Submitted:
03 February 2026
Posted:
04 February 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Results and Discussion
2.1. Nitrogen Heterocyclic Compounds
2.2. Physicochemical and Pharmacokinetic Characteristics of the Compounds
2.3. DNA Interactions
2.4. Human Topoisomerase Inhibition Assay
2.5. Antiproliferative and Hemolytic Evaluations
2.6. Teratogenic Potential and In Vivo Toxicity
3. Material and methods
3.1. Chemicals, Reagents and Equipment
3.2. Procedure for Synthesis of 2-cyano-N-phenyl acrylamide Derivatives
3.2. 1(E)5’-oxo-1’-phenyl-1’,5’-dihydro-10H-spiro{acridine-9,2’-pyrrole]-4’-carbonitrile (ACMD)- compound (3a)
3.2.2. (E)-2-cyano-N-phenyl-3-(quinoline-4-yl)acrylamide (QAMD) - compound (3b)
3.2.3. (E)-2-cyano-3-(1H-indol-3-yl)-N-phenylacrylamide (ICMD) - compound (3c)
3.2.4. (E)-2-cyano-N-phenyl-3-(pyridin-4-yl)acrylamide (PAMD) - compound (3d)
3.3. UV–Vis Absorption Spectroscopy Studies with DNA
3.3.1. Fluorescent DNA Probe Assay
3.4. Physicochemical and Pharmacokinetic Predictions
3.5. Molecular Docking
3.5.1. Preparation of Ligand Structure
3.5.2. Topoisomerase IIα and HSA in the Presence of Ligands
3.6. Human Topoisomerase IIα Inhibition
3.7. Evaluation of Antiproliferative Activity In Vitro
3.8. Hemolytic Activity Studies of the Derivatives
3.9. In Vivo Studies
3.9.1. Care and Obtention of Zebrafish Embryos
3.9.2. Teratogenic Potential
3.9.3. Enzymatic Assays of Embryo Tissues
3.9.4. Statistical Analysis
4. Conclusion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Geng, W.-C.; Jiang, H.; Wu, B. Recent advances in biocatalysis of nitrogen-containing heterocycles. Biotechnol. Adv. 2022, 54, 107813. [Google Scholar] [CrossRef] [PubMed]
- Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A Review on Recent Advances in Nitrogen-Containing Molecules and Their Biological Applications. Molecules 2020, 25, 1909. [Google Scholar] [CrossRef] [PubMed]
- Kozurkova, M. Acridine derivatives as inhibitors/poisons of topoisomerase II. J. Appl. Toxicol. 2022, 42, 544–552. [Google Scholar] [CrossRef]
- Lang, D.K.; Kaur, R.; Arora, R.; Saini, B.; Arora, S. Nitrogen-Containing Heterocycles as Anticancer Agents: An Overview. Anticancer. Agents Med. Chem. 2020, 20, 2150–2168. [Google Scholar] [CrossRef]
- Mermer, A.; Keles, T.; Sirin, Y. Recent studies of nitrogen containing heterocyclic compounds as novel antiviral agents: A review. Bioorg. Chem. 2021, 114, 105076. [Google Scholar] [CrossRef]
- dos Santos, J.C.; Alves, J.E.F.; de Azevedo, R.D.S.; de Lima, M.L.; de Oliveira Silva, M.R.; da Silva, J.G.; da Silva, J.M.; de Carvalho Correia, A.C.; do Carmo Alves de Lima, M.; de Oliveira, J.F.; de Moura, R.O.; de Almeida, S.M.V. Study of nitrogen heterocycles as DNA/HSA binder, topoisomerase inhibitors and toxicological safety. Int. J. Biol. Macromol. 2024, 254, 127651. [Google Scholar] [CrossRef]
- Almeida, S.M.V.; Lafayette, E.A.; Silva, W.L.; Lima Serafim, V.; Menezes, T.M.; Neves, J.L.; Ruiz, A.L.T.G.; Carvalho, J.E.; Moura, R.O.; Beltrão, E.I.C.; Carvalho Júnior, L.B.; Lima, M. do C.A. New spiro-acridines: DNA interaction, antiproliferative activity and inhibition of human DNA topoisomerases. Int. J. Biol. Macromol. 2016, 92, 467–475. [Google Scholar] [CrossRef]
- Ribeiro, A.G.; Almeida, S.M.V.; Oliveira, J.F.; Souza, T.R.C. L.; Santos, K.L.; Albuquerque, A.P. de B.; Nogueira, M.C.B.L.; Carvalho Junior, L.B.; Moura, R.O.; Silva, A.C.; Pereira, V.R.A.; Castro, M.C.A.B.; Lima, M. do C.A. Novel 4-quinoline-thiosemicarbazone derivatives: Synthesis, antiproliferative activity, in vitro and in silico biomacromolecule interaction studies and topoisomerase inhibition. Eur. J. Med. Chem. 2019, 182, 111592. [Google Scholar] [CrossRef]
- Alves, J.E.F.; de Oliveira, J.F.; de Lima Souza, T.R.C.; de Moura, R.O.; de Carvalho Júnior, L.B.; Alves de Lima, M. do C.; de Almeida, S.M.V. Novel indole-thiazole and indole-thiazolidinone derivatives as DNA groove binders. Int. J. Biol. Macromol. 2021, 170, 622–635. [Google Scholar] [CrossRef]
- Narva, S.; Chitti, S.; Bala, B.R.; Alvala, M.; Jain, N.; Kondapalli, V.G.C.S. Synthesis and biological evaluation of pyrrolo[2,3- b ]pyridine analogues as antiproliferative agents and their interaction with calf thymus DNA. Eur. J. Med. Chem. 2016, 114, 220–231. [Google Scholar] [CrossRef]
- Huang, R.; Zhou, P.-K. DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct. Target. Ther. 2021, 6, 254. [Google Scholar] [CrossRef] [PubMed]
- Lane, S.; More, L.A.; Asnani, A. Zebrafish Models of Cancer Therapy-Induced Cardiovascular Toxicity. J. Cardiovasc. Dev. Dis. 2021, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Letrado, P.; de Miguel, I.; Lamberto, I.; Díez-Martínez, R.; Oyarzabal, J. Zebrafish: Speeding Up the Cancer Drug Discovery Process. Cancer Res. 2018, 78, 6048–6058. [Google Scholar] [CrossRef] [PubMed]
- Raby, L.; Völkel, P.; Le Bourhis, X.; Angrand, P.-O. Genetic Engineering of Zebrafish in Cancer Research. Cancers (Basel) 2020, 12, 2168. [Google Scholar] [CrossRef]
- Silva, P.; de Almeida, M.; Silva, J.; Albino, S.; Espírito-Santo, R.; Lima, M.; Santos, V. (E)-2-Cyano-3-(1 H-Indol-3-yl)-N-Phenylacrylamide, a Hybrid Compound Derived from Indomethacin and Paracetamol: Design, Synthesis and Evaluation of the Anti-Inflammatory Potential. International Journal of Molecular Sciences 2020, 21(7), 2591. [Google Scholar] [CrossRef]
- Lafayette, E.; Almeida, S.M.V.; Da Rocha Pitta, M.; Carneiro Beltrão, E.; Gonçalves da Silva, T.; Olímpio de Moura, R.; Da Rocha Pitta, I.; De Carvalho, L.; Do Carmo Alves de Lima, M. Synthesis, DNA Binding and Topoisomerase I Inhibition Activity of Thiazacridine and Imidazacridine Derivatives. Molecules 2013, 18, 15035–15050. [Google Scholar] [CrossRef]
- Misra, H.P.; Fridovich, I. The Role of Superoxide Anion in the Autoxidation of Epinephrine and a Simple Assay for Superoxide Dismutase. J. Biol. Chem. 1972, 247, 3170–3175. [Google Scholar] [CrossRef]
- Vilková, M.; Prokaiová, M.; Imrich, J. Spontaneous cyclization of (acridin-9-ylmethyl)thioureas to spiro [dihydroacridine-9′(10′H),5-imidazolidine]-2-thiones, a novel type of acridine spirocycles. Tetrahedron 2014, 70, 944–961. [Google Scholar] [CrossRef]
- Gouveia, R.G.; Ribeiro, A.G.; Segundo, M.Â.S.P.; de Oliveira, J.F.; de Lima, M. do C.A.; de Lima Souza, T.R.C.; de Almeida, S.M.V.; de Moura, R.O. Synthesis, DNA and protein interactions and human topoisomerase inhibition of novel Spiroacridine derivatives. Bioorg. Med. Chem. 2018, 26, 5911–5921. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews 2012, 64, 4–17. [Google Scholar] [CrossRef]
- Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A Knowledge-Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative and Quantitative Characterization of Known Drug Databases. J. Comb. Chem. 1999, 1, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Veber, D.F.; Johnson, S.R.; Cheng, H.-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. Journal of medicinal chemistry 2002, 45(12), 2615–2623. [Google Scholar] [CrossRef] [PubMed]
- Egan, W.J.; Merz, K.M.; Baldwin, J.J. Prediction of Drug Absorption Using Multivariate Statistics. J. Med. Chem. 2000, 43, 3867–3877. [Google Scholar] [CrossRef]
- Muegge, I.; Heald, S.L.; Brittelli, D. Simple Selection Criteria for Drug-like Chemical Matter. Journal of Medicinal Chemistry 2001, 44, No. 12. [Google Scholar] [CrossRef]
- Wager, T.T.; Hou, X.; Verhoest, P.R.; Villalobos, A. Moving beyond rules: the development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties. ACS Chem. Neurosci. 2010, 1, 435–449. [Google Scholar] [CrossRef]
- Ertl, P.; Rohde, B.; Selzer, P. Fast Calculation of Molecular Polar Surface Area as a Sum of Fragment-Based Contributions and Its Application to the Prediction of Drug Transport Properties. J. Med. Chem. 2000, 43, 3714–3717. [Google Scholar] [CrossRef]
- Pettersson, M.; Hou, X.H.; Kuhn, M.; Wager, T.T.; Kauffman, G.W.; Verhoest, P.R. Quantitative Assessment of the Impact of Fluorine Substitution on P-Glycoprotein (P-gp) Mediated Efflux, Permeability, Lipophilicity, and Metabolic Stability. J. Med. Chem. 2016, 59, 5284−5296. [Google Scholar] [CrossRef]
- Ma, X.L.; Chen, C.; Yang, J. Predictive model of blood-brain barrier penetration of organic compounds. Acta Pharmacologica Sinica 2005, 26(4), 500–512. [Google Scholar] [CrossRef]
- Holt, K.; Nagar, S.; Korzekwa, K. Methods to Predict Volume of Distribution. Current Pharmacology Reports 2009, 5, 391–399. [Google Scholar] [CrossRef]
- Iwata, H.; Matsuo, T.; Mamada, H.; Motomura, T.; Matsushita, M.; Fujiwara, T.; Handa, K. Predicting Total Drug Clearance and Volumes of Distribution Using the Machine Learning-Mediated Multimodal Method through the Imputation of Various Non clinical Data. J. Chem. Inf. Model. 2022, 62, 4057−4065. [Google Scholar] [CrossRef]
- Zheng, M.; Luo, X.; Shen, Q.; Wang, Y.; Du, Y.; Zhu, W.; Jiang, H. Site of metabolism prediction for six biotransformations mediated by cytochromes P450. Bioinformatics 2009, 25(10), 1251–1258. [Google Scholar] [CrossRef]
- Barreiro, E.J.; Fraga, C.A.M. Química medicinal: as bases moleculares da ação dos fármacos, 3. ed.; Artmed: Porto Alegre, 2015; p. 608 p. ISBN 978-8582711170. [Google Scholar]
- Dang, N.L.; Hughes, T.B.; Krishnamurthy, V.; Swamidass, S.J. A simple model predicts UGT-mediated metabolism. Bioinformatics 2016, 32(20), 3183–3189. [Google Scholar] [CrossRef]
- Yu, K.; Geng, X.; Chen, M.; Zhang, J.; Wang, B.; Ilic, K.; Tong, W. High Daily Dose and Being a Substrate of Cytochrome P450 Enzymes Are Two Important Predictors of Drug-Induced Liver Injury. Drug Metab Dispos 2014, 42, 744–750. [Google Scholar] [CrossRef] [PubMed]
- Almeida, S.M.V.; Lafayette, E.; Da Silva, L.; Amorim, C.; De Oliveira, T.; Ruiz, A.; De Carvalho, J.; De Moura, R.; Beltrão, E.; De Lima, M.; Carvalho Júnior, L. Synthesis, DNA Binding, and Antiproliferative Activity of Novel Acridine-Thiosemicarbazone Derivatives. Int. J. Mol. Sci. 2015, 16, 13023–13042. [Google Scholar] [CrossRef] [PubMed]
- Fortes, M.P.; da Silva, P.B.N.; da Silva, T.G.; Kaufman, T.S.; Militão, G.C.G.; Silveira, C.C. Synthesis and preliminary evaluation of 3-thiocyanato-1H-indoles as potential anticancer agents. Eur. J. Med. Chem. 2016, 118, 21–26. [Google Scholar] [CrossRef]
- Kim, Y.J.; Pyo, J.S.; Jung, Y.-S.; Kwak, J.-H. Design, synthesis, and biological evaluation of novel 1-oxo-1,2,3,4-tetrahydropyrazino[1,2-a]indole-3-carboxamide analogs in MCF-7 and MDA-MB-468 breast cancer cell lines. Bioorg. Med. Chem. Lett. 2017, 27, 607–611. [Google Scholar] [CrossRef] [PubMed]
- Perković, I.; Beus, M.; Schols, D.; Persoons, L.; Zorc, B. Itaconic acid hybrids as potential anticancer agents. Mol. Divers. 2022, 26, 1–14. [Google Scholar] [CrossRef]
- Zhao, M.; Cui, Y.; Zhao, L.; Zhu, T.; Lee, R.J.; Liao, W.; Sun, F.; Li, Y.; Teng, L. Thiophene Derivatives as New Anticancer Agents and Their Therapeutic Delivery Using Folate Receptor-Targeting Nanocarriers. ACS Omega 2019, 4, 8874–8880. [Google Scholar] [CrossRef]
- Rehman, S.U.; Sarwar, T.; Husain, M.A.; Ishqi, H.M.; Tabish, M. Studying non-covalent drug–DNA interactions. Arch. Biochem. Biophys. 2015, 576, 49–60. [Google Scholar] [CrossRef]
- Ma, F.-F.; Cai, Z.-B.; Li, S.-L.; Tian, Y.-P. Synthesis, photophysical properties, and DNA-binding of novel A-π-D-π-A’ two-photon absorption chromophores. J. Photochem. Photobiol. A Chem. 2018, 364, 705–714. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Zhou, J.; Wu, S.; Wei, Y.; Chang, A.; Liu, X.; Shangguan, D. DNA interaction, cellular localization and cytotoxicity of quinacridone derivatives. Dye. Pigment. 2015, 121, 328–335. [Google Scholar] [CrossRef]
- Singh, K.; Srivastava, P.; Patra, A.K. Binding interactions with biological targets and DNA photocleavage activity of Pr(III) and Nd(III) complexes of dipyridoquinoxaline. Inorganica Chim. Acta 2016, 451, 73–81. [Google Scholar] [CrossRef]
- Lafayette, E.A.; de Almeida, S.M.V.; Cavalcanti Santos, R.V.; de Oliveira, J.F.; Amorim, C.A. da C.; da Silva, R.M.F.; Pitta, M.G. da R.; Pitta, I. da R.; de Moura, R.O.; de Carvalho Júnior, L.B.; de Melo Rêgo, M.J.B.; de Lima, M.C.A. Synthesis of novel indole derivatives as promising DNA-binding agents and evaluation of antitumor and antitopoisomerase I activities. Eur. J. Med. Chem. 2017, 136, 511–522. [Google Scholar] [CrossRef]
- Oliveira, J.F.; Lima, T.S.; Vendramini-Costa, D.B.; de Lacerda Pedrosa, S.C.B.; Lafayette, E.A.; da Silva, R.M.F.; de Almeida, S.M.V.; de Moura, R.O.; Ruiz, A.L.T.G.; de Carvalho, J.E.; de Lima, M. do C.A. Thiosemicarbazones and 4-thiazolidinones indole-based derivatives: Synthesis, evaluation of antiproliferative activity, cell death mechanisms and topoisomerase inhibition assay. Eur. J. Med. Chem. 2017, 136, 305–314. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, J.; Zhuang, R.; He, R.; Xi, J.; Pan, X.; Shao, Y.; Pan, J.; Sun, J.; Cai, Z.; Liu, S.; Huang, W.; Lv, X. Synthesis and evaluation of a series of pyridine and pyrimidine derivatives as type II c-Met inhibitors. Bioorg. Med. Chem. 2017, 25, 3195–3205. [Google Scholar] [CrossRef]
- Singh, V.; Afshan, T.; Tyagi, P.; Varadwaj, P.K.; Sahoo, A.K. Recent development of multi-targeted inhibitors of human topoisomerase II enzyme as potent cancer therapeutics. Int. J. Biol. Macromol. 2023, 226, 473–484. [Google Scholar] [CrossRef]
- Shinde, Y.; Patil, R.; Badireenath, K.V.; Merugu, S.B.; Mokashi, V.; Harihar, S.; Marrot, J.; Butcher, R.J.; Salunke-Gawali, S. Keto-enol tautomerism of hydroxynaphthoquinoneoxime ligands: Copper complexes and topoisomerase inhibition activity. J. Mol. Struct. 2022, 1262, 133081. [Google Scholar] [CrossRef]
- Anurag, W.; Amol, D. Topoisomerase: An Overview. Int. J. Adv. Res. Sci. Commun. Technol. 2022, 145–155. [Google Scholar] [CrossRef]
- Ibrahim, M.K.; Taghour, M.S.; Metwaly, A.M.; Belal, A.; Mehany, A.B.M.; Elhendawy, M.A.; Radwan, M.M.; Yassin, A.M.; El-Deeb, N.M.; Hafez, E.E.; ElSohly, M.A.; Eissa, I.H. Design, synthesis, molecular modeling and anti-proliferative evaluation of novel quinoxaline derivatives as potential DNA intercalators and topoisomerase II inhibitors. Eur. J. Med. Chem. 2018, 155, 117–134. [Google Scholar] [CrossRef]
- Murugavel, S.; Ravikumar, C.; Jaabil, G.; Alagusundaram, P. Synthesis, crystal structure analysis, spectral investigations (NMR, FT-IR, UV), DFT calculations, ADMET studies, molecular docking and anticancer activity of 2-(1-benzyl-5-methyl-1H-1,2,3-triazol-4-yl)-4-(2-chlorophenyl)-6-methoxypyridine – A novel poten. J. Mol. Struct. 2019, 1176, 729–742. [Google Scholar] [CrossRef]
- da Silva Filho, F.A.; de Freitas Souza, T.; Ribeiro, A.G.; Alves, J.E.F.; de Oliveira, J.F.; de Lima Souza, T.R.C.; de Moura, R.O.; do Carmo Alves de Lima, M.; de Carvalho Junior, L.B.; de Almeida, S.M.V. Topoisomerase inhibition and albumin interaction studies of acridine-thiosemicarbazone derivatives. Int. J. Biol. Macromol. 2019, 138, 582–589. [Google Scholar] [CrossRef] [PubMed]
- Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W. Computational Methods in Drug Discovery. Pharmacol. Rev. 2014, 66, 334–395. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xing, J.; Xu, Y.; Zhou, N.; Peng, J.; Xiong, Z.; Liu, X.; Luo, X.; Luo, C.; Chen, K.; Zheng, M.; Jiang, H. In silico ADME/T modelling for rational drug design. Q. Rev. Biophys. 2015, 48, 488–515. [Google Scholar] [CrossRef]
- Queiroz, C.M.; de Oliveira Filho, G.B.; Espíndola, J.W.P.; do Nascimento, A.V.; Aliança, A.S.S.; de Lorena, V.M.B.; Feitosa, A.P.S.; da Silva, P.R.; Alves, L.C.; Leite, A.C.L.; Brayner, F.A. Thiosemicarbazone and thiazole: in vitro evaluation of leishmanicidal and ultrastructural activity on Leishmania infantum. Med. Chem. Res. 2020, 29, 2050–2065. [Google Scholar] [CrossRef]
- Cassar, S.; Adatto, I.; Freeman, J.L.; Gamse, J.T.; Iturria, I.; Lawrence, C.; Muriana, A.; Peterson, R.T.; Van Cruchten, S.; Zon, L.I. Use of Zebrafish in Drug Discovery Toxicology. Chem. Res. Toxicol. 2020, 33, 95–118. [Google Scholar] [CrossRef]
- Azevedo, R.D.S.; Falcão, K.V.G.; Amaral, I.P.G.; Leite, A.C.R.; Bezerra, R.S. Mitochondria as targets for toxicity and metabolism research using zebrafish. Biochim. Biophys. Acta - Gen. Subj. 2020, 1864, 129634. [Google Scholar] [CrossRef]
- Duarte, S.S.; Silva, D.K.F.; Lisboa, T.M.H.; Gouveia, R.G.; Ferreira, R.C.; De Moura, R.O.; Da Silva, J.M.; De Almeida, É.; Rodrigues-Mascarenhas, S.; Da Silva, P.M.; Farias, D.F.; Da Costa Ribeiro Souza, J.A.; De Paula Medeiros, K.C.; Gonçalves, J.C.R.; Sobral, M.V. Anticancer Effect of a Spiro-acridine Compound Involves Immunomodulatory and Anti-angiogenic Actions. Anticancer Res. 2020, 40, 5049–5057. [Google Scholar] [CrossRef]
- OECD. Test No. 236: Fish Embryo Acute Toxicity (FET) Test, OECD Guidelines for the Testing of Chemicals, Section 2; OECD, 2013. [Google Scholar] [CrossRef]
- Busquet, F.; Strecker, R.; Rawlings, J.M.; Belanger, S.E.; Braunbeck, T.; Carr, G.J.; Cenijn, P.; Fochtman, P.; Gourmelon, A.; Hübler, N.; Kleensang, A.; Knöbel, M.; Kussatz, C.; Legler, J.; Lillicrap, A.; Martínez-Jerónimo, F.; Polleichtner, C.; Rzodeczko, H.; Salinas, E.; Schneider, K.E.; Scholz, S.; van den Brandhof, E.-J.; van der Ven, L.T.M.; Walter-Rohde, S.; Weigt, S.; Witters, H.; Halder, M. OECD validation study to assess intra- and inter-laboratory reproducibility of the zebrafish embryo toxicity test for acute aquatic toxicity testing. Regul. Toxicol. Pharmacol. 2014, 69, 496–511. [Google Scholar] [CrossRef]
- Pogorelcnik, B.; Perdih, A.; Solmajer, T. Recent Developments of DNA Poisons - Human DNA Topoisomerase IIα Inhibitors - as Anticancer Agents. Curr. Pharm. Des. 2013, 19, 2474–2488. [Google Scholar] [CrossRef]
- Sittaramane, V.; Padgett, J.; Salter, P.; Williams, A.; Luke, S.; McCall, R.; Arambula, J.F.; Graves, V.B.; Blocker, M.; Van Leuven, D.; Bowe, K.; Heimberger, J.; Cade, H.C.; Immaneni, S.; Shaikh, A. Discovery of Quinoline-Derived Trifluoromethyl Alcohols, Determination of Their in vivo Toxicity and Anticancer Activity in a Zebrafish Embryo Model. Chem Med Chem 2015, 10, 1802–1807. [Google Scholar] [CrossRef]
- Curigliano, G.; Cardinale, D.; Dent, S.; Criscitiello, C.; Aseyev, O.; Lenihan, D.; Cipolla, C.M. Cardiotoxicity of anticancer treatments: Epidemiology, detection, and management. CA. Cancer J. Clin. 2016, 66, 309–325. [Google Scholar] [CrossRef] [PubMed]
- Rosa, G.M.; Gigli, L.; Tagliasacchi, M.I.; Di Iorio, C.; Carbone, F.; Nencioni, A.; Montecucco, F.; Brunelli, C. Update on cardiotoxicity of anti-cancer treatments. Eur. J. Clin. Invest. 2016, 46, 264–284. [Google Scholar] [CrossRef] [PubMed]
- Essa, H.; Wright, D.J.; Dobson, R.; Lip, G.Y.H. Chemotherapy-Induced Arrhythmia – Underrecognized and Undertreated. Am. J. Med. 2021, 134, 1224–1231.e1. [Google Scholar] [CrossRef] [PubMed]
- Ewer, M.S.; Ewer, S.M. Cardiotoxicity of anticancer treatments. Nat. Rev. Cardiol. 2015, 12, 547–558. [Google Scholar] [CrossRef]
- Cruz, M.; Duarte-Rodrigues, J.; Campelo, M. Cardiotoxicidade na terapêutica com antraciclinas: estratégias de prevenção. Rev. Port. Cardiol. 2016, 35, 359–371. [Google Scholar] [CrossRef]
- Raj, S.; Franco, V.I.; Lipshultz, S.E. Anthracycline-Induced Cardiotoxicity: A Review of Pathophysiology, Diagnosis, and Treatment. Curr. Treat. Options Cardiovasc. Med. 2014, 16, 315. [Google Scholar] [CrossRef]
- Jerusalem, G.; Lancellotti, P.; Kim, S.-B. HER2+ breast cancer treatment and cardiotoxicity: monitoring and management. Breast Cancer Res. Treat. 2019, 177, 237–250. [Google Scholar] [CrossRef]
- Benslimane, F.M.; Zakaria, Z.Z.; Shurbaji, S.; Abdelrasool, M.K.A.; Al-Badr, M.A.H.I.; Al Absi, E.S.K.; Yalcin, H.C. Cardiac function and blood flow hemodynamics assessment of zebrafish (Danio rerio) using high-speed video microscopy. Micron 2020, 136, 102876. [Google Scholar] [CrossRef]
- Santoso, F.; Farhan, A.; Castillo, A.L.; Malhotra, N.; Saputra, F.; Kurnia, K.A.; Chen, K.H.-C.; Huang, J.-C.; Chen, J.-R.; Hsiao, C.-D. An Overview of Methods for Cardiac Rhythm Detection in Zebrafish. Biomedicines 2020, 8, 329. [Google Scholar] [CrossRef]
- Ramachandran Surajambika, R.; Natarajan, R.; Nagarajan, N. Design, Synthesis, Evaluation and Toxicity Studies of Novel Acridine Derivatives in Zebra Fish Larvae. Curr. Bioact. Compd. 2024, 20. [Google Scholar] [CrossRef]
- Han, Y.; Ma, Y.; Yao, S.; Zhang, J.; Hu, C. In vivo and in silico evaluations of survival and cardiac developmental toxicity of quinolone antibiotics in zebrafish embryos (Danio rerio). Environ. Pollut. 2021, 277, 116779. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, H.; Takada, K. Reactive oxygen species in cancer: Current findings and future directions. Cancer Sci. 2021, 112, 3945–3952. [Google Scholar] [CrossRef] [PubMed]
- Reczek, C.R.; Chandel, N.S. The Two Faces of Reactive Oxygen Species in Cancer. Annu. Rev. Cancer Biol. 2017, 1, 79–98. [Google Scholar] [CrossRef]
- Ighodaro, O.M.; Akinloye, O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J. Med. 2018, 54, 287–293. [Google Scholar] [CrossRef]
- Ali, M.; Martinez, M.; Parekh, N. Are antioxidants a viable treatment option for male infertility? Andrologia 2021, 53. [Google Scholar] [CrossRef]
- Nandi, A.; Yan, L.-J.; Jana, C.K.; Das, N. Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases. Oxid. Med. Cell. Longev. 2019, 2019, 1–19. [Google Scholar] [CrossRef]
- Santana, C.B.L.; Sousa, D.S.; Costa, J.I. de G.; Lima, D.A.; Oliveira, E.D. Efeitos do gel complexado de naringina/β-ciclodextrina associado ao ultrassom terapêutico em biomarcadores do estresse oxidativo após lesão musculoesquelética em ratos. Res. Soc. Dev. 2024, 13, e0313645940. [Google Scholar] [CrossRef]
- Galasso, M.; Gambino, S.; Romanelli, M.G.; Donadelli, M.; Scupoli, M.T. Browsing the oldest antioxidant enzyme: catalase and its multiple regulation in cancer. Free Radic. Biol. Med. 2021, 172, 264–272. [Google Scholar] [CrossRef]
- McGhee, J.D.; von Hippel, P.H. Theoretical aspects of DNA-protein interactions: Co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice. J. Mol. Biol. 1974, 86, 469–489. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer US: Boston, MA, 2006. [Google Scholar] [CrossRef]
- Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-Wolff, A.; Gray-Goodrich, M.; Campbell, H.; Mayo, J.; Boyd, M. Feasibility of a High-Flux Anticancer Drug Screen Using a Diverse Panel of Cultured Human Tumor Cell Lines. JNCI J. Natl. Cancer Inst. 1991, 83, 757–766. [Google Scholar] [CrossRef] [PubMed]
- Gehrcke, M.; Giuliani, L.M.; Ferreira, L.M.; Barbieri, A.V.; Sari, M.H.M.; da Silveira, E.F.; Azambuja, J.H.; Nogueira, C.W.; Braganhol, E.; Cruz, L. Enhanced photostability, radical scavenging and antitumor activity of indole-3-carbinol-loaded rose hip oil nanocapsules. Mater. Sci. Eng. C 2017, 74, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.K.; Krohn, R.I.; Hermanson, G.T.; Mallia, A.K.; Gartner, F.H.; Provenzano, M.D.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J.; Klenk, D.C. Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985, 150, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Aebi, H. Catalase in vitro; 1984; pp. 121–126. [Google Scholar] [CrossRef]











| Properties | 3a | 3b | 3c | 3d |
| LogP | 4.03 | 3.54 | 3.48 | 2.16 |
| LogD | 4.03 | 3.54 | 3.48 | 2.16 |
| MW | 348.49 g/mol | 299.33 g/mol | 287.32 g/mol | 249.27 g/mol |
| TPSA | 56.13 Å2 | 64.98 Å2 | 65.25 Å2 | 65.25 Å2 |
| pKa | -1.22 | 4.59 | -4.30 | 4.72 |
| HBD | 1.00 | 1.00 | 2.00 | 1.00 |
| HBA | 3.0 | 3.0 | 2.0 | 3.0 |
| RB | 1.0 | 4.0 | 4.0 | 4.0 |
| MR | 110.26 | 90.22 | 86.78 | 72.72 |
| CF | C23H15N3O | C19H13N3O | C18H13N3O | C15H11N3O |
| Criteria | ||||
| Lipinski | Yes | Yes | Yes | Yes |
| Ghose | Yes | Yes | Yes | Yes |
| Veber | Yes | Yes | Yes | Yes |
| Egan | Yes | Yes | Yes | Yes |
| Muegge | Yes | Yes | Yes | Yes |
| MPO | 4.24 | 4.71 | 4.52 | 4.67 |
| Parameters | 3a | 3b | 3c | 3d | Etoposide |
| Permeability Caco-2 | 6.60x10-5 cm/s | 1.11x10-5 cm/s | 1.15x10-5 cm/s | 8.57x10-6 cm/s | 9.31x10-7 cm/s |
| Permeability MDCK | 2.23x10-5 cm/s | 1.48x10-5 cm/s | 1.45x10-5 cm/s | 1.72x10-5 cm/s | 4.66x10-6 cm/s |
| Plasma protein binding | 98.25% | 98.55% | 98.65% | 95.46% | 95.03% |
| Distribution volume | 1.18 L/Kg |
0.59 L/Kg |
0.50 L/Kg |
0.56 L/Kg |
0.23 L/Kg |
| Permeability to the blood-brain barrier | 0% | 0.1% | 0.2% | 0.7% | 0.8% |
| Plasma clearance | 6.041 L/h/Kg |
0.2772 L/h/Kg | 0.30972 L/h/Kg | 0.30222 L/h/Kg | 0.14934 L/h/Kg |
| Half-life | 3h 23min | 1h 29min | 1h 15min | 1h 09min | 1h 04min |
| Target | Probability | |||
| 3a | 3b | 3c | 3d | |
| CYP1A2 | 82.1% | 3.4% | 63.2% | 97.9% |
| CYP2C19 | 100% | 0% | 0% | 0.4% |
| CYP3A4 | 100% | 7% | 24.3% | 59.5 |
| Target | Prediction and probability | ||||
| 3a | 3b | 3c | 3d | Etoposide | |
| Hepatotoxicity | Active (57%) |
Active (57%) |
Active (51%) |
Active (57%) |
Inactive (84%) |
| Nephrotoxicity | Inactive (76%) |
Inactive (71%) |
Inactive (64%) |
Inactive (71%) |
Active (66%) |
| Cardiotoxicity | Active (92%) |
Inactive (83%) |
Inactive (84%) |
Inactive (81%) |
Active (70%) |
| Carcinogenicity | Inactive (56%) |
Inactive (62%) |
Inactive (52%) |
Inactive (65%) |
Inactive (64%) |
| Mutagenicity | Inactive (52%) |
Inactive (64%) |
Inactive (56%) |
Inactive (61%) |
Inactive (85%) |
| Cytotoxicity | Inactive (80%) |
Inactive (80%) |
Inactive (71%) |
Inactive (80%) |
Inactive (90%) |
| Compound | Ring | λmax free (nm) a | λmax bond (nm) | Δλ (nm) | Hyper. (%)b |
Hypochr. (%)c |
Kb d M−1 |
| 3a | Acridine | 363 | 404 | 71 | - | 58.67 | 2.23 x 105 |
| 3b | Quinoline | 326 | 404 | 78 | - | 91.63 | 1.41 x 105 |
| 3c | Indole | 390 | 400 | 10 | 54.81 | - | 5.26 x 104 |
| 3d | Pyridine | 272 | 269 | 3 | - | 37.12 | 6.46 x 104 |
| Compound/ Ring | EB-ssDNA | |||
| λmáx free (nm)a |
λmáx bound (nm)a |
Hypochr. (%)b | Ksv (M-1) c | |
| 3a/ Acridine | 599 | 599 | 59.64 | 0.67 x 103 |
| 3b/ Quinoline | 599 | 600 | 73.14 | 0.63 x 103 |
| 3c/ Indole | 599 | 600 | 53.29 | 0.53 x 103 |
| 3d/ Pyridine | 599 | 600 | 69.72 | 0.58 x 103 |
| Compound | Binding energy (kcal/mol) Alvo: 1G3X |
Binding energy (kcal/mol) Alvo: 1BNA- |
Binding energy (kcal/mol) Alvo: 5GWK |
Type of bond | Residues |
| Ligand 9Acridine | -6.99 | _ | - | - | - |
| Ligand Etoposide | - | - | -11.2 | Hydrogen boding; π -Alkyl; stacking π- π; Van der Waals; | MET763, PRO803, ASP463, ARG487, G13-D, G10-F C8-E, GLY488; GLY462 |
| 3a | -8.07 | -6.94 | -8.52 | Hydrogen boding; π -Alkyl; stacking π- π; π-Cation; π-Anion | ALA614; ASP108; LYS 190-466; ARG787; HIS146 |
| 3b | -9.23 | -10.37 | -8.84 | Hydrogen boding; stacking π- π | ARG197; TYR148; CYS200-246; LEU250; ALA151; G13-D, C8-E, A12-D, ARG 487 |
| 3c | -8.75 | -10.16 | -8.76 | Hydrogen boding; π-Cation; π-Sigma; π-Sulfur | ALA26-151; LYS106; GLN29; ARG487; PHE149; TYR148; CYS245-200-246; LEU250; T9-F; A12D |
| 3d | -7.35 | -8.65 | -7.2 | Hydrogen boding π-Cation; π-Sigma; π-Sulfur; π -Alkyl | ALA151-26; LYS106; ARG487; TYR150; CYS200-246; LEU250; GLY248 |
| Derivative | Cell linesa GI50 (µM) | |||
| MCF-7 | T47-D | HaCaT | % hemolysis in human erythrocytesd | |
| m-AMSAb | 3.27 | 0.14 | 1.44 | 19% |
| 3a | 34.41 | 3.42 | >100 | 6.66% |
| 3b | 33.62 | 8.07 | 2.98 | 3.08% |
| 3c | 9.44 | n.a | 4.29 | 4.14% |
| 3d | 33.27 | n.a | 2.96 | 2.05% |
| Derivative | Lethality parameters [60] | Exposure time (h) / Concentration / Percentage (%) of embryos within lethality parameters [60] | ||
| 24 h | 48 h | 72h | ||
| Negative Control | Embryo coagulation(%) | 10% | 0% | 0% |
| Lack of somite formation (%) | 0% | 0% | 0% | |
| No tail detachment (%) | 0% | 0% | 0% | |
| Absence of heartbeat (%) | 0% | 0% | 0% | |
| 3,4-dichloroaniline | Embryo coagulation (%) | 100% | - | - |
| 24h/ 0.5 and 1 µM | 48h/ 0.5 and 1 µM | 72h/ 0.5 and 1 µM | ||
| 3a |
Embryo coagulation (%) | 10% and 0% | 0% and % | 0% and 0 % |
| Lack of somite formation (%) | 0% | 0% | 0% | |
| No tail detachment (%) | 0% | 0% | 0% | |
| Absence of heartbeat (%) | 0% | 0% | 0% | |
| 3b | Embryo coagulation (%) | 0% and 2.5% | 0% | 0% |
| Lack of somite formation (%) | 0% | 0% | 0% | |
| No tail detachment (%) | 0% | 0% | 0% | |
| Absence of heartbeat (%) | 0% | 0% | 0% | |
| 3c | Embryo coagulation (%) | 0% and 5% | 0% | 0% |
| Lack of somite formation (%) | 0% | 0% | 0% | |
| No tail detachment (%) | 0% | 0% | 0% | |
| Absence of heartbeat (%) | 0% | 0% | 0% | |
| 3d | Embryo coagulation (%) | 0% | 0% | 0% |
| Lack of somite formation (%) | 0% | 0% | 0% | |
| No tail detachment (%) | 0% | 0% | 0% | |
| Absence of heartbeat (%) | 0% | 0% | 0% | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
