Submitted:
05 January 2026
Posted:
06 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Participants
2.1.1. Ethics Statement
2.1.2. Recruitment of Participants
2.2. Intervention Method
2.2.1. Test Food
2.2.2. Multicomponent Exercise
2.2.3. Blood Sampling and Sample Preparation for Measurements
2.3. Survey Items
2.3.1. Basic Attributes
2.3.2. Cognitive Function
2.3.3. Reactive Oxygen Species and Free Radical Scavenging Activity
2.3.4. Metabolomics Analysis
2.4. Statistical Processing
3. Results
3.1. Basic Attributes
3.2. Cognitive Function Assessment
3.3. ROS and Free Radical Scavenging Activity
3.4. Metabolomics Analysis
4. Discussion
4.1. Influence of Multicomponent Exercise and Chlorella Intake on Cognitive Function
4.2. Influence of Multicomponent Exercise and Chlorella Intake on ROS and Free Radical Scavenging Activity
4.3. Influence of Multicomponent Exercise and Chlorella Intake on Changes in the Appearance of Blood Metabolites
4.4. Mechanism of the Effect of Maintaining and Improving Cognitive Function by Implementing Multicomponent Exercise Combined with Chlorella Intake
4.5. Limitations and Future Tasks
5. Conclusions
Supplementary Materials
Author Contributions
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ¹O₂ | Singlet oxygen |
| AAPH | 2,2′-Azobis-2-methyl-propanimidamide dihydrochloride |
| AC | Acylcarnitine |
| AD | Alzheimer’s disease |
| ADMA | Asymmetric dimethylarginine |
| BBB | Blood–brain barrier |
| BSA | Bovine serum albumin |
| CE | Capillary electrophoresis |
| CE-TOFMS | Capillary electrophoresis time-of-flight mass spectrometry |
| •CH₃ | Methyl radical |
| CNS | Central nervous system |
| CONSORT | Consolidated Standards of Reporting Trials |
| CYPMPO | 5-(2,2-Dimethyl-1,3-propoxycyclophosphoryl)-5-methyl-1-pyrroline N-oxide |
| DMSO | Dimethyl sulfoxide |
| DTPA | Diethylenetriamine pentaacetic acid |
| EDTA | Ethylenediaminetetraacetic acid |
| EDTA·2Na | Ethylenediamine-N,N,N′,N′-tetraacetic acid disodium salt dihydrate |
| ESR | Electron spin resonance |
| Ex+C | Exercise + Chlorella group |
| Ex+P | Exercise + placebo group |
| FCF | Fast Green FCF (Brilliant Blue FCF) |
| GSH | Glutathione |
| HMT | Human Metabolome Technologies, Inc. |
| HPLC | High-performance liquid chromatography |
| LC | Liquid chromatography |
| LC-TOFMS | Liquid chromatography time-of-flight mass spectrometry |
| Lys | Lysine |
| MCI | Mild cognitive impairment |
| MDA | Malondialdehyde |
| MT | Migration time |
| MULTIS | Multiple free radical scavenging capacity method |
| NCGG-FAT | National Center for Geriatrics and Gerontology–Functional Assessment Tool |
| O₂•⁻ | Superoxide radical |
| OH• | Hydroxyl radical |
| PB | Phosphate buffer |
| PCA | Principal component analysis |
| PLOOH | Phospholipid hydroperoxides |
| RAA | Renin–angiotensin–aldosterone |
| RO• | Alkyloxy radical |
| ROO• | Alkylperoxy radical |
| ROS | Reactive oxygen species |
| RT | Retention time |
| SDMA | Symmetric dimethylarginine |
| SOD | Superoxide dismutase |
| SPE | Solid-phase extraction |
| TMT | Trail Making Test |
| TMPD | 2,2,6,6-Tetramethyl-4-piperidone |
| TOFMS | Time-of-flight mass spectrometry |
| Trp | Tryptophan |
| UMIN | University Hospital Medical Information Network |
| UV | Ultraviolet |
| VL | Visible light |
| αLA | α-Lipoic acid |
| γ-Glu-Thr | γ-Glutamyl-threonine |
References
- Asada, T. Prevalence of Dementia in Urban Areas and Responses to Dementia-Related Functional Impairments–FY2012 General and Shared Research Report (Ministry of Health, Labour and Welfare Science Research Grant Dementia Countermeasures Comprehensive Research Project), 2013. Available online: https://mhlw-grants.niph.go.jp/system/files/2012/123021/201218011A/201218011A0001.pdf (accessed on 21 Aug 2025).
- Kinoshita, S.; Kishimoto, T. Dementia in Japan: a societal focus. Lancet Neurol. 2023, 22, 1101–1102. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.C.; Doody, R.; Kurz, A.; Mohs, R.C.; Morris, J.C.; Rabins, P.V.; Ritchie, K.; Rossor, M.; Thal, L.; Winblad, B. Current concepts in mild cognitive impairment. Arch. Neurol. 2001, 58, 1985–1992. [Google Scholar] [CrossRef] [PubMed]
- Barnes, D.E.; Yaffe, K. The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol. 2011, 10, 819–828. [Google Scholar] [CrossRef] [PubMed]
- Laurin, D.; Verreault, R.; Lindsay, J.; MacPherson, K.; Rockwood, K. Physical activity and risk of cognitive impairment and dementia in elderly persons. Arch. Neurol. 2001, 58, 498–504. [Google Scholar] [CrossRef]
- Lindsay, J.; Laurin, D.; Verreault, R.; Hébert, R.; Helliwell, B.; Hill, G.B.; McDowell, I. Risk factors for Alzheimer’s disease: a prospective analysis from the Canadian Study of Health and Aging. Am. J. Epidemiol. 2002, 156, 445–453. [Google Scholar] [CrossRef]
- Yoshitake, T.; Kiyohara, Y.; Kato, I.; Ohmura, T.; Iwamoto, H.; Nakayama, K.; Ohmori, S.; Nomiyama, K.; Kawano, H.; Ueda, K. Incidence and risk factors of vascular dementia and Alzheimer’s disease in a defined elderly Japanese population: the Hisayama Study. Neurology 1995, 45, 1161–1168. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, J.; Wang, Y.; Li, J.; Chang, J.; Jia, Q. Effect of physical exercise on cognitive function of Alzheimer’s disease patients: a systematic review and meta-analysis of randomized controlled trial. Front. Psychiatry 2022, 13, 927128. [Google Scholar] [CrossRef]
- Xu, L.; Gu, H.; Cai, X.; Zhang, Y.; Hou, X.; Yu, J.; Sun, T. The effects of exercise for cognitive function in older adults: a systematic review and meta-analysis of randomized controlled trials. Int. J. Environ. Res. Public Health 2023, 20, 1088. [Google Scholar] [CrossRef]
- Nascimento, M.M.; Maduro, P.A.; Rios, P.M.B.; Nascimento, L.S.; Silva, C.N.; Kliegel, M.; Ihle, A. Effects of 12 weeks of physical-cognitive dual-task training on executive functions, depression, sleep quality, and quality of life in older adult women: a randomized pilot study. Sustainability 2023, 15, 97. [Google Scholar] [CrossRef]
- Yokoyama, H.; Okazaki, K.; Imai, D.; Yamashina, Y.; Takeda, R.; Naghavi, N.; Ota, A.; Hirasawa, Y.; Miyagawa, T. The effect of cognitive-motor dual-task training on cognitive function and plasma amyloid β peptide 42/40 ratio in healthy elderly persons: a randomized controlled trial. BMC Geriatr. 2015, 15, 60. [Google Scholar] [CrossRef]
- Park, H.; Park, J.H.; Na, H.R.; Hiroyuki, S.; Kim, G.M.; Jung, M.K.; Kim, W.K.; Park, K.W. Combined intervention of physical activity, aerobic exercise, and cognitive exercise intervention to prevent cognitive decline for patients with mild cognitive impairment: a randomized controlled clinical study. J. Clin. Med. 2019, 8, 940. [Google Scholar] [CrossRef] [PubMed]
- Shimada, H.; Makizako, H.; Doi, T.; Park, H.; Tsutsumimoto, K.; Verghese, J.; Suzuki, T. Effects of combined physical and cognitive exercises on cognition and mobility in patients with mild cognitive impairment: a randomized clinical trial. J. Am. Med. Dir. Assoc. 2018, 19, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Arslan, J.; Jamshed, H.; Qureshi, H. Early detection and prevention of Alzheimer’s disease: role of oxidative markers and natural antioxidants. Front. Aging Neurosci. 2020, 12, 231. [Google Scholar] [CrossRef] [PubMed]
- Perluigi, M.; Di Domenico, F.; Butterfield, D.A. Oxidative damage in neurodegeneration: roles in the pathogenesis and progression of Alzheimer disease. Physiol. Rev. 2024, 104, 103–197. [Google Scholar] [CrossRef]
- Morris, M.C.; Evans, D.A.; Bienias, J.L.; Tangney, C.C.; Bennett, D.A.; Aggarwal, N.; Wilson, R.S.; Scherr, P.A. Dietary intake of antioxidant nutrients and the risk of incident Alzheimer disease in a biracial community study. JAMA 2002, 287, 3230–3237. [Google Scholar] [CrossRef]
- Zhao, R.; Han, X.; Zhang, H.; Liu, J.; Zhang, M.; Zhao, W.; Jiang, S.; Li, R.; Cai, H.; You, H. Association of vitamin E intake in diet and supplements with risk of dementia: a meta-analysis. Front. Aging Neurosci. 2022, 14, 955878. [Google Scholar] [CrossRef]
- Safi, C.; Zebib, B.; Merah, O.; Pontalier, P.Y.; Vaca-Garcia, C. Morphology, composition, production, processing and applications of Chlorella vulgaris: a review. Renew. Sustain. Energy Rev. 2014, 35, 265–278. [Google Scholar] [CrossRef]
- Diaz, J.P.; Pena, E.; El Alam, S.; Matte, C.; Cortés, I.; Figueroa, L.; Siques, P.; Brito, J. Chlorella vulgaris supplementation attenuates lead accumulation, oxidative stress, and memory impairment in rats. Toxics 2025, 13, 313. [Google Scholar] [CrossRef]
- Miyazawa, T.; Nakagawa, K.; Takekoshi, H.; Higuchi, O.; Kato, S.; Kondo, M.; Kimura, F.; Miyazawa, T. Ingestion of Chlorella reduced the oxidation of erythrocyte membrane lipids in senior Japanese subjects. J. Oleo Sci. 2013, 62, 873–881. [Google Scholar] [CrossRef]
- Kiko, T.; Nakagawa, K.; Tsuduki, T.; Suzuki, T.; Arai, H.; Miyazawa, T. Significance of lutein in red blood cells of Alzheimer’s disease patients. J. Alzheimers Dis. 2012, 28, 593–600. [Google Scholar] [CrossRef]
- Andrieu, S.; Guyonnet, S.; Coley, N.; Cantet, C.; Bonnefoy, M.; Bordes, S.; Bories, L.; Cufi, M.N.; Dantoine, T.; Dartigues, J.F.; et al. Effect of long-term omega 3 polyunsaturated fatty acid supplementation with or without multidomain intervention on cognitive function in elderly adults with memory complaints (MAPT): a randomised, placebo-controlled trial. Lancet Neurol. 2017, 16, 377–389. [Google Scholar] [CrossRef] [PubMed]
- Blumenthal, J.A.; Smith, P.J.; Mabe, S.; Hinderliter, A.; Lin, P.H.; Liao, L.; Welsh-Bohmer, K.A.; Browndyke, J.N.; Kraus, W.E.; Doraiswamy, P.M.; et al. Lifestyle and neurocognition in older adults with cognitive impairments: a randomized trial. Neurology 2019, 92, e212–e223. [Google Scholar] [CrossRef] [PubMed]
- Köbe, T.; Witte, A.V.; Schnelle, A.; Lesemann, A.; Fabian, S.; Tesky, V.A.; Pantel, J.; Flöel, A. Combined omega-3 fatty acids, aerobic exercise and cognitive stimulation prevents decline in gray matter volume of the frontal, parietal and cingulate cortex in patients with mild cognitive impairment. Neuroimage 2016, 131, 226–238. [Google Scholar] [CrossRef] [PubMed]
- Komulainen, P.; Tuomilehto, J.; Savonen, K.; Männikkö, R.; Hassinen, M.; Lakka, T.A.; Hänninen, T.; Kiviniemi, V.; Jacobs, D.R.; Kivipelto, M.; et al. Exercise, diet, and cognition in a 4-year randomized controlled trial: dose-responses to exercise training (DR’s EXTRA). Am. J. Clin. Nutr. 2021, 113, 1428–1439. [Google Scholar] [CrossRef]
- Ng, T.P.; Ling, L.H.A.; Feng, L.; Nyunt, M.S.Z.; Feng, L.; Niti, M.; Tan, B.Y.; Chan, G.; Khoo, S.A.; Chan, S.M.; et al. Cognitive effects of multi-domain interventions among pre-frail and frail community-living older persons: randomized controlled trial. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 73, 806–812. [Google Scholar] [CrossRef]
- Van De Rest, O.; van der Zwaluw, N.L.; Tieland, M.; Adam, J.J.; Hiddink, G.J.; Van Loon, L.J.C.; de Groot, L.C.P.G.M. Effect of resistance-type exercise training with or without protein supplementation on cognitive functioning in frail and pre-frail elderly: secondary analysis of a randomized, double-blind, placebo-controlled trial. Mech. Ageing Dev. 2014, 136–137, 85–93. [Google Scholar] [CrossRef]
- Ristow, M.; Zarse, K.; Oberbach, A.; Klöting, N.; Birringer, M.; Kiehntopf, M.; Stumvoll, M.; Kahn, C.R.; Blüher, M. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc. Natl Acad. Sci. U. S. A. 2009, 106, 8665–8670. [Google Scholar] [CrossRef]
- Katoh, S. Development of the revised version of Hasegawa’s dementia scale. Jpn J. Geriatr. Psychiatry 1991, 2, 1339–1347. [Google Scholar]
- Makizako, H.; Shimada, H.; Park, H.; Doi, T.; Yoshida, D.; Uemura, K.; Tsutsumimoto, K.; Suzuki, T. Evaluation of multidimensional neurocognitive function using a tablet personal computer: test–retest reliability and validity in community-dwelling older adults. Geriatr. Gerontol. Int. 2013, 13, 860–866. [Google Scholar] [CrossRef]
- Idle, J.R.; Gonzalez, F.J. Metabolomics. Cell Metab. 2007, 6, 348–351. [Google Scholar] [CrossRef]
- Oowada, S.; Endo, N.; Kameya, H.; Shimmei, M.; Kotake, Y. Multiple free-radical scavenging capacity in serum. J. Clin. Biochem. Nutr. 2012, 51, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Takayanagi, T.; Osaka, T. What Is Active Oxygen? Dream Chemistry-21 Active Oxygen; Maruzen Publishing Company: Tokyo, 1999; pp. 1–40. [Google Scholar]
- Kopáni, M.; Celec, P.; Danišovič, L.; Michalka, P.; Biró, C. Oxidative stress and electron spin resonance. Clin. Chim. Acta 2006, 364, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Ohashi, Y.; Hirayama, A.; Ishikawa, T.; Nakamura, S.; Shimizu, K.; Ueno, Y.; Tomita, M.; Soga, T. Depiction of metabolome changes in histidine-starved Escherichia coli by CE-TOFMS. Mol. Biosyst. 2008, 4, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Ooga, T.; Sato, H.; Nagashima, A.; Sasaki, K.; Tomita, M.; Soga, T.; Ohashi, Y. Metabolomic anatomy of an animal model revealing homeostatic imbalances in dyslipidaemia. Mol. Biosyst. 2011, 7, 1217–1223. [Google Scholar] [CrossRef]
- Sugimoto, M.; Wong, D.T.; Hirayama, A.; Soga, T.; Tomita, M. Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics 2010, 6, 78–95. [Google Scholar] [CrossRef]
- Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.É.; Li, S.; Xia, J. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef]
- Shimada, H.; Lee, S.; Akishita, M.; Kozaki, K.; Iijima, K.; Nagai, K.; Ishii, S.; Tanaka, M.; Koshiba, H.; Tanaka, T.; et al. Effects of golf training on cognition in older adults: a randomised controlled trial. J. Epidemiol. Community Health 2018, 72, 944–950. [Google Scholar] [CrossRef]
- Carral, J.M.C.; Curras, D.M.; Pérez, C.A.; Suárez, M.H.V. Effects of two programmes of combined land-based and water-based exercise on the cognitive function and fitness levels of healthy older adults. Motriz: rev educ fis 2017, 23, e101641. [Google Scholar] [CrossRef]
- Ngandu, T.; Lehtisalo, J.; Solomon, A.; Levälahti, E.; Ahtiluoto, S.; Antikainen, R.; Bäckman, L.; Hänninen, T.; Jula, A.; Laatikainen, T.; et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (Finger): a randomised controlled trial. Lancet 2015, 385, 2255–2263. [Google Scholar] [CrossRef]
- Lezak, M.D. The problem of assessing executive functions. Int. J. Psychol. 1982, 17, 281–297. [Google Scholar] [CrossRef]
- Suzuki, H.; Sakuma, N.; Kobayashi, M.; Ogawa, S.; Inagaki, H.; Edahiro, A.; Ura, C.; Sugiyama, M.; Miyamae, F.; Watanabe, Y.; et al. Normative data of the trail making test among urban community-dwelling older adults in Japan. Front. Aging Neurosci. 2022, 14, 832158. [Google Scholar] [CrossRef]
- Haidari, F.; Homayouni, F.; Helli, B.; Haghighizadeh, M.H.; Farahmandpour, F. Effect of Chlorella supplementation on systematic symptoms and serum levels of prostaglandins, inflammatory and oxidative markers in women with primary dysmenorrhea. Eur. J. Obstet. Gynecol. Reprod. Biol. 2018, 229, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Kang, H.J.; Lee, H.J.; Kang, M.H.; Park, Y.K. Six-week supplementation with Chlorella has favorable impact on antioxidant status in Korean male smokers. Nutrition 2010, 26, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Okada, H.; Yoshida, N.; Kakuma, T.; Toyomasu, K. Effect of Chlorella ingestion on oxidative stress and fatigue symptoms in healthy men. Kurume Med. J. 2018, 64, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Panahi, Y.; Tavana, S.; Sahebkar, A.; Masoudi, H.; Madanchi, N. Impact of adjunctive therapy with Chlorellav ulgaris extract on antioxidant status, pulmonary function, and clinical symptoms of patients with obstructive pulmonary diseases. Sci. Pharm. 2012, 80, 719–730. [Google Scholar] [CrossRef]
- Panahi, Y.; Mostafazadeh, B.; Abrishami, A.; Saadat, A.; Beiraghdar, F.; Tavana, S.; Pishgoo, B.; Parvin, S.; Sahebkar, A. Investigation of the effects of Chlorella vulgaris supplementation on the modulation of oxidative stress in apparently healthy smokers. Clin. Lab. 2013, 59, 579–587. [Google Scholar] [CrossRef]
- Guo, M.; Bao, Q.; Chen, S.; Cui, X.; Xu, W.; He, X.; Luo, Y.; Qi, X.; Huang, K. Effects of neutrophils peptide-1 transgenic Chlorella ellipsoidea on the gut microbiota of male Sprague–Dawley rats, as revealed by high-throughput 16S rRNA sequencing. World J. Microbiol. Biotechnol. 2016, 32, 43. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, L.; Bhat, O.M.; Lohner, H.; Li, P.L. Differential effects of short chain fatty acids on endothelial Nlrp3 inflammasome activation and neointima formation: antioxidant action of butyrate. Redox Biol. 2018, 16, 21–31. [Google Scholar] [CrossRef]
- Alghadir, A.H.; Gabr, S.A.; Al-Eisa, E.S. Effects of moderate aerobic exercise on cognitive abilities and redox state biomarkers in older adults. Oxid. Med. Cell. Longev. 2016, 2016, 2545168. [Google Scholar] [CrossRef]
- Yoon, J.; Isoda, H.; Okura, T. Evaluation of beneficial effect of a dual-task exercise based on Japanese transitional games in older adults: a pilot study. Aging (Albany, NY) 2020, 12, 18957–18969. [Google Scholar] [CrossRef]
- Pintea, A.; Rugină, D.O.; Pop, R.; Bunea, A.; Socaciu, C. Xanthophylls protect against induced oxidation in cultured human retinal pigment epithelial cells. J. Food Compos. Anal. 2011, 24, 830–836. [Google Scholar] [CrossRef]
- Sindhu, E.R.; Preethi, K.C.; Kuttan, R. Antioxidant activity of carotenoid lutein in vitro and in vivo. Indian J. Exp. Biol. 2010, 48, 843–848. [Google Scholar] [PubMed]
- Feeney, J.; O’Leary, N.; Moran, R.; O’halloran, A.M.; Nolan, J.M.; Beatty, S.; Young, I.S.; Kenny, R.A. Plasma lutein and zeaxanthin are associated with better cognitive function across multiple domains in a large population-based sample of older adults: findings from the Irish longitudinal study on aging. J. Gerontol. A Biol. Sci. Med. Sci. 2017, 72, 1431–1436. [Google Scholar] [CrossRef]
- Hammond Jr., B.R.; Miller, L.S.; Bello, M.O.; Lindbergh, C.A.; Mewborn, C.; Renzi-Hammond, L.M. Effects of lutein/zeaxanthin supplementation on the cognitive function of community dwelling older adults: a randomized, double-masked, placebo-controlled trial. Front. Aging Neurosci. 2017, 9, 254. [Google Scholar] [CrossRef]
- Boehm, F.; Edge, R.; Truscott, T.G. Anti- and pro-oxidative mechanisms comparing the macular carotenoids zeaxanthin and lutein with other dietary carotenoids—a singlet oxygen, free-radical in vitro and ex vivo study. Photochem. Photobiol. Sci. 2020, 19, 1001–1009. [Google Scholar] [CrossRef]
- Stinefelt, B.; Leonard, S.S.; Blemings, K.P.; Shi, X.; Klandorf, H. Free radical scavenging, DNA protection, and inhibition of lipid peroxidation mediated by uric acid. Ann. Clin. Lab. Sci. 2005, 35, 37–45. [Google Scholar]
- Scheepers, L.E.J.M.; Jacobsson, L.T.H.; Kern, S.; Johansson, L.; Dehlin, M.; Skoog, I. Urate and risk of Alzheimer’s disease and vascular dementia: a population-based study. Alzheimers Dement. 2019, 15, 754–763. [Google Scholar] [CrossRef]
- Jung, J.; Park, W.Y.; Kim, Y.J.; Kim, M.; Choe, M.; Jin, K.; Seo, J.H.; Ha, E. 3-hydroxybutyrate ameliorates the progression of diabetic nephropathy. Antioxidants (Basel) 2022, 11, 381. [Google Scholar] [CrossRef]
- Zheng, J.; Zheng, S.J.; Cai, W.J.; Yu, L.; Yuan, B.F.; Feng, Y.Q. Stable isotope labeling combined with liquid chromatography-tandem mass spectrometry for comprehensive analysis of short-chain fatty acids. Anal. Chim. Acta 2019, 1070, 51–59. [Google Scholar] [CrossRef]
- Unluhizarci, K.; Sık, S.K.; Keti, D.B.; Kose, K.; Hacıoglu, A.; Karaca, Z. Treatment of male hypogonadism partially reverses oxidative stress in patients with hypogonadism. Endocr. J. 2020, 67, 935–940. [Google Scholar] [CrossRef]
- Beauchet, O. Testosterone and cognitive function: current clinical evidence of a relationship. Eur. J. Endocrinol. 2006, 155, 773–781. [Google Scholar] [CrossRef] [PubMed]
- Elmahallawy, E.K.; Elshopakey, G.E.; Saleh, A.A.; Agil, A.; El-Morsey, A.; El-Shewehy, D.M.M.; Sad, A.S.; Yanai, T.; Abdo, W. S-methylcysteine (SMC) ameliorates intestinal, hepatic, and splenic damage induced by Cryptosporidium parvum infection via targeting inflammatory modulators and oxidative stress in swiss albino mice. Biomedicines 2020, 8, 423. [Google Scholar] [CrossRef] [PubMed]
- Khovarnagh, N.; Seyedalipour, B. Antioxidant, histopathological and biochemical outcomes of short-term exposure to acetamiprid in liver and brain of rat: the protective role of N-acetylcysteine and S-methylcysteine. Saudi Pharm. J. 2021, 29, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Zarubina, I.V.; Lukk, M.V.; Shabanov, P.D. Antihypoxic and antioxidant effects of exogenous succinic acid and aminothiol succinate-containing antihypoxants. Bull. Exp. Biol. Med. 2012, 153, 336–339. [Google Scholar] [CrossRef]
- Li, L.; Sun, L.; Qiu, Y.; Zhu, W.; Hu, K.; Mao, J. Protective effect of stachydrine against cerebral ischemia-reperfusion injury by reducing inflammation and apoptosis through P65 and JAK2/STAT3 signaling pathway. Front. Pharmacol. 2020, 11, 64. [Google Scholar] [CrossRef]
- Ionescu-Tucker, A.; Cotman, C.W. Emerging roles of oxidative stress in brain aging and Alzheimer’s disease. Neurobiol. Aging 2021, 107, 86–95. [Google Scholar] [CrossRef]
- Gómez, J.; Mota-Martorell, N.; Jové, M.; Pamplona, R.; Barja, G. Mitochondrial ROS production, oxidative stress and aging within and between species: evidences and recent advances on this aging effector. Exp. Gerontol. 2023, 174, 112134. [Google Scholar] [CrossRef]
- Achanta, L.B.; Rae, C.D. β-hydroxybutyrate in the brain: one molecule, multiple mechanisms. Neurochem. Res. 2017, 42, 35–49. [Google Scholar] [CrossRef]
- Axelrod, C.L.; Fealy, C.E.; Mulya, A.; Kirwan, J.P. Exercise training remodels human skeletal muscle mitochondrial fission and fusion machinery towards a pro-elongation phenotype. Acta Physiol. (Oxf.) 2019, 225, e13216. [Google Scholar] [CrossRef]
- Kosenko, E.A.; Tikhonova, L.A.; Montoliu, C.; Barreto, G.E.; Aliev, G.; Kaminsky, Y.G. Metabolic abnormalities of erythrocytes as a risk factor for Alzheimer’s disease. Front. Neurosci. 2017, 11, 728. [Google Scholar] [CrossRef]
- Nakagawa, K.; Kiko, T.; Hatade, K.; Sookwong, P.; Arai, H.; Miyazawa, T. Antioxidant effect of lutein towards phospholipid hydroperoxidation in human erythrocytes. Br. J. Nutr. 2009, 102, 1280–1284. [Google Scholar] [CrossRef]
- Sweeney, M.D.; Zhao, Z.; Montagne, A.; Nelson, A.R.; Zlokovic, B.V. Blood–brain barrier: from physiology to disease and back. Physiol. Rev. 2019, 99, 21–78. [Google Scholar] [CrossRef]
- Schlittler, M.; Goiny, M.; Agudelo, L.Z.; Venckunas, T.; Brazaitis, M.; Skurvydas, A.; Kamandulis, S.; Ruas, J.L.; Erhardt, S.; Westerblad, H.; et al. Endurance exercise increases skeletal muscle kynurenine aminotransferases and plasma kynurenic acid in humans. Am. J. Physiol., Cell Physiol. 2016, 310, C836–C840. [Google Scholar] [CrossRef]
- Małkiewicz, M.A.; Szarmach, A.; Sabisz, A.; Cubała, W.J.; Szurowska, E.; Winklewski, P.J. Blood–brain barrier permeability and physical exercise. J. Neuroinflamm. 2019, 16, 15. [Google Scholar] [CrossRef]
- Dodds, L.; Brayne, C.; Siette, J. Associations between social networks, cognitive function, and quality of life among older adults in long-term care. BMC Geriatr. 2024, 24, 221. [Google Scholar] [CrossRef]
- Kelly, M.E.; Duff, H.; Kelly, S.; McHugh Power, J.E.; Brennan, S.; Lawlor, B.A.; Loughrey, D.G. The impact of social activities, social networks, social support and social relationships on the cognitive functioning of healthy older adults: a systematic review. Syst. Rev. 2017, 6, 259. [Google Scholar] [CrossRef]


| Raw materials | Mixing ratio (%) | Mixing amount (mg/tablet) |
|---|---|---|
| Chlorella dry powder | 95.50 | 191.00 |
| Lecithin | 4.50 | 9.00 |
| Total | 100.00 | 200.00 |
| Raw materials | Mixing ratio (%) | Mixing amount (mg/tablet) |
|---|---|---|
| Digestibility dextrin | 82.50 | 165.00 |
| Brilliant blue FCF | 0.17 | 0.34 |
| Tartrazine | 0.83 | 1.66 |
| Caramel color | 16.50 | 33.00 |
| Total | 100.00 | 200.00 |
| ROS | OH· | O2-· | RO· | ROO· | ·CH3 | 1O2 |
|---|---|---|---|---|---|---|
| Precursor/sensitizer | H2O2 | Riboflavin | AAPH | t-Butyl-oo | H2O2, DMSO | Pterin |
| UV/VL | UV, 5 s | VL, 30 s | UV, 5 s | UV, 5 s | UV, 5 s | UV, 5 s |
| Spin trap | CYPMPO | CYPMPO | CYPMPO | CYPMPO | CYPMPO | TMPD |
| Antioxidant equivalent | GSH | SOD | Trolox | α-lipoic acid | BSA | GSH |
| Sample dilution ratio | 20x | 10x | 10x | 10x | 40x | 40x |
| Sweep Width | 7.5 mT | 7.5 mT | 7.5 mT | 7.5 mT | 7.5 mT | 7.5 mT |
| Gain | 100 | 630 or 790 | 500 or 1,000 | 630 or 2,000 | 100 or 160 | 100 |
| Time constant | 0.03 s | 0.03 s | 0.1 s | 0.1 s | 0.03 s | 0.1 s |
| Sweep time | 2 min | 2 min | 2 min | 2 min | 2 min | 2 min |
| Temperature | 25 °C | 25 °C | 25 °C | 25 °C | 25 °C | 25 °C |
| Power | 6 mW | 6 mW | 6 mW | 6 mW | 6 mW | 6 mW |
| Ex+C (n = 9) | Ex+P (n = 7) | t(z) | p | |
|---|---|---|---|---|
| Age, y | 76.9 ± 5.6 | 76.0 ± 3.7 | 0.36 | 0.721 |
| Male sex, n (%) | 4 (44%) | 2 (29%) | - | - |
| Height, cm | 156.8 ± 8.9 | 157.2 ± 9.4 | -0.08 | 0.940 |
| Weight, kg | 56.4 ± 7.9 | 63.4 ± 18.1 | -1.05 | 0.312 |
| Educational level, y | 12.1 ± 3.1 | 12.3 ± 2.6 | -0.12 | 0.908 |
| Cognitive functions | ||||
| Word recognition (immediately), score | 7.9 ± 1.4 | 8.4 ± 1.0 | -0.79 | 0.443 |
| Word recall (delay), score | 5.4 ± 2.5 | 4.4 ± 2.2 | 0.85 | 0.407 |
| Word recognition (delay), score | 7.1 ± 2.9 | 7.4 ± 2.6 | (0.00) | 1.000a |
| Attention, s | 18.2 ± 2.5 | 18.4 ± 2.9 | -0.15 | 0.881 |
| Executive, s | 30.0 ± 12.0 | 35.3 ± 16.4 | (-0.69) | 0.536a |
| Processing speed, score | 48.6 ± 9.4 | 47.1 ± 11.8 | 0.27 | 0.793 |
| ROS (equivalent) | ||||
| OH·(mM-GSH) | 33.3 ± 6.6 | 34.4 ± 26.9 | -0.11 | 0.918 |
| O2-·(U/mL-SOD) | 13.9 ± 7.2 | 16.4 ± 9.7 | -0.61 | 0.551 |
| RO·(mM-Trolox) | 9.5 ± 4.2 | 7.6 ± 3.5 | 0.94 | 0.363 |
| ROO·(mM-αLA) | 12.5 ± 6.0 | 15.7 ± 9.9 | -0.80 | 0.435 |
| CH3(mM-BSA) | 169.0 ± 104.4 | 150.3 ± 70.1 | 0.41 | 0.690 |
| 1O2(mM-GSH) | 7.4 ± 3.4 | 7.1 ± 1.7 | (-0.58) | 0.606a |
| Ex+C (n = 9) | Ex+P (n = 7) | Group × time | ||||
|---|---|---|---|---|---|---|
| Pre | Post | Pre | Post | F | p | |
| Word recognition (immediately), score | 7.9 ± 1.4 | 8.0 ± 1.6 | 8.4 ± 1.0 | 8.0 ± 1.3 | 0.88 | 0.363 |
| Word recall (delay), score | 5.4 ± 2.5 | 5.6 ± 2.4 | 4.4 ± 2.2 | 4.9 ± 2.8 | 0.17 | 0.686 |
| Word recognition (delay), score | 7.1 ± 2.9 | 7.1 ± 2.8 | 7.4 ± 2.6 | 8.4 ± 0.8 | 1.45 | 0.248 |
| Attention, s | 18.2 ± 2.5 | 19.7 ± 2.6 | 18.4 ± 2.9 | 18.6 ± 3.7 | 1.28 | 0.277 |
| Executive, s | 30.0 ± 12.0 | 36.0 ± 14.5 | 35.3 ± 16.4 | 45.1 ± 18.1† | 0.38 | 0.548 |
| Processing speed, score | 48.6 ± 9.4 | 69.0 ± 12.4†† | 47.1 ± 11.8 | 62.6 ± 15.0†† | 4.72 | 0.048* |
| OH·(mM-GSH) | 33.3 ± 6.6 | 46.3 ± 15.2† | 34.4 ± 26.9 | 36.4 ± 25.1 | 2.47 | 0.138 |
| O2-·(U/mL-SOD) | 13.9 ± 7.2 | 15.3 ± 11.7 | 16.4 ± 9.7 | 16.4 ± 10.4 | 0.12 | 0.739 |
| RO·(mM-Trolox) | 9.5 ± 4.2 | 11.0 ± 2.3 | 7.6 ± 3.5 | 9.5 ± 3.7 | 0.04 | 0.843 |
| ROO·(mM-αLA) | 12.5 ± 6.0 | 16.2 ± 10.2 | 15.7 ± 9.9 | 23.8 ± 11.1 | 0.68 | 0.423 |
| CH3(mM-BSA) | 169.0 ± 104.4 | 199.4 ± 154.3 | 150.3 ± 70.1 | 173.2 ± 120.3 | 0.03 | 0.875 |
| 1O2(mM-GSH) | 7.4 ± 3.4 | 6.5 ± 1.7 | 7.1 ± 1.7 | 8.0 ± 3.0 | 0.98 | 0.338 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
