Preprint
Article

This version is not peer-reviewed.

Construct, Align, and Reason: Large Ontology Models for Enterprise Knowledge Management

Submitted:

20 January 2026

Posted:

21 January 2026

You are already at the latest version

Abstract
Enterprise-scale knowledge management faces significant challenges in integrating multi-source heterogeneous data and enabling effective semantic reasoning. Traditional knowledge graphs often struggle with implicit relationship discovery and lack sufficient semantic understanding for complex question answering. To address these limitations, we introduce a unified construct--align--reason framework, the large ontology model (LOM). We first build a dual-layer enterprise ontology from structured databases and unstructured text, subsequently fusing these sources into a comprehensive enterprise ontology. To enable instruction-aligned reasoning, we propose a unified three-stage training pipeline: ontology instruction fine-tuning to improve structural understanding; text-ontology grounding to strengthen node semantic encoding; and multi-task instruction tuning on ontology-language pairs with curriculum learning to enhance semantic reasoning and generation. We also construct comprehensive training and evaluation datasets covering diverse ontology reasoning tasks. On this benchmark, our 4B-parameter LOM achieves 89.47\% accuracy and outperforms DeepSeek-V3.2 on complex graph reasoning, indicating effective fusion of ontology structure and language.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2026 MDPI (Basel, Switzerland) unless otherwise stated