Submitted:
23 January 2026
Posted:
26 January 2026
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Materials and Methods
2.1. Study design and population
2.2. Exclusion and inclusion criteria
2.3. Baseline clinical assessment
2.4. Echocardiographic assessment
2.5. Left ventricular global longitudinal strain (GLS) analysis
2.6. Coronary flow velocity reserve assessment
2.7. Cardiac catheterization
2.8. Statistical analysis
3. Results
3.1. Study population and baseline characteristics
3.2. Echocardiographic parameters and coronary flow velocity reserve
3.3. Catheterization findings
3.4. Correlation analysis and binary logistic regression
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ASO | Arterial Switch Operation |
| BMI | Body Mass Index |
| BSA | Body Surface Area |
| CFVR | Coronary Flow Velocity Reserve |
| CI | Confidence Interval |
| CMR | Cardiac Magnetic Resonance |
| CoAo | Coarctation of the Aorta |
| D-TGA | Dextro-Transposition of the Great Arteries |
| ECG | Electrocardiogram |
| GLS | Global Longitudinal Strain |
| LAD | Left Anterior Descending (coronary artery) |
| LV | Left Ventricle/Left Ventricular |
| LVEDD | Left Ventricular End-Diastolic Diameter |
| LVESD | Left Ventricular End-Systolic Diameter |
| LVEF | Left Ventricular Ejection Fraction |
| LVOTO | Left Ventricular Outflow Tract Obstruction |
| MAP | Mean Arterial Pressure |
| MAPSE | Mitral Annular Plane Systolic Excursion |
| mPAP | Mean Pulmonary Artery Pressure |
| MSCT | Multislice Computed Tomography |
| NTproBNP | N-terminal pro-B-type Natriuretic Peptide |
| OR | Odds Ratio |
| PGE1 | Prostaglandin E1 |
| RA | Right Atrium |
| RV | Right Ventricle/Right Ventricular |
| RVSP | Right Ventricular Systolic Pressure |
| SF | Shortening Fraction |
| STE | Speckle Tracking Echocardiography |
| TAPSE | Tricuspid Annular Plane Systolic Excursion |
| TV | Tricuspid Valve |
| VSD | Ventricular Septal Defect |
References
- Martins, P; Castela, E. Transposition of the great arteries. Orphanet J Rare Dis 2008, 3, 27. [Google Scholar] [CrossRef]
- Walter, CC; Escobar-Diaz, MC; Cesar, S; Garrido, BAM; Sanchez-de-Toledo, J. Functional and morphometric changes in children after neonatal arterial switch operation for transposition of the great arteries. Ann Pediatr Cardiol 2022, 15(5-6), 447–452. [Google Scholar] [CrossRef] [PubMed]
- Jatene, AD; Fontes, VF; Paulista, PP; Souza, LC; Neger, F; Galantier, M; Sousa, JE. Anatomic correction of transposition of the great vessels. J Thorac Cardiovasc Surg. 1976, 72(3), 364–70. [Google Scholar] [CrossRef] [PubMed]
- Dorobantu, DM; Espuny Pujol, F; Kostolny, M; Brown, KL; Franklin, RC; Crowe, S; Pagel, C; Stoica, SC. Arterial Switch for Transposition of the Great Arteries: Treatment Timing, Late Outcomes, and Risk Factors. JACC Adv. 2023, 2(5), 100407. [Google Scholar] [CrossRef]
- Morfaw, F; Leenus, A; Mbuagbaw, L; Anderson, LN; Dillenburg, R; Thabane, L. Outcomes after corrective surgery for congenital dextro-transposition of the arteries using the arterial switch technique: a scoping systematic review. Syst Rev. 2020, 9(1), 231. [Google Scholar] [CrossRef]
- Sarris, GE; Balmer, C; Bonou, P; Comas, JV; da Cruz, E; Chiara, LD; Di Donato, RM; Fragata, J; Jokinen, TE; Kirvassilis, G; Lytrivi, I; Milojevic, M; Sharland, G; Siepe, M; Stein, J; Büchel, EV; Vouhé, PR. Clinical guidelines for the management of patients with transposition of the great arteries with intact ventricular septum. Eur J Cardiothorac Surg 2017, 51(1), e1–e32. [Google Scholar] [CrossRef]
- Linglart, L; Malekzadeh-Milani, S; Gaudin, R; Raisky, O; Bonnet, D. Outcomes of coronary artery obstructions after the arterial switch operation for transposition of the great arteries. J Thorac Cardiovasc Surg. 2024, 168(2), 331–341.e4. [Google Scholar] [CrossRef] [PubMed]
- Ou, P; Khraiche, D; Celermajer, DS; Agnoletti, G; Le Quan Sang, KH; Thalabard, JC; Quintin, M; Raisky, O; Vouhe, P; Sidi, D; Bonnet, D. Mechanisms of coronary complications after the arterial switch for transposition of the great arteries. J Thorac Cardiovasc Surg. 2013, 145(5), 1263–9. [Google Scholar] [CrossRef]
- Lim, RS; Lefkovits, J; Menahem, S. Long-Term Coronary Artery Complications Following the Arterial Switch Operation for Transposition of the Great Arteries-A Scoping Review. World J Pediatr Congenit Heart Surg 2025, 16(3), 402–408. [Google Scholar] [CrossRef]
- Cohen, MS; Eidem, BW; Cetta, F; Fogel, MA; Frommelt, PC; Ganame, J; Han, BK; Kimball, TR; Johnson, RK; Mertens, L; Paridon, SM; Powell, AJ; Lopez, L. Multimodality Imaging Guidelines of Patients with Transposition of the Great Arteries: A Report from the American Society of Echocardiography Developed in Collaboration with the Society for Cardiovascular Magnetic Resonance and the Society of Cardiovascular Computed Tomography. J Am Soc Echocardiogr. 2016, 29(7), 571–621. [Google Scholar] [CrossRef]
- Noel, CV; Krishnamurthy, R; Masand, P; Moffett, B; Schlingmann, T; Cheong, BY; Krishnamurthy, R. Myocardial Stress Perfusion MRI: Experience in Pediatric and Young-Adult Patients Following Arterial Switch Operation Utilizing Regadenoson. Pediatr Cardiol 2018, 39(6), 1249–1257. [Google Scholar] [CrossRef] [PubMed]
- Del Buono, MG; Montone, RA; Camilli, M; Carbone, S; Narula, J; Lavie, CJ; Niccoli, G; Crea, F. Coronary Microvascular Dysfunction Across the Spectrum of Cardiovascular Diseases: JACC State-of-the-Art Review. J Am Coll Cardiol. 2021, 78(13), 1352–1371. [Google Scholar] [CrossRef]
- Taqueti, VR; Di Carli, MF. Coronary Microvascular Disease Pathogenic Mechanisms and Therapeutic Options: JACC State-of-the-Art Review. J Am Coll Cardiol. 2018, 72(21), 2625–2641. [Google Scholar] [CrossRef]
- Gagliardi, MG; Adorisio, R; Crea, F; Versacci, P; Di Donato, R; Sanders, SP. Abnormal vasomotor function of the epicardial coronary arteries in children five to eight years after arterial switch operation: an angiographic and intracoronary Doppler flow wire study. J Am Coll Cardiol. 2005, 46(8), 1565–72. [Google Scholar] [CrossRef]
- Palm, J; Hoffmann, G; Klawonn, F; Tutarel, O; Palm, H; Holdenrieder, S; Ewert, P. Continuous, complete and comparable NT-proBNP reference ranges in healthy children. Clin Chem Lab Med. 2020, 58(9), 1509–1516. [Google Scholar] [CrossRef] [PubMed]
- Paridon, SM; Alpert, BS; Boas, SR; Cabrera, ME; Caldarera, LL; Daniels, SR; Kimball, TR; Knilans, TK; Nixon, PA; Rhodes, J; Yetman, AT. American Heart Association Council on Cardiovascular Disease in the Young, Committee on Atherosclerosis, Hypertension, and Obesity in Youth. Clinical stress testing in the pediatric age group: a statement from the American Heart Association Council on Cardiovascular Disease in the Young, Committee on Atherosclerosis, Hypertension, and Obesity in Youth. Circulation 2006, 113(15), 1905–20. [Google Scholar] [CrossRef] [PubMed]
- Lopez, L; Saurers, DL; Barker, PCA; Cohen, MS; Colan, SD; Dwyer, J; Forsha, D; Friedberg, MK; Lai, WW; Printz, BF; Sachdeva, R; Soni-Patel, NR; Truong, DT; Young, LT; Altman, CA. Guidelines for Performing a Comprehensive Pediatric Transthoracic Echocardiogram: Recommendations From the American Society of Echocardiography. J Am Soc Echocardiogr. 2024, 37(2), 119–170. [Google Scholar] [CrossRef]
- Pettersen, MD; Du, W; Skeens, ME; Humes, RA. Regression equations for calculation of z scores of cardiac structures in a large cohort of healthy infants, children, and adolescents: an echocardiographic study. J Am Soc Echocardiogr. 2008, 21(8), 922–34. [Google Scholar] [CrossRef]
- Mah, K; Mertens, L. Echocardiographic Assessment of Right Ventricular Function in Paediatric Heart Disease: A Practical Clinical Approach. CJC Pediatr Congenit Heart Dis 2022, 1(3), 136–157. [Google Scholar] [CrossRef]
- Lammers, AE; Apitz, C; Michel-Behnke, I; Koestenberger, M. A guide to echocardiographic assessment in children and adolescents with pulmonary hypertension. Cardiovasc Diagn Ther 2021, 11(4), 1160–1177. [Google Scholar] [CrossRef]
- Huston, JH; Maron, BA; French, J; Huang, S; Thayer, T; Farber-Eger, EH; Wells, QS; Choudhary, G; Hemnes, AR; Brittain, EL. Association of Mild Echocardiographic Pulmonary Hypertension With Mortality and Right Ventricular Function. JAMA Cardiol 2019, 4(11), 1112–1121. [Google Scholar] [CrossRef]
- Wu, VC; Takeuchi, M. Echocardiographic assessment of right ventricular systolic function. Cardiovasc Diagn Ther. 2018, 8(1), 70–79. [Google Scholar] [CrossRef]
- Cantinotti, M; Marchese, P; Scalese, M; Franchi, E; Assanta, N; Koestenberger, M; Van den Eynde, J; Kutty, S; Giordano, R. Normal Values and Patterns of Normality and Physiological Variability of Mitral and Tricuspid Inflow Pulsed Doppler in Healthy Children. Healthcare (Basel) 2022, 10(2), 355. [Google Scholar] [CrossRef]
- Cantinotti, M; Giordano, R; Scalese, M; Murzi, B; Assanta, N; Spadoni, I; Crocetti, M; Marotta, M; Molinaro, S; Kutty, S; Iervasi, G. Nomograms for mitral inflow Doppler and tissue Doppler velocities in Caucasian children. J Cardiol. 2016, 68(4), 288–99. [Google Scholar] [CrossRef] [PubMed]
- Voigt, JU; Pedrizzetti, G; Lysyansky, P; Marwick, TH; Houle, H; Baumann, R; Pedri, S; Ito, Y; Abe, Y; Metz, S; Song, JH; Hamilton, J; Sengupta, PP; Kolias, TJ; d'Hooge, J; Aurigemma, GP; Thomas, JD; Badano, LP. Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging 2015, 16(1), 1–11. [Google Scholar] [CrossRef] [PubMed]
- Marcus, KA; Mavinkurve-Groothuis, AM; Barends, M; van Dijk, A; Feuth, T; de Korte, C; Kapusta, L. Reference values for myocardial two-dimensional strain echocardiography in a healthy pediatric and young adult cohort. J Am Soc Echocardiogr. 2011, 24(6), 625–36. [Google Scholar] [CrossRef]
- Mihos, CG; Liu, JE; Anderson, KM; Pernetz, MA; O'Driscoll, JM; Aurigemma, GP; Ujueta, F; Wessly, P. American Heart Association Council on Peripheral Vascular Disease; Council on Cardiovascular and Stroke Nursing; and Council on Clinical Cardiology. Speckle-Tracking Strain Echocardiography for the Assessment of Left Ventricular Structure and Function: A Scientific Statement From the American Heart Association. Circulation 2025, 152(10), e96–e109. [Google Scholar] [CrossRef] [PubMed]
- Cantinotti, M; Scalese, M; Giordano, R; Franchi, E; Assanta, N; Marotta, M; Viacava, C; Molinaro, S; Iervasi, G; Santoro, G; Koestenberger, M. Normative Data for Left and Right Ventricular Systolic Strain in Healthy Caucasian Italian Children by Two-Dimensional Speckle-Tracking Echocardiography. J Am Soc Echocardiogr. 2018, 31(6), 712–720.e6. [Google Scholar] [CrossRef]
- Tesic, M; Beleslin, B; Giga, V; Jovanovic, I; Marinkovic, J; Trifunovic, D; Petrovic, O; Dobric, M; Aleksandric, S; Juricic, S; Boskovic, N; Tomasevic, M; Ristic, A; Orlic, D; Stojkovic, S; Vukcevic, V; Stankovic, G; Ostojic, M; Djordjevic Dikic, A. Prognostic Value of Transthoracic Doppler Echocardiography Coronary Flow Velocity Reserve in Patients With Asymmetric Hypertrophic Cardiomyopathy. J Am Heart Assoc. 2021, 10(20), e021936. [Google Scholar] [CrossRef]
- Tesic, M; Djordjevic-Dikic, A; Giga, V; Stepanovic, J; Dobric, M; Jovanovic, I; Petrovic, M; Mehmedbegovic, Z; Milasinovic, D; Dedovic, V; Zivkovic, M; Juricic, S; Orlic, D; Stojkovic, S; Vukcevic, V; Stankovic, G; Nedeljkovic, M; Ostojic, M; Beleslin, B. Prognostic Value of Transthoracic Doppler Echocardiography Coronary Flow Velocity Reserve in Patients with Nonculprit Stenosis of Intermediate Severity Early after Primary Percutaneous Coronary Intervention. J Am Soc Echocardiogr. 2018, 31(8), 880–887. [Google Scholar] [CrossRef]
- Toya, T; Corban, MT; Park, JY; Ahmad, A; Ӧzcan, I; Sebaali, F; Sara, JDS; Gulati, R; Lerman, LO; Lerman, A. Prognostic impact and clinical outcomes of coronary flow reserve and hyperaemic microvascular resistance. EuroIntervention 2021, 17(7), 569–575. [Google Scholar] [CrossRef]
- Kawata, T; Daimon, M; Hasegawa, R; Toyoda, T; Sekine, T; Himi, T; Uchida, D; Miyazaki, S; Hirose, K; Ichikawa, R; Maruyama, M; Suzuki, H; Daida, H. Prognostic value of coronary flow reserve assessed by transthoracic Doppler echocardiography on long-term outcome in asymptomatic patients with type 2 diabetes without overt coronary artery disease. Cardiovasc Diabetol 2013, 12, 121. [Google Scholar] [CrossRef]
- Moscatelli, S; Bianco, F; Cimini, A; Panebianco, M; Leo, I; Bucciarelli-Ducci, C; Perrone, MA. The Use of Stress Cardiovascular Imaging in Pediatric Population. Children (Basel) 2023, 10(2), 218. [Google Scholar] [CrossRef]
- Holzer, RJ; Bergersen, L; Thomson, J; Aboulhosn, J; Aggarwal, V; Akagi, T; Alwi, M; Armstrong, AK; Bacha, E; Benson, L; Bökenkamp, R; Carminati, M; Dalvi, B; DiNardo, J; Fagan, T; Fetterly, K; Ing, FF; Kenny, D; Kim, D; Kish, E; O'Byrne, M; O'Donnell, C; Pan, X; Paolillo, J; Pedra, C; Peirone, A; Singh, HS; Søndergaard, L; Hijazi, ZM. PICS/AEPC/APPCS/CSANZ/SCAI/SOLACI: Expert Consensus Statement on Cardiac Catheterization for Pediatric Patients and Adults With Congenital Heart Disease. JACC Cardiovasc Interv. 2024, 17(2), 115–216. [Google Scholar] [CrossRef] [PubMed]
- Vrints, C; Andreotti, F; Koskinas, KC; Rossello, X; Adamo, M; Ainslie, J; Banning, AP; Budaj, A; Buechel, RR; Chiariello, GA; Chieffo, A; Christodorescu, RM; Deaton, C; Doenst, T; Jones, HW; Kunadian, V; Mehilli, J; Milojevic, M; Piek, JJ; Pugliese, F; Rubboli, A; Semb, AG; Senior, R; Ten Berg, JM; Van Belle, E; Van Craenenbroeck, EM; Vidal-Perez, R; Winther, S; ESC Scientific Document Group. 2024 ESC Guidelines for the management of chronic coronary syndromes. Eur Heart J 2024, 45(36), 3415–3537. [Google Scholar] [CrossRef]
- Villafañe, J; Lantin-Hermoso, MR; Bhatt, AB; Tweddell, JS; Geva, T; Nathan, M; Elliott, MJ; Vetter, VL; Paridon, SM; Kochilas, L; Jenkins, KJ; Beekman, RH, 3rd; Wernovsky, G; Towbin, JA; American College of Cardiology’s Adult Congenital and Pediatric Cardiology Council. D-transposition of the great arteries: the current era of the arterial switch operation. J Am Coll Cardiol. 2014, 64(5), 498–511. [Google Scholar] [CrossRef] [PubMed]
- Oskarsson, G; Pesonen, E; Munkhammar, P; Sandström, S; Jögi, P. Normal coronary flow reserve after arterial switch operation for transposition of the great arteries: an intracoronary Doppler guidewire study. Circulation 2002, 106(13), 1696–702. [Google Scholar] [CrossRef]
- Hauser, M; Bengel, FM; Kühn, A; Sauer, U; Zylla, S; Braun, SL; Nekolla, SG; Oberhoffer, R; Lange, R; Schwaiger, M; Hess, J. Myocardial blood flow and flow reserve after coronary reimplantation in patients after arterial switch and ross operation. Circulation 2001, 103(14), 1875–80. [Google Scholar] [CrossRef]
- Engele, LJ; van der Palen, RLF; Egorova, AD; Bartelings, MM; Wisse, LJ; Glashan, CA; Kiès, P; Vliegen, HW; Hazekamp, MG; Mulder, BJM; Ruiter, MC; Bouma, BJ; Jongbloed, MRM. Cardiac Fibrosis and Innervation State in Uncorrected and Corrected Transposition of the Great Arteries: A Postmortem Histological Analysis and Systematic Review. J Cardiovasc Dev Dis. 2023, 10(4), 180. [Google Scholar] [CrossRef]
- Possner, M; Buechel, RR; Vontobel, J; Mikulicic, F; Gräni, C; Benz, DC; Clerc, OF; Fuchs, TA; Tobler, D; Stambach, D; Greutmann, M; Kaufmann, PA. Myocardial blood flow and cardiac sympathetic innervation in young adults late after arterial switch.
- operation for transposition of the great arteries. Int J Cardiol 2020, 299, 110–115. [CrossRef]
- Di Carli, MF; Tobes, MC; Mangner, T; Levine, AB; Muzik, O; Chakroborty, P; Levine, TB. Effects of cardiac sympathetic innervation on coronary blood flow. N Engl J Med 1997, 336(17), 1208–15. [Google Scholar] [CrossRef]
- Mahfouz, RA; Gouda, M; Arab, M. Right ventricular mechanics and exercise capacity in patients with microvascular angina: The impact of microvascular function. Echocardiography 2020, 37(1), 71–76. [Google Scholar] [CrossRef]
- Friedberg, MK. Imaging Right-Left Ventricular Interactions. JACC Cardiovasc Imaging 2018, 11(5), 755–771. [Google Scholar] [CrossRef]
- Yang, F; Ren, W; Wang, D; Yan, Y; Deng, YL; Yang, ZW; Yu, TL; Li, D; Zhang, Z. The Variation in the Diastolic Period with Interventricular Septal Displacement and Its Relation to the Right Ventricular Function in Pulmonary Hypertension: A Preliminary Cardiac Magnetic Resonance Study. Diagnostics (Basel) 2022, 12(8), 1970. [Google Scholar] [CrossRef]
- Essafri, I; Ichimura, K; Ivy, D; Stenmark, KR; Turton, HA; Pyle, LL; Spiekerkoetter, E; Kheyfets, VO. The effect of microvascular remodeling on fluid dynamics in the pressure-overloaded right ventricle. Am J Physiol Heart Circ Physiol. 2025, 329(5), H1379–H1390. [Google Scholar] [CrossRef]
- Luo, S; Haranal, M; Deng, MX; Varenbut, J; Runeckles, K; Steve Fan, CP; Van Arsdell, GS; Haller, C; Honjo, O. Branch pulmonary artery stenosis after arterial switch operation: The effect of preoperative anatomic factors on reintervention. J Thorac Cardiovasc Surg. 2022, 164(2), 317–327.e8. [Google Scholar] [CrossRef]
- Jovanovic, I; Tesic, M; Giga, V; Dobric, M; Boskovic, N; Vratonjic, J; Orlic, D; Gudelj, O; Tomasevic, M; Dikic, M; Nedeljkovic, I; Trifunovic, D; Nedeljkovic, MA; Dedic, S; Beleslin, B; Djordjevic-Dikic, A. Impairment of coronary flow velocity reserve and global longitudinal strain in women with cardiac syndrome X and slow coronary flow. J Cardiol. 2020, 76(1), 1–8. [Google Scholar] [CrossRef]
- Clemmensen, TS; Løgstrup, BB; Eiskjaer, H; Poulsen, SH. Coronary Flow Reserve Predicts Longitudinal Myocardial Deformation Capacity in Heart-Transplanted Patients. Echocardiography 2016, 33(4), 562–71. [Google Scholar] [CrossRef]
- Li, Y; Sun, D; Zhao, H; Qin, Z; Ji, W; Zhang, H; Jiao, N; Luan, B; Ding, M; Zhu, F. Incremental value of non-invasive myocardial work for the evaluation and prediction of coronary microvascular dysfunction in angina with no obstructive coronary artery disease. Front Cardiovasc Med. 2023, 10, 1209122. [Google Scholar] [CrossRef]


| All patients (n=48) | Impaired CFVR (n=21) | Preserved CFVR (n=27) |
p value | |
|---|---|---|---|---|
| Age (years, mean, SD) | 16.0±2.8 | 16.3±2.8 | 15.7±2.8 | 0.47 |
| Sex (male, %) | 71.0 | 71.0 | 70 | 0.99 |
| Weight (kg, mean, SD) | 64.16±23.54 | 66.18±30.1 | 62.58±17.27 | 0.34 |
| BMI (kg/m2, mean, SD) | 20.84±3.27 | 20.49±3.24 | 21.11±3.33 | 0.52 |
| BSA (m2, mean, SD) | 1.70±0.26 | 1.68±0.24 | 1.71±0.29 | 0.73 |
| NTproBNP (pg/ml, mean, SD) | 61.7±60.2 | 48.2±26.0 | 71.7±68.2 | 0.27 |
| Zlog NTproBNP (mean, SD) | 0.45±0.74 | 0.28±0.64 | 0.57±0.79 | 0.23 |
| Preoperative parameters | ||||
| Age at surgery (days, mean, SD) | 19±10 | 17±8 | 20±11 | 0.28 |
| Prenatal diagnosis (%) | 15.0 | 18.0 | 9.0 | 0.44 |
| Birth BW (kg, mean, SD) | 3.32±0.4 | 3.23±0.4 | 3.36±0.4 | 0.24 |
| BW less than 3 kg (%) | 13.0 | 19.0 | 7.0 | 0.38 |
| Preoperative PGE1 infusion (%) | 79.0 | 71.0 | 85.0 | 0.29 |
| Rashkind procedure (%) | 85.0 | 81.0 | 89.0 | 0.68 |
| Aorta/Pulmonary artery ratio (mean, SD) | 1.03±0.35 | 1.11±0.51 | 0.98±0.13 | 0.22 |
| Intraoperative and immediate postoperative characteristics | ||||
| Single coronary artery (%) | 12.0 | 9.0 | 15.0 | 0.68 |
| Left atrial pressure (mmHg, mean, SD) |
10.6±3.5 | 10.4±2.8 | 10.8±4.2 | 0.72 |
| Central venous pressure (mmHg, mean, SD) |
8.3±2.6 | 7.8±2.4 | 8.7±2.8 | 0.37 |
| MAP (mmHg, mean, SD) | 47±7.6 | 46.4±5.3 | 47.7±9.4 | 0.64 |
| Time from operation to extubating (days, mean, SD) | 4.0±2.3 | 4.4±2.1 | 4.7±2.5 | 0.62 |
| Low cardiac output syndrome (%) | 22.0 | 16.0 | 27.0 | 0.48 |
| Junctional ectopic tachycardia (%) | 26.0 | 20.0 | 31.0 | 0.51 |
| Peritoneal dialysis (%) | 26.0 | 15.0 | 35.0 | 0.18 |
| Diaphragm paresis (%) | 4.0 | 3.0 | 5.0 | 0.99 |
| Bleeding (%) | 11.0 | 5.0 | 15.0 | 0.37 |
| Myocardial ischemia (%) | 13.0 | 5.0 | 18.0 | 0.22 |
| Atelectasis (%) | 9.0 | 8.0 | 10.0 | 0.99 |
| Pneumothorax (%) | 11.0 | 15.0 | 8.0 | 0.64 |
| Any postoperative complication (%) | 50.0 | 40.0 | 58.0 | 0.37 |
| All patients (n=48) | Impaired CFVR (n=21) | Preserved CFVR (n=27) |
p value | |
|---|---|---|---|---|
| Left atrium (mm, mean, SD) | 26.5±3.0 | 26.6±3.0 | 26.4±3.0 | 0.88 |
| Left atrium Z score (mean, SD) | -0.16±0.89 | -0.13±0.87 | -0.19±0.91 | 0.81 |
| MV annulus (mm, mean, SD) | 27.8±3.8 | 27.4±3.1 | 28.2±4.4 | 0.46 |
| MV annulus Z score (mean, SD) | -0.51±0.90 | -0.53±0.84 | -0.49±0.96 | 0.87 |
| TV annulus (mm, mean, SD) | 27.5±3.7 | 26.7±4.0 | 28.1±3.4 | 0.18 |
| TV annulus Z score (mean, SD) | -0.58±0.71 | -0.60±0.85 | -0.56±0.60 | 0.84 |
| LVEDD (mm, mean, SD) | 48.5±5.2 | 48.0±5.4 | 48.9±5.0 | 0.54 |
| LVEDD Z score (mean, SD) | -0.20±1.00 | -0.20±1.03 | -0.20±1.00 | 0.99 |
| LVESD (mm, mean, SD) | 28.5±5.6 | 28.6±7.2 | 28.4±4.1 | 0.86 |
| LVESD Z score (mean, SD) | -0.47±1.07 | -0.13±1.06 | -0.74±1.02 | 0.050 |
| Shortening fraction (%, mean, SD) | 40.0±0.0 | 38.5±0.4 | 42.2±0.5 | 0.10 |
| LV ejection fraction (%, mean, SD) | 59.0±4.5 | 58.7±4.7 | 59.3±4.5 | 0.65 |
| Mitral valve E/A ratio (mean, SD) | 1.71±0.26 | 1.67±0.22 | 1.74±0.29 | 0.36 |
| MAPSE (mm, mean, SD) | 16.9±2.5 | 17.4±2.5 | 16.6±2.5 | 0.28 |
| Reduced MAPSE (%) | 29.0 | 28.0 | 29.0 | 0.99 |
| Tricuspid valve E/A ratio (mean, SD) | 1.57±0.31 | 1.53±0.27 | 1.60±0.34 | 0.39 |
| TAPSE (mm, mean, SD) | 18.8±3.8 | 17.6±3.5 | 19.7±3.9 | 0.064 |
| Reduced TAPSE (%) | 44.0 | 62.0 | 30.0 | 0.040 |
| Aorta (mm, mean, SD) | 24.4±3.0 | 24.2±2.9 | 24.7±3.1 | 0.59 |
| Aorta Z score (mean, SD) | 2.26±1.06 | 2.29±1.05 | 2.24±1.09 | 0.87 |
| Aortic dilation (%) | 79.0 | 80.0 | 78.0 | 0.99 |
| Pulmonary artery (mm, mean, SD) | 22.0±2.4 | 21.9±2.3 | 22.2±2.6 | 0.69 |
| Pulmonary artery Z score (mean, SD) | -0.70±0.74 | -0.69±0.81 | -0.71±0.70 | 0.93 |
| Global longitudinal LV strain (%, mean, SD) | -19.3±2.7 | -18.9±2.9 | -19.5±2.5 | 0.43 |
| Reduced GLS (%) | 29.0 | 29.0 | 30.0 | 0.99 |
| All patients (n=48) | Impaired CFVR (n=21) | Preserved CFVR (n=27) |
p value | |
|---|---|---|---|---|
| Aortic regurgitation> +1/4 (%) | 20.0 | 15.0 | 24.0 | 0.71 |
| Aorta, systolic pressure (mmHg, mean, SD) | 110±13 | 108±13 | 111±13 | 0.37 |
| Aorta, diastolic pressure (mmHg, mean, SD) | 68±10 | 65±8 | 70±10 | 0.082 |
| Aorta, mean pressure (mmHg, mean, SD) | 85±10 | 84±10 | 86±11 | 0.46 |
| Left ventricular systolic pressure (mmHg, mean, SD) | 114±16 | 111±17 | 115±15 | 0.36 |
| LV end-diastolic pressure (mmHg, mean, SD) | 13±5 | 12±6 | 13±5 | 0.52 |
| Right atrial a wave (mmHg, mean, SD) | 11±4 | 11±4 | 12±4 | 0.77 |
| Right atrial x wave (mmHg, mean, SD) | 8±3 | 8±3 | 8±4 | 0.77 |
| Right atrial mean pressure (mmHg, mean, SD) | 10±4 | 10±4 | 10±4 | 0.87 |
| Right ventricular systolic pressure (mmHg, mean, SD) | 42±9 | 44±7 | 40±10 | 0.26 |
| Right ventricular end-diastolic pressure (mmHg, mean, SD) | 10±4 | 10±5 | 9±3 | 0.39 |
| Left pulmonary artery branch stenosis (%) | 21.0 | 35.0 | 8.3 | 0.051 |
| Right pulmonary artery branch stenosis (%) | 21.0 | 25.0 | 17.0 | 0.71 |
| Pulmonary artery systolic pressure (mmHg, mean, SD) | 33±9 | 35±7 | 30±10 | 0.071 |
| Pulmonary artery diastolic pressure (mmHg, mean, SD) | 12±5 | 12±3 | 11±5 | 0.33 |
| Pulmonary artery mean pressure (mmHg, mean, SD) | 19±5 | 21±5 | 18±4 | 0.030 |
| Pulmonary artery mean pressure>20 mm Hg (%) | 43.0 | 60.0 | 29.0 | 0.041 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
