanxue zazhi = Chinese journal of medical genetics 2006, 23, 548–550. [Google Scholar]
- Tong, X.; Yan, Z.; Zhou, Q.; Liu, S.; Han, J.; Ma, Y.; Yang, X.; Fan, H. Association between the MIF-173G/C Polymorphism and Serum MIF levels with Pulmonary Tuberculosis: A Meta-analysis. Sci Rep 2017, 7, 234. [Google Scholar] [CrossRef]
- Zhang, X.; Weng, W.; Xu, W.; Wang, Y.; Yu, W.; Tang, X.; Ma, L.; Pan, Q.; Wang, J.; Sun, F. The association between the migration inhibitory factor -173G/C polymorphism and cancer risk: A meta-analysis. OncoTargets and therapy 2015, 8, 601–613. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.C.; Lee, Y.H. Associations between circulating macrophage migration inhibitory factor (MIF) levels and rheumatoid arthritis, and between MIF gene polymorphisms and disease susceptibility: A meta-analysis. Postgraduate medical journal 2018, 94, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Sam, N.B.; Guan, S.Y.; Wang, P.; Li, X.M.; Wang, D.G.; Pan, H.F.; Ye, D.Q. Levels of the macrophage migration inhibitory factor and polymorphisms in systemic lupus erythematosus: A meta-analysis. Archives of medical science: AMS 2021, 17, 1232–1240. [Google Scholar] [CrossRef]
- Plant, B.J.; Gallagher, C.G.; Bucala, R.; Baugh, J.A.; Chappell, S.; Morgan, L.; O'Connor, C.M.; Morgan, K.; Donnelly, S.C. Cystic fibrosis, disease severity, and a macrophage migration inhibitory factor polymorphism. American journal of respiratory and critical care medicine 2005, 172, 1412–1415. [Google Scholar] [CrossRef]
- Chuo, D.; Lin, D.; Yin, M.; Chen, Y. Genetic Variants of the MIF Gene and Susceptibility of Rectal Cancer. Pharmgenomics Pers Med 2021, 14, 55–60. [Google Scholar] [CrossRef]
- Li, H.; Zang, J.; Wang, P.; Dai, L.; Zhang, J.; Wang, K. Gastric cancer susceptibility in gastric cancer relatives: Attributable risks of Macrophage migration inhibitory factor promoter polymorphism and Helicobacter pylori. Cytokine 2012, 60, 346–351. [Google Scholar] [CrossRef]
- Wu, S.; Sun, J.; Lian, J.; Shang, H.; Tao, H.; Xie, J.; Lin, W. Macrophage migration inhibitory factor promoter polymorphisms (-794CATT(5-7) ) as potential biomarker for early-stage cervical cancer. The journal of obstetrics and gynaecology research 2017, 43, 571–579. [Google Scholar] [CrossRef] [PubMed]
- Meyer-Siegler, K.L.; Vera, P.L.; Iczkowski, K.A.; Bifulco, C.; Lee, A.; Gregersen, P.K.; Leng, L.; Bucala, R. Macrophage migration inhibitory factor (MIF) gene polymorphisms are associated with increased prostate cancer incidence. Genes Immun 2007, 8, 646–652. [Google Scholar] [CrossRef] [PubMed]
- Guevara-Gutiérrez, E.; Ramos-Súarez, M.; Villalobos-Ayala, R.A.; Tlacuilo-Parra, A.; Muñoz-Valle, J.F.; Tarango-Martínez, V.; Valle, Y.; Padilla-Gutiérrez, J.R.; Rojas-Díaz, J.M.; Valdés-Alvarado, E. Haplotypes of. Mol Genet Genomic Med 2023, 11, e2252. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.J.; Fan, W.; Par-Young, J.; Piecychna, M.; Leng, L.; Israni-Winger, K.; Qing, H.; Gu, J.; Zhao, H.; Schulz, W.L.; et al. MIF is a common genetic determinant of COVID-19 symptomatic infection and severity. Qjm 2023, 116, 205–212. [Google Scholar] [CrossRef]
- Dunbar, H.; Hawthorne, I.J.; Tunstead, C.; Armstrong, M.E.; Donnelly, S.C.; English, K. Blockade of MIF biological activity ameliorates house dust mite-induced allergic airway inflammation in humanized MIF mice. FASEB journal: Official publication of the Federation of American Societies for Experimental Biology 2023, 37, e23072. [Google Scholar] [CrossRef]
- Hawthorne, I.J.; Dunbar, H.; Tunstead, C.; Schorpp, T.; Weiss, D.J.; Enes, S.R.; Dos Santos, C.C.; Armstrong, M.E.; Donnelly, S.C.; English, K. Human macrophage migration inhibitory factor potentiates mesenchymal stromal cell efficacy in a clinically relevant model of allergic asthma. Molecular therapy: The journal of the American Society of Gene Therapy 2023, 31, 3243–3258. [Google Scholar] [CrossRef]
- Dunbar, H.; Hawthorne, I.J.; McNamee, E.N.; Armstrong, M.E.; Donnelly, S.C.; English, K. The human MIF polymorphism CATT(7) enhances pro-inflammatory macrophage polarization in a clinically relevant model of allergic airway inflammation. FASEB journal: Official publication of the Federation of American Societies for Experimental Biology 2024, 38, e23576. [Google Scholar] [CrossRef]
- Tran, T.T.; Sánchez-Zuno, G.A.; Osmani, L.; Caulfield, J.; Valdez, C.N.; Piecychna, M.; Leng, L.; Armstrong, M.E.; Donnelly, S.C.; Bifulco, C.B.; et al. Improving immunotherapy responses by dual inhibition of macrophage migration inhibitory factor and PD-1. JCI insight 2025, 10. [Google Scholar] [CrossRef]
- Martínez, A.; Orozco, G.; Varadé, J.; Sánchez López, M.; Pascual, D.; Balsa, A.; García, A.; de la Concha, E.G.; Fernández-Gutiérrez, B.; Martín, J.; et al. Macrophage migration inhibitory factor gene: Influence on rheumatoid arthritis susceptibility. Hum Immunol 2007, 68, 744–747. [Google Scholar] [CrossRef]
- Barton, A.; Lamb, R.; Symmons, D.; Silman, A.; Thomson, W.; Worthington, J.; Donn, R. Macrophage migration inhibitory factor (MIF) gene polymorphism is associated with susceptibility to but not severity of inflammatory polyarthritis. Genes & Immunity 2003, 4, 487–491. [Google Scholar] [CrossRef]
- Sánchez, E.; Gómez, L.M.; Lopez-Nevot, M.A.; González-Gay, M.A.; Sabio, J.M.; Ortego-Centeno, N.; de Ramón, E.; Anaya, J.M.; González-Escribano, M.F.; Koeleman, B.P.; et al. Evidence of association of macrophage migration inhibitory factor gene polymorphisms with systemic lupus erythematosus. Genes Immun 2006, 7, 433–436. [Google Scholar] [CrossRef]
- Przybyłowska, K.; Mrowicki, J.; Sygut, A.; Narbutt, P.; Dziki, Ł.; Dziki, A.; Majsterek, I. Contribution of the -173 G/C polymorphism of macrophage migration inhibitory factor gene to the risk of inflammatory bowel diseases. Polski przeglad chirurgiczny 2011, 83, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Assis, D.N.; Takahashi, H.; Leng, L.; Zeniya, M.; Boyer, J.L.; Bucala, R. A Macrophage Migration Inhibitory Factor Polymorphism Is Associated with Autoimmune Hepatitis Severity in US and Japanese Patients. Digestive diseases and sciences 2016, 61, 3506–3512. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Chen, F.; Zhang, X.; Li, Y.; Ma, H.; Zhou, Y.; Jin, Y.; Wang, H.; Bai, J.; Zhang, G.; et al. Association of MIF promoter polymorphisms with psoriasis in a Han population in northeastern China. Journal of dermatological science 2009, 53, 212–215. [Google Scholar] [CrossRef] [PubMed]
- Savva, A.; Brouwer, M.C.; Roger, T.; Valls Serón, M.; Le Roy, D.; Ferwerda, B.; van der Ende, A.; Bochud, P.Y.; van de Beek, D.; Calandra, T. Functional polymorphisms of macrophage migration inhibitory factor as predictors of morbidity and mortality of pneumococcal meningitis. Proceedings of the National Academy of Sciences of the United States of America 2016, 113, 3597–3602. [Google Scholar] [CrossRef]
- Avalos-Navarro, G.; Del Toro-Arreola, A.; Daneri-Navarro, A.; Quintero-Ramos, A.; Bautista-Herrera, L.A.; Franco Topete, R.A.; Anaya Macias, B.U.; Javalera Castro, D.I.; Morán-Mendoza, A.J.; Oceguera-Villanueva, A.; et al. Association of the genetic variants (-794 CATT5-8 and -173 G > C) of macrophage migration inhibitory factor (MIF) with higher soluble levels of MIF and TNFα in women with breast cancer. Journal of clinical laboratory analysis 2020, 34, e23209. [Google Scholar] [CrossRef]
- Qin, L.; Qin, J.; Lv, X.; Yin, C.; Zhang, Q.; Zhang, J. MIF promoter polymorphism increases peripheral blood expression levels, contributing to increased susceptibility and poor prognosis in hepatocellular carcinoma. Oncol Lett 2021, 22, 549. [Google Scholar] [CrossRef]
- Calandra, T.; Echtenacher, B.; Roy, D.L.; Pugin, J.; Metz, C.N.; Hültner, L.; Heumann, D.; Männel, D.; Bucala, R.; Glauser, M.P. Protection from septic shock by neutralization of macrophage migration inhibitory factor. Nature medicine 2000, 6, 164–170. [Google Scholar] [CrossRef]
- Donnelly, S.C.; Haslett, C.; Reid, P.T.; Grant, I.S.; Wallace, W.A.; Metz, C.N.; Bruce, L.J.; Bucala, R. Regulatory role for macrophage migration inhibitory factor in acute respiratory distress syndrome. Nature medicine 1997, 3, 320–323. [Google Scholar] [CrossRef]
- Donnelly, S.C.; Bucala, R. Macrophage migration inhibitory factor: A regulator of glucocorticoid activity with a critical role in inflammatory disease. Mol Med Today 1997, 3, 502–507. [Google Scholar] [CrossRef]
- Leech, M.; Metz, C.; Bucala, R.; Morand, E.F. Regulation of macrophage migration inhibitory factor by endogenous glucocorticoids in rat adjuvant-induced arthritis. Arthritis and rheumatism 2000, 43, 827–833. [Google Scholar] [CrossRef] [PubMed]
- Gregersen, P.K.; Bucala, R. Macrophage migration inhibitory factor, MIF alleles, and the genetics of inflammatory disorders: Incorporating disease outcome into the definition of phenotype. Arthritis and rheumatism 2003, 48, 1171–1176. [Google Scholar] [CrossRef] [PubMed]
- Rossi, A.G.; Haslett, C.; Hirani, N.; Greening, A.P.; Rahman, I.; Metz, C.N.; Bucala, R.; Donnelly, S.C. Human circulating eosinophils secrete macrophage migration inhibitory factor (MIF). Potential role in asthma. The Journal of clinical investigation 1998, 101, 2869–2874. [Google Scholar] [CrossRef] [PubMed]
- Mizue, Y.; Ghani, S.; Leng, L.; McDonald, C.; Kong, P.; Baugh, J.; Lane, S.J.; Craft, J.; Nishihira, J.; Donnelly, S.C.; et al. Role for macrophage migration inhibitory factor in asthma. Proceedings of the National Academy of Sciences of the United States of America 2005, 102, 14410–14415. [Google Scholar] [CrossRef]
- Allam, V.; Pavlidis, S.; Liu, G.; Kermani, N.Z.; Simpson, J.; To, J.; Donnelly, S.; Guo, Y.K.; Hansbro, P.M.; Phipps, S.; et al. Macrophage migration inhibitory factor promotes glucocorticoid resistance of neutrophilic inflammation in a murine model of severe asthma. Thorax 2023, 78, 661–673. [Google Scholar] [CrossRef]
- Dunbar, H.; Hawthorne, I.J.; Tunstead, C.; Dunlop, M.; Volkova, E.; Weiss, D.J.; Santos, C.C.D.; Armstrong, M.E.; Donnelly, S.C.; English, K. The VEGF-Mediated Cytoprotective Ability of MIF-Licensed Mesenchymal Stromal Cells in House Dust Mite-Induced Epithelial Damage. Eur J Immunol 2025, 55, e202451205. [Google Scholar] [CrossRef]
- Morand, E.F.; Leech, M.; Weedon, H.; Metz, C.; Bucala, R.; Smith, M.D. Macrophage migration inhibitory factor in rheumatoid arthritis: Clinical correlations. Rheumatology (Oxford) 2002, 41, 558–562. [Google Scholar] [CrossRef]
- Connelly, K.L.; Kandane-Rathnayake, R.; Hoi, A.; Nikpour, M.; Morand, E.F. Association of MIF, but not type I interferon-induced chemokines, with increased disease activity in Asian patients with systemic lupus erythematosus. Sci Rep 2016, 6, 29909. [Google Scholar] [CrossRef]
- Vincent, F.B.; Slavin, L.; Hoi, A.Y.; Kitching, A.R.; Mackay, F.; Harris, J.; Kandane-Rathnayake, R.; Morand, E.F. Analysis of urinary macrophage migration inhibitory factor in systemic lupus erythematosus. Lupus Sci Med 2018, 5, e000277. [Google Scholar] [CrossRef]
- Foote, A.; Briganti, E.M.; Kipen, Y.; Santos, L.; Leech, M.; Morand, E.F. Macrophage migration inhibitory factor in systemic lupus erythematosus. The Journal of rheumatology 2004, 31, 268–273. [Google Scholar]
- Lehmann, L.E.; Novender, U.; Schroeder, S.; Pietsch, T.; von Spiegel, T.; Putensen, C.; Hoeft, A.; Stüber, F. Plasma levels of macrophage migration inhibitory factor are elevated in patients with severe sepsis. Intensive Care Med 2001, 27, 1412–1415. [Google Scholar] [CrossRef] [PubMed]
- Carswell, E.A.; Old, L.J.; Kassel, R.L.; Green, S.; Fiore, N.; Williamson, B. An endotoxin-induced serum factor that causes necrosis of tumors. Proceedings of the National Academy of Sciences of the United States of America 1975, 72, 3666–3670. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Allavena, P.; Sica, A.; Balkwill, F. Cancer-related inflammation. Nature 2008, 454, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Hudson, J.D.; Shoaibi, M.A.; Maestro, R.; Carnero, A.; Hannon, G.J.; Beach, D.H. A proinflammatory cytokine inhibits p53 tumor suppressor activity. The Journal of experimental medicine 1999, 190, 1375–1382. [Google Scholar] [CrossRef]
- Mitchell, R.A.; Liao, H.; Chesney, J.; Fingerle-Rowson, G.; Baugh, J.; David, J.; Bucala, R. Macrophage migration inhibitory factor (MIF) sustains macrophage proinflammatory function by inhibiting p53: Regulatory role in the innate immune response. Proceedings of the National Academy of Sciences of the United States of America 2002, 99, 345–350. [Google Scholar] [CrossRef]
- Fingerle-Rowson, G.; Petrenko, O.; Metz, C.N.; Forsthuber, T.G.; Mitchell, R.; Huss, R.; Moll, U.; Müller, W.; Bucala, R. The p53-dependent effects of macrophage migration inhibitory factor revealed by gene targeting. Proceedings of the National Academy of Sciences of the United States of America 2003, 100, 9354–9359. [Google Scholar] [CrossRef]
- O'Reilly, C.; Doroudian, M.; Mawhinney, L.; Donnelly, S.C. Targeting MIF in Cancer: Therapeutic Strategies, Current Developments, and Future Opportunities. Med Res Rev 2016, 36, 440–460. [Google Scholar] [CrossRef]
- Amin, M.A.; Volpert, O.V.; Woods, J.M.; Kumar, P.; Harlow, L.A.; Koch, A.E. Migration inhibitory factor mediates angiogenesis via mitogen-activated protein kinase and phosphatidylinositol kinase. Circ Res 2003, 93, 321–329. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, G.; Yang, S.; Qiao, J.; Li, T.; Yang, S.; Hong, Y. Macrophage migration inhibitory factor regulating the expression of VEGF-C through MAPK signal pathways in breast cancer MCF-7 cell. World journal of surgical oncology 2016, 14, 51. [Google Scholar] [CrossRef]
- Baugh, J.A.; Gantier, M.; Li, L.; Byrne, A.; Buckley, A.; Donnelly, S.C. Dual regulation of macrophage migration inhibitory factor (MIF) expression in hypoxia by CREB and HIF-1. Biochemical and biophysical research communications 2006, 347, 895–903. [Google Scholar] [CrossRef]
- Oda, S.; Oda, T.; Nishi, K.; Takabuchi, S.; Wakamatsu, T.; Tanaka, T.; Adachi, T.; Fukuda, K.; Semenza, G.L.; Hirota, K. Macrophage migration inhibitory factor activates hypoxia-inducible factor in a p53-dependent manner. PLoS ONE 2008, 3, e2215. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Xing, C.; Deng, Y.; Ye, C.; Peng, H. HIF-1α signaling: Essential roles in tumorigenesis and implications in targeted therapies. Genes & diseases 2024, 11, 234–251. [Google Scholar] [CrossRef]
- Yang, S.; He, P.; Wang, J.; Schetter, A.; Tang, W.; Funamizu, N.; Yanaga, K.; Uwagawa, T.; Satoskar, A.R.; Gaedcke, J.; et al. A Novel MIF Signaling Pathway Drives the Malignant Character of Pancreatic Cancer by Targeting NR3C2. Cancer research 2016, 76, 3838–3850. [Google Scholar] [CrossRef] [PubMed]
- He, X.X.; Chen, K.; Yang, J.; Li, X.Y.; Gan, H.Y.; Liu, C.Y.; Coleman, T.R.; Al-Abed, Y. Macrophage migration inhibitory factor promotes colorectal cancer. Mol Med 2009, 15, 1–10. [Google Scholar] [CrossRef]
- Figueiredo, C.R.; Azevedo, R.A.; Mousdell, S.; Resende-Lara, P.T.; Ireland, L.; Santos, A.; Girola, N.; Cunha, R.; Schmid, M.C.; Polonelli, L.; et al. Blockade of MIF-CD74 Signalling on Macrophages and Dendritic Cells Restores the Antitumour Immune Response Against Metastatic Melanoma. Frontiers in immunology 2018, 9, 1132. [Google Scholar] [CrossRef]
- de Azevedo, R.A.; Shoshan, E.; Whang, S.; Markel, G.; Jaiswal, A.R.; Liu, A.; Curran, M.A.; Travassos, L.R.; Bar-Eli, M. MIF inhibition as a strategy for overcoming resistance to immune checkpoint blockade therapy in melanoma. Oncoimmunology 2020, 9, 1846915. [Google Scholar] [CrossRef]
- He, F.; Xu, J.; Zeng, F.; Wang, B.; Yang, Y.; Xu, J.; Sun, X.; Ren, T.; Tang, X. Integrative analysis of Ewing's sarcoma reveals that the MIF-CD74 axis is a target for immunotherapy. Cell Commun Signal 2025, 23, 23. [Google Scholar] [CrossRef]
- Imaoka, M.; Tanese, K.; Masugi, Y.; Hayashi, M.; Sakamoto, M. Macrophage migration inhibitory factor-CD74 interaction regulates the expression of programmed cell death ligand 1 in melanoma cells. Cancer science 2019, 110, 2273–2283. [Google Scholar] [CrossRef]
- Liu, L.; Wang, J.; Wang, Y.; Chen, L.; Peng, L.; Bin, Y.; Ding, P.; Zhang, R.; Tong, F.; Dong, X. Blocking the MIF-CD74 axis augments radiotherapy efficacy for brain metastasis in NSCLC via synergistically promoting microglia M1 polarization. J Exp Clin Cancer Res 2024, 43, 128. [Google Scholar] [CrossRef]
- Lin, X.; Kang, K.; Chen, P.; Zeng, Z.; Li, G.; Xiong, W.; Yi, M.; Xiang, B. Regulatory mechanisms of PD-1/PD-L1 in cancers. Molecular cancer 2024, 23, 108. [Google Scholar] [CrossRef]
- Chang, E.; Pelosof, L.; Lemery, S.; Gong, Y.; Goldberg, K.B.; Farrell, A.T.; Keegan, P.; Veeraraghavan, J.; Wei, G.; Blumenthal, G.M.; et al. Systematic Review of PD-1/PD-L1 Inhibitors in Oncology: From Personalized Medicine to Public Health. The oncologist 2021, 26, e1786–e1799. [Google Scholar] [CrossRef]
- Han, Y.; Liu, D.; Li, L. PD-1/PD-L1 pathway: Current researches in cancer. Am J Cancer Res 2020, 10, 727–742. [Google Scholar]
- Guda, M.R.; Rashid, M.A.; Asuthkar, S.; Jalasutram, A.; Caniglia, J.L.; Tsung, A.J.; Velpula, K.K. Pleiotropic role of macrophage migration inhibitory factor in cancer. Am J Cancer Res 2019, 9, 2760–2773. [Google Scholar]
- Kindt, N.; Journe, F.; Laurent, G.; Saussez, S. Involvement of macrophage migration inhibitory factor in cancer and novel therapeutic targets. Oncol Lett 2016, 12, 2247–2253. [Google Scholar] [CrossRef]
- Koh, H.M.; Kim, D.C. Prognostic significance of macrophage migration inhibitory factor expression in cancer patients: A systematic review and meta-analysis. Medicine 2020, 99, e21575. [Google Scholar] [CrossRef]
- Pu, Y.; Yang, G.; Zhou, Y.; Pan, X.; Guo, T.; Chai, X. The Macrophage migration inhibitory factor is a vital player in Pan-Cancer by functioning as a M0 Macrophage biomarker. International immunopharmacology 2024, 134, 112198. [Google Scholar] [CrossRef]
- Lechien, J.R.; Nassri, A.; Kindt, N.; Brown, D.N.; Journe, F.; Saussez, S. Role of macrophage migration inhibitory factor in head and neck cancer and novel therapeutic targets: A systematic review. Head Neck 2017, 39, 2573–2584. [Google Scholar] [CrossRef]
- Schneider, K.L.; Claus, L.; Bucala, R.; Schulz-Heddergott, R. Targeting macrophage migration inhibitory factor as a potential therapeutic strategy in colorectal cancer. Oncogenesis 2025, 14, 30. [Google Scholar] [CrossRef]
- Schinagl, A.; Thiele, M.; Douillard, P.; Völkel, D.; Kenner, L.; Kazemi, Z.; Freissmuth, M.; Scheiflinger, F.; Kerschbaumer, R.J. Oxidized macrophage migration inhibitory factor is a potential new tissue marker and drug target in cancer. Oncotarget 2016, 7, 73486–73496. [Google Scholar] [CrossRef]
- Mahalingam, D.; Patel, M.R.; Sachdev, J.C.; Hart, L.L.; Halama, N.; Ramanathan, R.K.; Sarantopoulos, J.; Völkel, D.; Youssef, A.; de Jong, F.A.; et al. Phase I study of imalumab (BAX69), a fully human recombinant antioxidized macrophage migration inhibitory factor antibody in advanced solid tumours. British Journal of Clinical Pharmacology 2020, 86, 1836–1848. [Google Scholar] [CrossRef]
- Hussain, F.; Freissmuth, M.; Völkel, D.; Thiele, M.; Douillard, P.; Antoine, G.; Thurner, P.; Ehrlich, H.; Schwarz, H.P.; Scheiflinger, F.; et al. Human anti-macrophage migration inhibitory factor antibodies inhibit growth of human prostate cancer cells in vitro and in vivo. Molecular cancer therapeutics 2013, 12, 1223–1234. [Google Scholar] [CrossRef]
- Rendon, B.E.; Roger, T.; Teneng, I.; Zhao, M.; Al-Abed, Y.; Calandra, T.; Mitchell, R.A. Regulation of human lung adenocarcinoma cell migration and invasion by macrophage migration inhibitory factor. The Journal of Biological Chemistry 2007, 282, 29910–29918. [Google Scholar] [CrossRef]
- Nobre, C.C.; de Araújo, J.M.; Fernandes, T.A.; Cobucci, R.N.; Lanza, D.C.; Andrade, V.S.; Fernandes, J.V. Macrophage Migration Inhibitory Factor (MIF): Biological Activities and Relation with Cancer. Pathology oncology research: POR 2017, 23, 235–244. [Google Scholar] [CrossRef]
- Liu, W.; Yang, H.S.; Zhi, F.H.; Feng, Y.F.; Luo, H.H.; Zhu, Y.; Lei, Y.Y. Macrophage migration inhibitory factor may contribute to the occurrence of multiple primary lung adenocarcinomas. Clin Transl Med 2023, 13, e1368. [Google Scholar] [CrossRef]
- Koh, H.M.; Kim, D.C.; Kim, Y.M.; Song, D.H. Prognostic role of macrophage migration inhibitory factor expression in patients with squamous cell carcinoma of the lung. Thorac Cancer 2019, 10, 2209–2217. [Google Scholar] [CrossRef]
- Zhang, H.; Duan, J.; Wu, O. The expression of macrophage migration inhibitory factor in the non-small cell lung cancer. Saudi journal of biological sciences 2020, 27, 1527–1532. [Google Scholar] [CrossRef]
- Li, J.; Zhang, J.; Xie, F.; Peng, J.; Wu, X. Macrophage migration inhibitory factor promotes Warburg effect via activation of the NF-κB/HIF-1α pathway in lung cancer. International journal of molecular medicine 2018, 41, 1062–1068. [Google Scholar] [CrossRef]
- Guo, Y.; Hou, J.; Luo, Y.; Wang, D. Correction: Functional disruption of macrophage migration inhibitory factor (MIF) suppresses proliferation of human h460 lung cancer cells by caspase-dependent apoptosis. Cancer cell international 2013, 13, 84. [Google Scholar] [CrossRef]
- Coleman, A.M.; Rendon, B.E.; Zhao, M.; Qian, M.W.; Bucala, R.; Xin, D.; Mitchell, R.A. Cooperative regulation of non-small cell lung carcinoma angiogenic potential by macrophage migration inhibitory factor and its homolog, D-dopachrome tautomerase. Journal of immunology (Baltimore, Md.: 1950) 2008, 181, 2330–2337. [Google Scholar] [CrossRef]
- Carr, S.R.; Wang, H.; Hudlikar, R.; Lu, X.; Zhang, M.R.; Hoang, C.D.; Yan, F.; Schrump, D.S. A Unique Gene Signature Predicting Recurrence Free Survival in Stage IA Lung Adenocarcinoma. The Journal of thoracic and cardiovascular surgery 2023, 165, 1554–1564. [Google Scholar] [CrossRef]
- Kamimura, A.; Kamachi, M.; Nishihira, J.; Ogura, S.; Isobe, H.; Dosaka-Akita, H.; Ogata, A.; Shindoh, M.; Ohbuchi, T.; Kawakami, Y. Intracellular distribution of macrophage migration inhibitory factor predicts the prognosis of patients with adenocarcinoma of the lung. Cancer 2000, 89, 334–341. [Google Scholar] [CrossRef]
- Tomiyasu, M.; Yoshino, I.; Suemitsu, R.; Okamoto, T.; Sugimachi, K. Quantification of macrophage migration inhibitory factor mRNA expression in non-small cell lung cancer tissues and its clinical significance. Clinical cancer research: An official journal of the American Association for Cancer Research 2002, 8, 3755–3760. [Google Scholar] [PubMed]
- Khan, N.; Cromer, C.J.; Campa, M.; Patz, E.F., Jr. Clinical utility of serum amyloid A and macrophage migration inhibitory factor as serum biomarkers for the detection of nonsmall cell lung carcinoma. Cancer 2004, 101, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Goto, A.; Tanaka, M.; Yoshida, M.; Umakoshi, M.; Nanjo, H.; Shiraishi, K.; Saito, M.; Kohno, T.; Kuriyama, S.; Konno, H.; et al. The low expression of miR-451 predicts a worse prognosis in non-small cell lung cancer cases. PLoS ONE 2017, 12, e0181270. [Google Scholar] [CrossRef] [PubMed]
- White, E.S.; Flaherty, K.R.; Carskadon, S.; Brant, A.; Iannettoni, M.D.; Yee, J.; Orringer, M.B.; Arenberg, D.A. Macrophage migration inhibitory factor and CXC chemokine expression in non-small cell lung cancer: Role in angiogenesis and prognosis. Clinical cancer research: An official journal of the American Association for Cancer Research 2003, 9, 853–860. [Google Scholar]
- Huang, W.C.; Kuo, K.T.; Wang, C.H.; Yeh, C.T.; Wang, Y. Cisplatin resistant lung cancer cells promoted M2 polarization of tumor-associated macrophages via the Src/CD155/MIF functional pathway. J Exp Clin Cancer Res 2019, 38, 180. [Google Scholar] [CrossRef]
- Peng, J.; Zhang, Y.; Li, B.; He, X.; Ding, C.; Hu, W. The inhibitory effect of M2 macrophage-derived exosomes on gefitinib resistant lung adenocarcinoma cells through the MIF/TIMP1/CD74 axis. Sci Rep 2025, 15, 28482. [Google Scholar] [CrossRef]
- Rupp, A.; Bahlmann, S.; Trimpop, N.; von Pawel, J.; Holdenrieder, S. Lack of clinical utility of serum macrophage migration inhibitory factor (MIF) for monitoring therapy response and estimating prognosis in advanced lung cancer. Tumour biology: The journal of the International Society for Oncodevelopmental Biology and Medicine 2024, 46, S341–S353. [Google Scholar] [CrossRef]
- McClelland, M.; Zhao, L.; Carskadon, S.; Arenberg, D. Expression of CD74, the receptor for macrophage migration inhibitory factor, in non-small cell lung cancer. The American journal of pathology 2009, 174, 638–646. [Google Scholar] [CrossRef]
- Cao, L.; Wang, X.; Liu, X.; Meng, W.; Guo, W.; Duan, C.; Liang, X.; Kang, L.; Lv, P.; Lin, Q.; et al. Tumor Necrosis Factor α-Dependent Lung Inflammation Promotes the Progression of Lung Adenocarcinoma Originating From Alveolar Type II Cells by Upregulating MIF-CD74. Laboratory investigation; a journal of technical methods and pathology 2023, 103, 100034. [Google Scholar] [CrossRef]
- Jäger, B.; Klatt, D.; Plappert, L.; Golpon, H.; Lienenklaus, S.; Barbosa, P.D.; Schambach, A.; Prasse, A. CXCR4/MIF axis amplifies tumor growth and epithelial-mesenchymal interaction in non-small cell lung cancer. Cell Signal 2020, 73, 109672. [Google Scholar] [CrossRef] [PubMed]
- Arenberg, D.; Luckhardt, T.R.; Carskadon, S.; Zhao, L.; Amin, M.A.; Koch, A.E. Macrophage migration inhibitory factor promotes tumor growth in the context of lung injury and repair. American journal of respiratory and critical care medicine 2010, 182, 1030–1037. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhao, X.; Tan, L.; Que, P.; Zhao, T.; Huang, W.; Yao, D.; Tang, S. Animal models of lung cancer: Phenotypic comparison of different animal models of lung cancer and their application in the study of mechanisms. Animal Model Exp Med 2025. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.N.; Chen, B.; Liu, X.; Kurie, J.M.; Kim, J. A Method for Orthotopic Transplantation of Lung Cancer in Mice. Methods in molecular biology (Clifton, N.J.) 2022, 2374, 231–242. [Google Scholar] [CrossRef]
- Bilsborrow, J.B.; Doherty, E.; Tilstam, P.V.; Bucala, R. Macrophage migration inhibitory factor (MIF) as a therapeutic target for rheumatoid arthritis and systemic lupus erythematosus. Expert Opin Ther Targets 2019, 23, 733–744. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Trofimov, A.; Du, X.; Hare, A.A.; Leng, L.; Bucala, R. Benzisothiazolones as modulators of macrophage migration inhibitory factor. Bioorg Med Chem Lett 2011, 21, 4545–4549. [Google Scholar] [CrossRef]
- Trivedi-Parmar, V.; Jorgensen, W.L. Advances and Insights for Small Molecule Inhibition of Macrophage Migration Inhibitory Factor. Journal of medicinal chemistry 2018, 61, 8104–8119. [Google Scholar] [CrossRef]
- Ouertatani-Sakouhi, H.; Liu, M.; El-Turk, F.; Cuny, G.D.; Glicksman, M.A.; Lashuel, H.A. Kinetic-based high-throughput screening assay to discover novel classes of macrophage migration inhibitory factor inhibitors. J Biomol Screen 2010, 15, 347–358. [Google Scholar] [CrossRef]
- Ouertatani-Sakouhi, H.; El-Turk, F.; Fauvet, B.; Cho, M.K.; Pinar Karpinar, D.; Le Roy, D.; Dewor, M.; Roger, T.; Bernhagen, J.; Calandra, T.; et al. Identification and characterization of novel classes of macrophage migration inhibitory factor (MIF) inhibitors with distinct mechanisms of action. The Journal of Biological Chemistry 2010, 285, 26581–26598. [Google Scholar] [CrossRef]
- Lubetsky, J.B.; Dios, A.; Han, J.; Aljabari, B.; Ruzsicska, B.; Mitchell, R.; Lolis, E.; Al-Abed, Y. The tautomerase active site of macrophage migration inhibitory factor is a potential target for discovery of novel anti-inflammatory agents. The Journal of Biological Chemistry 2002, 277, 24976–24982. [Google Scholar] [CrossRef]
- Bai, F.; Asojo, O.A.; Cirillo, P.; Ciustea, M.; Ledizet, M.; Aristoff, P.A.; Leng, L.; Koski, R.A.; Powell, T.J.; Bucala, R.; et al. A novel allosteric inhibitor of macrophage migration inhibitory factor (MIF). The Journal of Biological Chemistry 2012, 287, 30653–30663. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Zhao, Y.; Yuan, Y.; Liao, Y.; Jiang, X.; Wang, L.; Lu, W.; Shi, J. Progress in the development of macrophage migration inhibitory factor small-molecule inhibitors. European journal of medicinal chemistry 2025, 286, 117280. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Xi, J.; Tian, B.; Zhang, Y.; Wang, Z.; Wang, F.; Li, Z.; Long, J.; Wang, J.; Fan, G.H.; et al. The Tautomerase Activity of Tumor Exosomal MIF Promotes Pancreatic Cancer Progression by Modulating MDSC Differentiation. Cancer immunology research 2024, 12, 72–90. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Chen, D.; Song, S.; van der Vlag, R.; van der Wouden, P.E.; van Merkerk, R.; Cool, R.H.; Hirsch, A.K.H.; Melgert, B.N.; Quax, W.J.; et al. 7-Hydroxycoumarins Are Affinity-Based Fluorescent Probes for Competitive Binding Studies of Macrophage Migration Inhibitory Factor. Journal of medicinal chemistry 2020, 63, 11920–11933. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Leng, L.; Pantouris, G.; Manjula, R.; Piecychna, M.; Abriola, L.; Hu, B.; Lolis, E.; Armstrong, M.E.; Donnelly, S.C.; et al. A small-molecule allele-selective transcriptional inhibitor of the MIF immune susceptibility locus. The Journal of Biological Chemistry 2024, 300, 107443. [Google Scholar] [CrossRef]
- Lawther, R.P.; Phillips, S.L.; Cooper, T.G. Lomofungin inhibition of allophanate hydrolase synthesis in Saccharomyces cerevisiae. Molecular & general genetics: MGG 1975, 137, 89–99. [Google Scholar] [CrossRef]
- Cho, Y.; Crichlow, G.V.; Vermeire, J.J.; Leng, L.; Du, X.; Hodsdon, M.E.; Bucala, R.; Cappello, M.; Gross, M.; Gaeta, F.; et al. Allosteric inhibition of macrophage migration inhibitory factor revealed by ibudilast. Proceedings of the National Academy of Sciences of the United States of America 2010, 107, 11313–11318. [Google Scholar] [CrossRef]
- Günther, S.; Fagone, P.; Jalce, G.; Atanasov, A.G.; Guignabert, C.; Nicoletti, F. Role of MIF and D-DT in immune-inflammatory, autoimmune, and chronic respiratory diseases: From pathogenic factors to therapeutic targets. Drug discovery today 2019, 24, 428–439. [Google Scholar] [CrossRef]
- Burnette, E.M.; Ray, L.A.; Irwin, M.R.; Grodin, E.N. Ibudilast attenuates alcohol cue-elicited frontostriatal functional connectivity in alcohol use disorder. Alcoholism, clinical and experimental research 2021, 45, 2017–2028. [Google Scholar] [CrossRef]
- Ray, L.A.; Bujarski, S.; Shoptaw, S.; Roche, D.J.; Heinzerling, K.; Miotto, K. Development of the Neuroimmune Modulator Ibudilast for the Treatment of Alcoholism: A Randomized, Placebo-Controlled, Human Laboratory Trial. Neuropsychopharmacology: Official publication of the American College of Neuropsychopharmacology 2017, 42, 1776–1788. [Google Scholar] [CrossRef]
- Phase 1b/2a Single-center, Open-label, Dose Escalation Study to Evaluate the Safety, Tolerability, and Efficacy of MN-166 (Ibudilast) and Temozolomide Combination Treatment in Patients With Newly Diagnosed or Recurrent Glioblastoma. Available online: https://clinicaltrials.gov/study/NCT03782415 (accessed on 4 November 2025).
- Phase I/II Study of IPG1094 in Advanced Solid Tumors Patients. Available online: https://clinicaltrials.gov/study/NCT06212076 (accessed on 4 November 2025).
- Mikulowska, A.; Metz, C.N.; Bucala, R.; Holmdahl, R. Macrophage migration inhibitory factor is involved in the pathogenesis of collagen type II-induced arthritis in mice. Journal of immunology (Baltimore, Md.: 1950) 1997, 158, 5514–5517. [Google Scholar] [CrossRef] [PubMed]
- Ichiyama, H.; Onodera, S.; Nishihira, J.; Ishibashi, T.; Nakayama, T.; Minami, A.; Yasuda, K.; Tohyama, H. Inhibition of joint inflammation and destruction induced by anti-type II collagen antibody/lipopolysaccharide (LPS)-induced arthritis in mice due to deletion of macrophage migration inhibitory factor (MIF). Cytokine 2004, 26, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Lan, H.Y.; Bacher, M.; Yang, N.; Mu, W.; Nikolic-Paterson, D.J.; Metz, C.; Meinhardt, A.; Bucala, R.; Atkins, R.C. The pathogenic role of macrophage migration inhibitory factor in immunologically induced kidney disease in the rat. The Journal of experimental medicine 1997, 185, 1455–1465. [Google Scholar] [CrossRef] [PubMed]
- Mahalingam, D.; Patel, M.; Sachdev, J.; Hart, L.; Halama, N.; Ramanathan, R.; Sarantopoulos, J.; Liu, X.; Yazji, S.; Jäger, D.; et al. PD-011 Safety and efficacy analysis of imalumab, an anti-oxidized macrophage migration inhibitory factor (oxMIF) antibody, alone or in combination with 5-fluorouracil/leucovorin (5-FU/LV) or panitumumab, in patients with metastatic colorectal cancer (mCRC). Annals of Oncology 2016, 27, ii105. [Google Scholar] [CrossRef]
- Daniel, J.W.; William, A.W.; Heather, H.; David, M.G. CT-01 Phase IB study of IMMU-115 (humanised ANTI-CD74 antibody) targeting antigen presenting cells in patients with systemic lupus erythematosus (SLE). Lupus Science & Medicine 2016, 3, null. [Google Scholar] [CrossRef]
- Sciences, G. Phase Ib Study of SC Milatuzumab in SLE. Available online: https://trial.medpath.com/clinical-trial/7a7a5d14f71bbe7d/nct01845740-milatuzumab-systemic-lupus-erythematosus?utm_source=chatgpt.com (accessed on 04/11).
- Orphan Drug Designations and Approvals. Available online: https://www.accessdata.fda.gov/scripts/opdlisting/oopd/detailedIndex.cfm?cfgridkey=255807 (accessed on 25 October 2025).
- Alinari, L.; Yu, B.; Christian, B.A.; Yan, F.; Shin, J.; Lapalombella, R.; Hertlein, E.; Lustberg, M.E.; Quinion, C.; Zhang, X.; et al. Combination anti-CD74 (milatuzumab) and anti-CD20 (rituximab) monoclonal antibody therapy has in vitro and in vivo activity in mantle cell lymphoma. Blood 2011, 117, 4530–4541. [Google Scholar] [CrossRef]
- Harmsen, M.M.; De Haard, H.J. Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol 2007, 77, 13–22. [Google Scholar] [CrossRef]
- Sparkes, A.; De Baetselier, P.; Brys, L.; Cabrito, I.; Sterckx, Y.G.; Schoonooghe, S.; Muyldermans, S.; Raes, G.; Bucala, R.; Vanlandschoot, P.; et al. Novel half-life extended anti-MIF nanobodies protect against endotoxic shock. FASEB journal: Official publication of the Federation of American Societies for Experimental Biology 2018, 32, 3411–3422. [Google Scholar] [CrossRef]
- Meza-Romero, R.; Benedek, G.; Yu, X.; Mooney, J.L.; Dahan, R.; Duvshani, N.; Bucala, R.; Offner, H.; Reiter, Y.; Burrows, G.G.; et al. HLA-DRα1 constructs block CD74 expression and MIF effects in experimental autoimmune encephalomyelitis. Journal of immunology (Baltimore, Md.: 1950) 2014, 192, 4164–4173. [Google Scholar] [CrossRef]
- Meza-Romero, R.; Benedek, G.; Leng, L.; Bucala, R.; Vandenbark, A.A. Predicted structure of MIF/CD74 and RTL1000/CD74 complexes. Metab Brain Dis 2016, 31, 249–255. [Google Scholar] [CrossRef]
- Offner, H.; Sinha, S.; Burrows, G.G.; Ferro, A.J.; Vandenbark, A.A. RTL therapy for multiple sclerosis: A Phase I clinical study. Journal of neuroimmunology 2011, 231, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, S.; Lue, H.; Zernecke, A.; Kapurniotu, A.; Andreetto, E.; Frank, R.; Lennartz, B.; Weber, C.; Bernhagen, J. MIF-chemokine receptor interactions in atherogenesis are dependent on an N-loop-based 2-site binding mechanism. FASEB journal: Official publication of the Federation of American Societies for Experimental Biology 2011, 25, 894–906. [Google Scholar] [CrossRef]
- Rossmueller, G.; Mirkina, I.; Maurer, B.; Hoeld, V.; Mayer, J.; Thiele, M.; Kerschbaumer, R.J.; Schinagl, A. Preclinical Evaluation of ON203, A Novel Bioengineered mAb Targeting Oxidized Macrophage Migration Inhibitory Factor as an Anticancer Therapeutic. Molecular cancer therapeutics 2023, 22, 555–569. [Google Scholar] [CrossRef]
- Safarzadeh Kozani, P.; Naseri, A.; Mirarefin, S.M.J.; Salem, F.; Nikbakht, M.; Evazi Bakhshi, S.; Safarzadeh Kozani, P. Nanobody-based CAR-T cells for cancer immunotherapy. Biomarker research 2022, 10, 24. [Google Scholar] [CrossRef]
- Mustafa, M.I.; Mohammed, A. Nanobodies: A Game-Changer in Cell-Mediated Immunotherapy for Cancer. SLAS discovery: Advancing life sciences R & D 2023, 28, 358–364. [Google Scholar] [CrossRef]
- Maksymova, L.; Pilger, Y.A.; Nuhn, L.; Van Ginderachter, J.A. Nanobodies targeting the tumor microenvironment and their formulation as nanomedicines. Molecular cancer 2025, 24, 65. [Google Scholar] [CrossRef]
- Kunz, P.; Zinner, K.; Mücke, N.; Bartoschik, T.; Muyldermans, S.; Hoheisel, J.D. The structural basis of nanobody unfolding reversibility and thermoresistance. Sci Rep 2018, 8, 7934. [Google Scholar] [CrossRef]


|
Disease or Condition |
Polymorphism(s) |
Associated Allele |
Reported Association | Reference(s) |
| Rheumatoid arthritis | −173 G/C and −794 CATT5-8 |
−173C and CATT7 alleles |
Increased susceptibility and Increased severity |
[89] [64] [76] |
| CATT5 allele | Low disease severity | [65]. | ||
| Inflammatory polyarthritis | −173 G/C and −794 CATT5-8 |
-173C CATT7 alleles |
Increased susceptibility | [90] |
| Systemic lupus erythematosus | −173 G/C and −794 CATT5-8 |
−173C and CATT7 alleles |
−173C and CATT7 are associated with increased end-organ damage, but their relationship with disease incidence is controversial, as studies report both increased and decreased risk. | [77,91] [67] |
| Juvenile idiopathic arthritis | −173 G/C | −173C allele | Increased susceptibility | [63] |
| Ulcerative colitis | −173 G/C | −173C allele | Increased risk | [92] |
| Autoimmune hepatitis | −173 G/C | -173 CC/GC genotypes | Higher alanine aminotransferase levels and greater steroid requirements were observed compared with the GG genotype. | [93] |
| Psoriasis | −173 G/C | −173C allele | Associated with male and late-onset psoriasis | [94] |
| Pulmonary tuberculosis | −173 G/C | −173C allele | Increased susceptibility, particularly in Asians. | [74] |
| Coronary heart disease | −173G/C | −173C allele | Increased risk in Arab and Asian populations | [72,73] |
| Pneumococcal meningitis | −173 G/C and −794 CATT5-8 |
−173C and CATT7 alleles | Increased morbidity and mortality | [95] |
| Cystic fibrosis | −794 CATT5-8 | CATT5 allele | Milder disease, reduced Pseudomonas colonisation, and slower FEV1 decline in CATT5 than CATT6-8 carriers. | [78] [57]. |
| COVID-19 patients and mouse model | −794 CATT5-8 | CATT7 allele | Increased disease severity but reduced susceptibility in comparison with CATT5 | [84]. |
| Asthma (preclinical mouse model) | −794 CATT5-8 | CATT7 allele | More pronounced airways inflammation in CATT7 than in CATT5 | [85,87]. |
| Cancer (various types) | −173G/C | −173C (G/C + C/C genotypes) | Increased overall cancer risk | [75] |
| Breast cancer | -173 G/C and −794 CATT5-8 | -173C and CATT7 alleles | Higher circulating MIF levels without increased susceptibility | [96] |
| Cutaneous squamous cell carcinoma | -173 G/C and −794 CATT5-8 | 5C (CATT5/ -173C) and 7G (CATT7/ -173G) haplotypes | Linked to increased susceptibility and higher circulating MIF levels | [83] |
| Rectal cancer | -173 G/C and −794 CATT5-8 | -173C and longer (CATT6-8) repeats | Elevated serum MIF levels and increased susceptibility | [79] |
| Non-cardia gastric cancer | -173 G/C) and −794 CATT5-8 | -173C and longer (CATT6-8) repeats | Increased susceptibility to gastric cancer, synergistic effect with H. pylori infection. | [80] |
| Hepatocellular carcinoma | -173 G/C | −173C (CC and GC) genotypes | Associated with increased susceptibility, poor prognosis and metastasis | [97] |
| Early-stage cervical cancer | −794 CATT5-8 | CATT7 allele | Associated with increased susceptibility. | [81] |
| Prostate cancer | -173 G/C and −794 CATT5-8 | G/C and C/C genotypes and CATT7 allele | G/C and C/C genotypes associated with increased incidence; CATT7 allele associated with increased incidence and higher risk of recurrence | [82]. |
| Melanoma | -173 G/C | −173C (C/C) genotype | More frequent in patients than controls, suggesting increased susceptibility | [88] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
