Preprint
Review

This version is not peer-reviewed.

Clinical AI in Radiology: Foundations, Trends, and Emerging Directions with Use Cases from Moffitt Cancer Center

Submitted:

05 February 2026

Posted:

06 February 2026

You are already at the latest version

Abstract
Artificial intelligence (AI) is at the vanguard of transforming radiology in several ways, including augmenting diagnoses, improving workflows, and increasing operational efficiency. Several integration challenges, including concerns over privacy, clinical usability, and workflow compatibility, still remain. This review discusses the foundations and current trends of clinical AI in radiology to provide essential context for ongoing developments. We then outline four key use cases from the Moffitt Cancer Center: (1) local deployment of large language models (LLMs) for restructuring and streamlining radiology reports, improving clarity and consistency without relying on external resources; (2) multimodal AI frameworks combining CT images, clinical data, laboratory biomarkers, and LLM-extracted features from clinical notes for early detection of cachexia in pancreatic cancer; (3) privacy-preserving federated learning (FL) infrastructure enabling collaborative AI model development across institutions without sharing raw patient data; and (4) an uncertainty-aware de-identification pipeline for removing Protected Health Information (PHI) from radiology images and clinical reports to support secure data analysis and sharing. We further discuss emerging opportunities for tumor board decision support, clinical trial matching, radiology report quality assurance, and the development of an imaging complexity index. Our experience highlights the critical importance of local deployment, multimodal reasoning, privacy preservation, and human-in-the-loop oversight in translating AI models from research to oncology radiology practice.
Keywords: 
;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2026 MDPI (Basel, Switzerland) unless otherwise stated