Submitted:
28 January 2026
Posted:
28 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Theoretical Background
3. Materials and Methodology
3.1. Material and Bell Crank Geometry
3.2. Fatigue Crack Growth Test of Bell-Crank Structure
3.3. FE Simulation of Bell Crack Structure for Crack Tip Driving Force,
3.4. Fractal Dimensions Determination of Fatigue Crack in Bell Crank Structure
4. Results and Discussion
4.1. Fatigue Crack Growth Response of Bell Crank Structure

4.2. FE Analysis Results of the Bell Crank Structure
4.3. Fractal Fracture Response of the Bell Crank Structure
4.4. Validation of FE-calculated Crack Tip Driving Force using Fractal Measurements
5. Conclusions
- The fatigue crack in the bell crank structure is driven by a combined Mode-I (opening) and Mode-II (shearing) crack tip loading along a curved crack path trajectory, as dictated by the asymmetric stress distribution.
- The fatigue crack edge exhibits fractality with fractal dimensions ranging from 1.00 (Euclidean) to 1.18 over the crack length, (a-ao) up to 9.947 mm.
- The FE-calculated crack tip driving forces of the bell crank structure compare well with those computed based on the corrected crack edge fractal dimensions, thus validating the simulation outcomes.
- Fatigue crack growth rates determined from crack-tip driving forces based on the validated FE-computed contour integrals are comparable to those obtained through ASTM standard tests.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Díaz, F.A.; Vasco-Olmo, J.M.; López-Alba, E.; Felipe-Sesé, L.; Molina-Viedma, A.J.; Nowell, D. Experimental evaluation of effective stress intensity factor using thermoelastic stress analysis and digital image correlation. Int J Fatigue 2020, 135, 105567. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, S.; Yang, B.; Xiao, S.; Yang, G.; Zhu, T. Effective stress intensity factor range for fatigue cracks propagating in mixed mode I-II loading. Eng Fract Mech 2024, 312, 110641. [Google Scholar] [CrossRef]
- De Oliveira Miranda, A.C.; Antunes, M.A.; Guamán Alarcón, M.V.; Meggiolaro, M.A.; Pinho De Castro, J.T. Use of the stress gradient factor to estimate fatigue stress concentration factors K. Eng Fract Mech 2019, 206, 250–266. [Google Scholar] [CrossRef]
- Anderson, T.L. Fracture Mechanics: Fundamentals and Applications, 3rd ed.; CRC Press, 2017. [Google Scholar] [CrossRef]
- Tada, H.; Paris, P.C.; Irwin, G.R. The Stress Analysis of Cracks Handbook, Third Edition ed; ASME Press, 2000. [Google Scholar] [CrossRef]
- Kobayashi, A.S. STRESS INTENSITY FACTORS HANDBOOK; Co-editor. Exp Tech; Murakami, Y., Hasebe, M.T., Itoh, Y., Kishimoto, K., Miyata, H., Miyazaki, N., Terada, H., Tohgo, K., Yuuki, R., Eds.; 1994; Volume 18, pp. 46–46. [Google Scholar] [CrossRef]
- The compendium of stress intensity factors: by, D.P. Rooke and D. J. Cartwright, Pendragon House, Inc., Palo Alto, California (1976) 330 pages ($37,50). Int J Fract 1978, 14, R143–R143. [CrossRef]
- Kriaa, Y.; Hersi, Y.; Ammar, A.; Zouari, B. Quasi-Static and Dynamic Crack Propagation by Phase Field Modeling: Comparison with Previous Results and Experimental Validation. Appl Sci 2024, 14, 4000. [Google Scholar] [CrossRef]
- Chen, Z.; Dai, Y.; Liu, Y. Structural fatigue crack propagation simulation and life prediction based on improved XFEM-VCCT. Eng Fract Mech 2024, 310, 110519. [Google Scholar] [CrossRef]
- Xin, H.; Liu, J.; Correia, J.A.F.O.; Berto, F.; Veljkovic, M.; Qian, G. Mixed-mode fatigue crack propagation simulation by means of G eq and walker models of the structural steel S355. Theor Appl Fract Mech 2023, 123, 103717. [Google Scholar] [CrossRef]
- Li, P.; Li, W.; Li, B.; Yang, S.; Shen, Y.; Wang, Q.; et al. A review on phase field models for fracture and fatigue. Eng Fract Mech 2023, 289, 109419. [Google Scholar] [CrossRef]
- Bui, T.Q.; Hu, X. A review of phase-field models, fundamentals and their applications to composite laminates. Eng Fract Mech 2021, 248, 107705. [Google Scholar] [CrossRef]
- Zhang, W.; Su, Y.; Jiang, Y.; Hu, Z.; Bi, J.; He, W. Data-driven fatigue crack propagation and life prediction of tubular T-joint: A fracture mechanics based machine learning surrogate model. Eng Fract Mech 2024, 311, 110556. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, T.; Liu, Y.; Chen, Q.; Wang, Z.; Wang, Z. A data-driven model for predicting the mixed-mode stress intensity factors of a crack in composites. Eng Fract Mech 2023, 288, 109385. [Google Scholar] [CrossRef]
- Wang, H.; Li, B.; Gong, J.; Xuan, F.-Z. Machine learning-based fatigue life prediction of metal materials: Perspectives of physics-informed and data-driven hybrid methods. Eng Fract Mech 2023, 284, 109242. [Google Scholar] [CrossRef]
- Liang, Z.; Wang, X.; Cui, Y.; Xu, W.; Zhang, Y.; He, Y. A new data-driven probabilistic fatigue life prediction framework informed by experiments and multiscale simulation. Int J Fatigue 2023, 174, 107731. [Google Scholar] [CrossRef]
- Fang, X.; Liu, G.; Wang, H.; Tian, X. A digital twin modeling method based on multi-source crack growth prediction data fusion. Eng Fail Anal 2023, 154, 107645. [Google Scholar] [CrossRef]
- Tasdemir, B. Determınatıon of stress intensity factor using digital image correlation method. Matter 2015, 2, 20–24. [Google Scholar]
- Torabi, A.R.; Bahrami, B.; Ayatollahi, M.R. Experimental determination of the notch stress intensity factor for sharp V-notched specimens by using the digital image correlation method. Theor Appl Fract Mech 2019, 103, 102244. [Google Scholar] [CrossRef]
- Singh, J.J.; Davis, W.T.; Crews, J., Jr. The application of acoustic emission technique to fatigue crack measurement. 1974. [Google Scholar]
- Roberts, T.M.; Talebzadeh, M. Acoustic emission monitoring of fatigue crack propagation. J Constr Steel Res 2003, 59, 695–712. [Google Scholar] [CrossRef]
- Zanganeh, M.; Tomlinson, R.A.; Yates, J.R. T-stress determination using thermoelastic stress analysis. J Strain Anal Eng Des 2008, 43, 529–537. [Google Scholar] [CrossRef]
- Farahani, B.V.; Tavares, P.J.; Moreira, P.M.G.P.; Belinha, J. Stress intensity factor calculation through thermoelastic stress analysis, finite element and RPIM meshless method. Eng Fract Mech 2017, 183, 66–78. [Google Scholar] [CrossRef]
- Exploiting fractal features to determine fatigue crack growth rates of metallic materials. Eng Fract Mech 2022, 270, 108589. [CrossRef]
- Hashmi, M.H.; Abdul-Hamid, M.F.; Abdul-Latif, A.; Tamin, M.N.; Khattak, M.A. Fractal Dimensions of a Propagating Fatigue Crack in Metallic Materials. J Fail Anal Prev 2021, 21, 1644–1651. [Google Scholar] [CrossRef]
- Rice, J.R. A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks. J Appl Mech 1968, 35, 379–386. [Google Scholar] [CrossRef]
- Erdogan, F.; Sih, G.C. On the Crack Extension in Plates Under Plane Loading and Transverse Shear. J Basic Eng 1963, 85, 519–525. [Google Scholar] [CrossRef]
- Cotterell, B.; Rice, J.R. Slightly curved or kinked cracks. Int J Fract 1980, 16, 155–169. [Google Scholar] [CrossRef]
- Hussain, M.; Pu, S.; Underwood, J. Strain Energy Release Rate for a Crack Under Combined Mode I and Mode II. In Natl. Symp. Fract. Mech., 100 Barr Harbor Drive, PO Box C700; p. 2-2–27; Irwin, G, Ed.; ASTM International: West Conshohocken, PA 19428-2959, 1974. [Google Scholar] [CrossRef]
- Palaniswamy, K.; Knauss, W.G. On the Problem of Crack Extension in Brittle Solids Under General Loading. In Mech. Today; Elsevier, 1978; pp. 87–148. [Google Scholar] [CrossRef]
- Maiti, S.K.; Smith, R.A. Comparison of the criteria for mixed mode brittle fracture based on the preinstability stress-strain field Part I: Slit and elliptical cracks under uniaxial tensile loading. Int J Fract 1983, 23, 281–295. [Google Scholar] [CrossRef]
- Theocaris, P.S. A higher-order approximation for the T-criterion of fracture in biaxial fields. Eng Fract Mech 1984, 19, 975–991. [Google Scholar] [CrossRef]
- Sih, G.C. Strain-energy-density factor applied to mixed mode crack problems. Int J Fract 1974, 10, 305–321. [Google Scholar] [CrossRef]
- Hashmi, M.H.; Koloor, S.S.R.; Abdul-Hamid, M.F.; Tamin, M.N. Fractal Analysis for Fatigue Crack Growth Rate Response of Engineering Structures with Complex Geometry. Fractal Fract 2022, 6, 635. [Google Scholar] [CrossRef]
- Hashmi, M.H.; Abdul-Hamid, M.F.; Tamin, M.N. A robust probabilistic fatigue crack growth model based on walker’s crack growth rate equation for metallic materials. Probabilistic Eng Mech 2023, 72, 103445. [Google Scholar] [CrossRef]













| Properties and Parameters | Values |
|---|---|
| Tensile strength, | 657 MPa |
| Yield strength, | 620 MPa |
| Young’s modulus, | 200 GPa |
| Poisson’s ratio, ν | 0.29 |
| Hardness, | 268 |
| Fracture toughness, | 55.0 MPa |
| Threshold stress intensity factor range, | 15.1 MPa |
| Paris crack growth law | mm/cycle |
| Coefficient of fractality, | 2.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
