This study presents the design, implementation, and validation of a thermoelectric energy harvesting system that exploits waste heat from an industrial electric motor to power an autonomous wireless sensor device. The proposed prototype integrates a single thermoelectric generator directly onto the motor housing and leverages the built-in cooling fan to maintain a stable thermal gradient of approximately 4–5 C. Under real factory conditions, the system harvested 6.17 J of energy over 9612 s, sustaining continuous operation and 41 successful Long Range (LoRa) data transmissions with a positive energy balance. Compared with related works, the prototype achieved competitive or superior performance while operating at a lower motor rating of 0.25 kW, highlighting its efficiency relative to system scale. Key innovations include a hybrid DC/DC conversion chain bridging ultra-low input voltages to modern microcontrollers, and an adaptive transmission strategy that ensures predictable energy management and reliable wireless communication. These results demonstrate the feasibility of battery-free sensing in industrial environments and underline the potential of thermoelectric harvesting as a cost-effective, maintenance-free, and environmentally responsible solution for predictive maintenance and Industry 4.0 applications.