Submitted:
27 December 2025
Posted:
29 December 2025
You are already at the latest version
Abstract
Parkinson’s disease (PD) is a progressive and heterogeneous neurodegenerative disorder and one of the fastest-growing causes of neurological disability worldwide. Although classically defined by motor manifestations arising from nigrostriatal dopaminergic degeneration, PD is now recognized as a multisystem disorder in which non-motor symptoms—including autonomic dysfunction, neuropsychiatric features, cognitive impairment, and sleep-related disorders—often precede motor onset by years or decades, defining a clinically meaningful prodromal phase. The aetiology of PD reflects a complex interplay between genetic susceptibility and environmental exposure. Approximately 20% of cases are associated with identifiable pathogenic variants, most commonly involving LRRK2, GBA1, and SNCA, while the majority arise from gene–environment interactions involving toxicant exposure, lifestyle factors, and common genetic risk variants. Despite major advances in understanding disease biology, current therapies remain fundamentally symptomatic. Dopaminergic pharmacotherapy and device-aided interventions improve motor function but do not alter disease progression, and non-motor symptoms remain a dominant determinant of disability and reduced quality of life. Recent conceptual advances propose redefining PD as a biologically defined α-synucleinopathy. Emerging biomarkers, including α-synuclein seed amplification assays in cerebrospinal fluid and peripheral tissues, offer unprecedented opportunities for early diagnosis, biological stratification, and precision clinical trials. However, translation into disease modification has been limited by late-stage intervention, reliance on clinically defined populations, restricted trial generalisability, and profound global inequities in access to advanced diagnostics and therapies. This review synthesizes current evidence on PD epidemiology, diagnosis, aetiology, progression, and treatment, with particular emphasis on gene–environment interactions, the functional limitations of existing therapeutic paradigms, and the transformative—but as yet unrealized—potential of biological classification. By identifying key mechanistic, clinical, and implementation gaps, the review frames future directions that prioritize prevention, early biological definition, patient-centred functional outcomes, and equitable precision care across diverse healthcare settings.
Keywords:
1. Introduction
2. Epidemiology
3. Diagnosing Parkinson’s Disease
4. Etiology of Parkinson’s Disease
5. Parkinson’s Disease Progression
6. Non-Motor Symptoms of Parkinson’s Disease
7. Treatment of Parkinson’s Disease
7.1. Rethinking Treatment Effectiveness in Parkinson’s Disease
7.2. Disease Progression and the Elusive Goal of Neuroprotection
7.3. Multidisciplinary Care and Neurorehabilitation as Disease-Stabilizing Strategies
7.4. Pharmacological Treatment of Motor Symptoms: Beyond Levodopa Responsiveness
7.4.1. Levodopa as the Therapeutic Foundation
7.4.2. Adjunctive Therapies and the Limits of OFF-Time Reduction
7.4.3. Continuous Dopaminergic Delivery: Functional Relevance Over Motor Metrics
Non-Motor Symptoms: Central Determinants of Patient Experience
7.4.4. Surgical and Device-Aided Therapies: High Efficacy, High Selectivity
7.4.5. Access, Equity, and the Gap Between Evidence and Practice
8. Discussion
9. Conclusions
Author Contributions
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| PD | Parkinson’s disease |
| MDS | Movement Disorder Society |
| REM | Rapid eye movement |
| RBD | Rapid eye movement sleep behaviour disorder |
| MRI | Magnetic resonance imaging |
| PET | Positron emission tomography |
| SPECT | Single-photon emission computed tomography |
| DBS | Deep brain stimulation |
| CSF | Cerebrospinal fluid |
| α-synuclein | Alpha-synuclein |
| LRRK2 | Leucine-rich repeat kinase 2 |
| GBA1 | Glucocerebrosidase 1 |
| SNCA | Alpha-synuclein gene |
| PRKN | Parkin |
| PINK1 | PTEN-induced kinase 1 |
| DJ1 | Parkinson disease protein 7 |
| ON-time | Periods of optimal motor function |
| OFF-time | Periods of reduced motor function |
| AI | Artificial intelligence |
References
- Collaborators, G.B.D.P.s.D. Global, regional, and national burden of Parkinson’s disease, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2018, 17, 939–953. [Google Scholar] [CrossRef]
- Willis, A.W.; Roberts, E.; Beck, J.C.; Fiske, B.; Ross, W.; Savica, R.; Van Den Eeden, S.K.; Tanner, C.M.; Marras, C.; Parkinson’s Foundation, P.G. Incidence of Parkinson disease in North America. NPJ Parkinsons Dis. 2022, 8, 170. [Google Scholar] [CrossRef]
- Santana-Roman, E.; Ortega-Robles, E.; Arias-Carrion, O. Longitudinal dynamics of clinical and neurophysiological changes in parkinson’s disease over four and a half years. Sci. Rep. 2025, 15, 27284. [Google Scholar] [CrossRef]
- Arias-Carrion, O.; Guerra-Crespo, M.; Padilla-Godinez, F.J.; Soto-Rojas, L.O.; Manjarrez, E. alpha-Synuclein Pathology in Synucleinopathies: Mechanisms, Biomarkers, and Therapeutic Challenges. Int. J. Mol. Sci. 2025, 26. [Google Scholar] [CrossRef]
- Santana-Roman, E.; Soto-Rojas, L.O.; Manjarrez, E.; Arias-Carrion, O. Nigrostriatal dopaminergic vulnerability in Parkinson’s disease: Neuroprotective strategies. Neural Regen. Res. 2025. [Google Scholar] [CrossRef]
- Heinzel, S.; Berg, D.; Gasser, T.; Chen, H.; Yao, C.; Postuma, R.B.; Disease. M.D.S.T.F.o.t.D.o.P.s. Update of the MDS research criteria for prodromal Parkinson’s disease. Mov. Disord. 2019, 34, 1464–1470. [Google Scholar] [CrossRef]
- Peña-Zelayeta, L.; Delgado-Minjares, K.M.; Villegas-Rojas, M.M.; Leon-Arcia, K.; Santiago-Balmaseda, A.; Andrade-Guerrero, J.; Perez-Segura, I.; Ortega-Robles, E.; Soto-Rojas, L.O.; Arias-Carrion, O. Redefining Non-Motor Symptoms in Parkinson’s Disease. J. Pers. Med. 2025, 15. [Google Scholar] [CrossRef]
- Postuma, R.B.; Berg, D.; Stern, M.; Poewe, W.; Olanow, C.W.; Oertel, W.; Obeso, J.; Marek, K.; Litvan, I.; Lang, A.E.; et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 2015, 30, 1591–1601. [Google Scholar] [CrossRef]
- Höglinger, G.U.; Adler, C.H.; Berg, D.; Klein, C.; Outeiro, T.F.; Poewe, W.; Postuma, R.; Stoessl, A.J.; Lang, A.E. A biological classification of Parkinson’s disease: The SynNeurGe research diagnostic criteria. Lancet Neurol. 2024, 23, 191–204. [Google Scholar] [CrossRef]
- Blauwendraat, C.; Nalls, M.A.; Singleton, A.B. The genetic architecture of Parkinson’s disease. Lancet Neurol. 2020, 19, 170–178. [Google Scholar] [CrossRef]
- Domingo, A.; Klein, C. Genetics of Parkinson disease. Handb. Clin. Neurol. 2018, 147, 211–227. [Google Scholar] [CrossRef]
- Panicker, N.; Ge, P.; Dawson, V.L.; Dawson, T.M. The cell biology of Parkinson’s disease. J. Cell Biol. 2021, 220. [Google Scholar] [CrossRef]
- Tansey, M.G.; Wallings, R.L.; Houser, M.C.; Herrick, M.K.; Keating, C.E.; Joers, V. Inflammation and immune dysfunction in Parkinson disease. Nat. Rev. Immunol. 2022, 22, 657–673. [Google Scholar] [CrossRef]
- Goldman, J.G.; Guerra, C.M. Treatment of Nonmotor Symptoms Associated with Parkinson Disease. Neurol. Clin. 2020, 38, 269–292. [Google Scholar] [CrossRef]
- Reynoso, A.; Torricelli, R.; Jacobs, B.M.; Shi, J.; Aslibekyan, S.; Norcliffe-Kaufmann, L.; Noyce, A.J.; Heilbron, K. Gene-Environment Interactions for Parkinson’s Disease. Ann. Neurol. 2024, 95, 677–687. [Google Scholar] [CrossRef]
- Goldman, S.M.; Weaver, F.M.; Stroupe, K.T.; Cao, L.; Gonzalez, B.; Colletta, K.; Brown, E.G.; Tanner, C.M. Risk of Parkinson Disease Among Service Members at Marine Corps Base Camp Lejeune. JAMA Neurol. 2023, 80, 673–681. [Google Scholar] [CrossRef]
- Tanner, C.M.; Kamel, F.; Ross, G.W.; Hoppin, J.A.; Goldman, S.M.; Korell, M.; Marras, C.; Bhudhikanok, G.S.; Kasten, M.; Chade, A.R.; et al. Rotenone, paraquat, and Parkinson’s disease. Environ. Health Perspect. 2011, 119, 866–872. [Google Scholar] [CrossRef]
- Wang, Y.K.; Zhu, W.W.; Wu, M.H.; Wu, Y.H.; Liu, Z.X.; Liang, L.M.; Sheng, C.; Hao, J.; Wang, L.; Li, W.; et al. Human Clinical-Grade Parthenogenetic ESC-Derived Dopaminergic Neurons Recover Locomotive Defects of Nonhuman Primate Models of Parkinson’s Disease. Stem Cell Reports 2018, 11, 171–182. [Google Scholar] [CrossRef]
- Hasan, S.M.; Alshafie, S.; Hasabo, E.A.; Saleh, M.; Elnaiem, W.; Qasem, A.; Alzu’bi, Y.O.; Khaled, A.; Zaazouee, M.S.; Ragab, K.M.; et al. Efficacy of dance for Parkinson’s disease: A pooled analysis of 372 patients. J. Neurol. 2022, 269, 1195–1208. [Google Scholar] [CrossRef]
- Fox, S.H.; Katzenschlager, R.; Lim, S.Y.; Barton, B.; de Bie, R.M.A.; Seppi, K.; Coelho, M.; Sampaio, C.; Movement Disorder Society Evidence-Based Medicine, C. International Parkinson and movement disorder society evidence-based medicine review: Update on treatments for the motor symptoms of Parkinson’s disease. Mov. Disord. 2018, 33, 1248–1266. [Google Scholar] [CrossRef]
- Pringsheim, T.; Day, G.S.; Smith, D.B.; Rae-Grant, A.; Licking, N.; Armstrong, M.J.; de Bie, R.M.A.; Roze, E.; Miyasaki, J.M.; Hauser, R.A.; et al. Dopaminergic Therapy for Motor Symptoms in Early Parkinson Disease Practice Guideline Summary: A Report of the AAN Guideline Subcommittee. Neurology 2021, 97, 942–957. [Google Scholar] [CrossRef] [PubMed]
- Okun, M.S. Deep-brain stimulation for Parkinson’s disease. N. Engl. J. Med. 2012, 367, 1529–1538. [Google Scholar] [CrossRef]
- Schuepbach, W.M.; Rau, J.; Knudsen, K.; Volkmann, J.; Krack, P.; Timmermann, L.; Halbig, T.D.; Hesekamp, H.; Navarro, S.M.; Meier, N.; et al. Neurostimulation for Parkinson’s disease with early motor complications. N. Engl. J. Med. 2013, 368, 610–622. [Google Scholar] [CrossRef]
- Olanow, C.W.; Stern, M.B.; Sethi, K. The scientific and clinical basis for the treatment of Parkinson disease (2009). Neurology 2009, 72, S1–136. [Google Scholar] [CrossRef] [PubMed]
- Bellomo, G.; De Luca, C.M.G.; Paoletti, F.P.; Gaetani, L.; Moda, F.; Parnetti, L. alpha-Synuclein Seed Amplification Assays for Diagnosing Synucleinopathies: The Way Forward. Neurology 2022, 99, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, C.H.; Levine, T.; Adler, C.; Bellaire, B.; Wang, N.; Stohl, J.; Agarwal, P.; Aldridge, G.M.; Barboi, A.; Evidente, V.G.H.; et al. Skin Biopsy Detection of Phosphorylated alpha-Synuclein in Patients With Synucleinopathies. JAMA 2024, 331, 1298–1306. [Google Scholar] [CrossRef]
- Siderowf, A.; Concha-Marambio, L.; Lafontant, D.E.; Farris, C.M.; Ma, Y.; Urenia, P.A.; Nguyen, H.; Alcalay, R.N.; Chahine, L.M.; Foroud, T.; et al. Assessment of heterogeneity among participants in the Parkinson’s Progression Markers Initiative cohort using alpha-synuclein seed amplification: A cross-sectional study. Lancet Neurol. 2023, 22, 407–417. [Google Scholar] [CrossRef]
- Simuni, T.; Chahine, L.M.; Poston, K.; Brumm, M.; Buracchio, T.; Campbell, M.; Chowdhury, S.; Coffey, C.; Concha-Marambio, L.; Dam, T.; et al. A biological definition of neuronal alpha-synuclein disease: Towards an integrated staging system for research. Lancet Neurol. 2024, 23, 178–190. [Google Scholar] [CrossRef]
- Van Den Eeden, S.K.; Tanner, C.M.; Bernstein, A.L.; Fross, R.D.; Leimpeter, A.; Bloch, D.A.; Nelson, L.M. Incidence of Parkinson’s disease: Variation by age, gender, and race/ethnicity. Am. J. Epidemiol. 2003, 157, 1015–1022. [Google Scholar] [CrossRef]
- Ben-Joseph, A.; Marshall, C.R.; Lees, A.J.; Noyce, A.J. Ethnic Variation in the Manifestation of Parkinson’s Disease: A Narrative Review. J. Parkinsons Dis. 2020, 10, 31–45. [Google Scholar] [CrossRef]
- Yang, W.; Hamilton, J.L.; Kopil, C.; Beck, J.C.; Tanner, C.M.; Albin, R.L.; Ray Dorsey, E.; Dahodwala, N.; Cintina, I.; Hogan, P.; et al. Current and projected future economic burden of Parkinson’s disease in the U.S. NPJ Parkinsons Dis. 2020, 6, 15. [Google Scholar] [CrossRef]
- Bega, D.; Kuo, P.H.; Chalkidou, A.; Grzeda, M.T.; Macmillan, T.; Brand, C.; Sheikh, Z.H.; Antonini, A. Clinical utility of DaTscan in patients with suspected Parkinsonian syndrome: A systematic review and meta-analysis. NPJ Parkinsons Dis. 2021, 7, 43. [Google Scholar] [CrossRef]
- Ortega-Robles, E.; de Celis Alonso, B.; Cantillo-Negrete, J.; Carino-Escobar, R.I.; Arias-Carrion, O. Advanced Magnetic Resonance Imaging for Early Diagnosis and Monitoring of Movement Disorders. Brain Sci. 2025, 15. [Google Scholar] [CrossRef]
- Arias-Carrion, O.; Romero-Gutierrez, E.; Ortega-Robles, E. Toward Biology-Driven Diagnosis of Atypical Parkinsonian Disorders. NeuroSci 2025, 6. [Google Scholar] [CrossRef]
- Hoglinger, G.U.; Respondek, G.; Stamelou, M.; Kurz, C.; Josephs, K.A.; Lang, A.E.; Mollenhauer, B.; Muller, U.; Nilsson, C.; Whitwell, J.L.; et al. Clinical diagnosis of progressive supranuclear palsy: The movement disorder society criteria. Mov. Disord. 2017, 32, 853–864. [Google Scholar] [CrossRef] [PubMed]
- Wenning, G.K.; Stankovic, I.; Vignatelli, L.; Fanciulli, A.; Calandra-Buonaura, G.; Seppi, K.; Palma, J.A.; Meissner, W.G.; Krismer, F.; Berg, D.; et al. The Movement Disorder Society Criteria for the Diagnosis of Multiple System Atrophy. Mov. Disord. 2022, 37, 1131–1148. [Google Scholar] [CrossRef]
- Maiti, B.; Perlmutter, J.S. Imaging in Movement Disorders. Continuum (Minneap Minn) 2023, 29, 194–218. [Google Scholar] [CrossRef] [PubMed]
- Dickson, D.W.; Braak, H.; Duda, J.E.; Duyckaerts, C.; Gasser, T.; Halliday, G.M.; Hardy, J.; Leverenz, J.B.; Del Tredici, K.; Wszolek, Z.K.; et al. Neuropathological assessment of Parkinson’s disease: Refining the diagnostic criteria. Lancet Neurol. 2009, 8, 1150–1157. [Google Scholar] [CrossRef]
- Adler, C.H.; Beach, T.G.; Zhang, N.; Shill, H.A.; Driver-Dunckley, E.; Mehta, S.H.; Atri, A.; Caviness, J.N.; Serrano, G.; Shprecher, D.R.; et al. Clinical Diagnostic Accuracy of Early/Advanced Parkinson Disease: An Updated Clinicopathologic Study. Neurol. Clin. Pract. 2021, 11, e414–e421. [Google Scholar] [CrossRef]
- Rizig, M.; Bandres-Ciga, S.; Makarious, M.B.; Ojo, O.O.; Crea, P.W.; Abiodun, O.V.; Levine, K.S.; Abubakar, S.A.; Achoru, C.O.; Vitale, D.; et al. Identification of genetic risk loci and causal insights associated with Parkinson’s disease in African and African admixed populations: A genome-wide association study. Lancet Neurol. 2023, 22, 1015–1025. [Google Scholar] [CrossRef] [PubMed]
- Tumas, V.; Aureliano, M.J.; Rieder, C.R.M.; Schuh, A.F.S.; Ferraz, H.B.; Borges, V.; Soares, M.C.; Boone, D.L.; Silva, C.C.D.; Costa, M.C.; et al. Modifiable risk factors associated with the risk of developing Parkinson’s disease: A critical review. Arq. Neuropsiquiatr. 2025, 83, 1–10. [Google Scholar] [CrossRef]
- Liu, R.; Guo, X.; Park, Y.; Huang, X.; Sinha, R.; Freedman, N.D.; Hollenbeck, A.R.; Blair, A.; Chen, H. Caffeine intake, smoking, and risk of Parkinson disease in men and women. Am. J. Epidemiol. 2012, 175, 1200–1207. [Google Scholar] [CrossRef] [PubMed]
- Aarsland, D.; Cummings, J.L.; Larsen, J.P. Neuropsychiatric differences between Parkinson’s disease with dementia and Alzheimer’s disease. Int. J. Geriatr. Psychiatry 2001, 16, 184–191. [Google Scholar] [CrossRef]
- Litvan, I.; Goldman, J.G.; Troster, A.I.; Schmand, B.A.; Weintraub, D.; Petersen, R.C.; Mollenhauer, B.; Adler, C.H.; Marder, K.; Williams-Gray, C.H.; et al. Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force guidelines. Mov. Disord. 2012, 27, 349–356. [Google Scholar] [CrossRef]
- Emre, M.; Aarsland, D.; Brown, R.; Burn, D.J.; Duyckaerts, C.; Mizuno, Y.; Broe, G.A.; Cummings, J.; Dickson, D.W.; Gauthier, S.; et al. Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov. Disord. 2007, 22, 1689–1707; quiz 1837. [Google Scholar] [CrossRef]
- Gomperts, S.N. Lewy Body Dementias: Dementia With Lewy Bodies and Parkinson Disease Dementia. Continuum (Minneap Minn) 2016, 22, 435–463. [Google Scholar] [CrossRef]
- Dugger, B.N.; Adler, C.H.; Shill, H.A.; Caviness, J.; Jacobson, S.; Driver-Dunckley, E.; Beach, T.G.; Arizona Parkinson’s Disease, C. Concomitant pathologies among a spectrum of parkinsonian disorders. Parkinsonism Relat. Disord. 2014, 20, 525–529. [Google Scholar] [CrossRef] [PubMed]
- Inguanzo, A.; Mohanty, R.; Poulakis, K.; Ferreira, D.; Segura, B.; Albrecht, F.; Muehlboeck, J.S.; Granberg, T.; Sjostrom, H.; Svenningsson, P.; et al. MRI subtypes in Parkinson’s disease across diverse populations and clustering approaches. NPJ Parkinsons Dis. 2024, 10, 159. [Google Scholar] [CrossRef]
- Chaudhuri, K.R.; Healy, D.G.; Schapira, A.H.; National Institute for Clinical, E. Non-motor symptoms of Parkinson’s disease: Diagnosis and management. Lancet Neurol. 2006, 5, 235–245. [Google Scholar] [CrossRef]
- Braak, H.; Del Tredici, K.; Rub, U.; de Vos, R.A.; Jansen Steur, E.N.; Braak, E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 2003, 24, 197–211. [Google Scholar] [CrossRef] [PubMed]
- Shannon, K.M.; Keshavarzian, A.; Dodiya, H.B.; Jakate, S.; Kordower, J.H. Is alpha-synuclein in the colon a biomarker for premotor Parkinson’s disease? Evidence from 3 cases. Mov. Disord. 2012, 27, 716–719. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, D.S. Dysautonomia in Parkinson disease. Compr. Physiol. 2014, 4, 805–826. [Google Scholar] [CrossRef] [PubMed]
- Doty, R.L. Olfactory dysfunction in Parkinson disease. Nat. Rev. Neurol. 2012, 8, 329–339. [Google Scholar] [CrossRef]
- Ford, B. Pain in Parkinson’s disease. Mov. Disord. 2010, 25 Suppl. 1, S98–103. [Google Scholar] [CrossRef]
- Arias-Carrion, O.; Ortega-Robles, E.; Ortuno-Sahagun, D.; Ramirez-Bermudez, J.; Hamid, A.; Shalash, A. Sleep-Related Disorders in Parkinson’s Disease: Mechanisms, Diagnosis, and Therapeutic Approaches. CNS Neurol. Disord. Drug Targets 2025, 24, 132–143. [Google Scholar] [CrossRef] [PubMed]
- Reijnders, J.S.; Ehrt, U.; Weber, W.E.; Aarsland, D.; Leentjens, A.F. A systematic review of prevalence studies of depression in Parkinson’s disease. Mov. Disord. 2008, 23, 183–189; quiz 313. [Google Scholar] [CrossRef]
- Remy, P.; Doder, M.; Lees, A.; Turjanski, N.; Brooks, D. Depression in Parkinson’s disease: Loss of dopamine and noradrenaline innervation in the limbic system. Brain 2005, 128, 1314–1322. [Google Scholar] [CrossRef]
- Pontone, G.M.; Williams, J.R.; Anderson, K.E.; Chase, G.; Goldstein, S.R.; Grill, S.; Hirsch, E.S.; Lehmann, S.; Little, J.T.; Margolis, R.L.; et al. Anxiety and self-perceived health status in Parkinson’s disease. Parkinsonism Relat. Disord. 2011, 17, 249–254. [Google Scholar] [CrossRef]
- Carey, G.; Gormezoglu, M.; de Jong, J.J.A.; Hofman, P.A.M.; Backes, W.H.; Dujardin, K.; Leentjens, A.F.G. Neuroimaging of Anxiety in Parkinson’s Disease: A Systematic Review. Mov. Disord. 2021, 36, 327–339. [Google Scholar] [CrossRef]
- Levy, R.; Dubois, B. Apathy and the functional anatomy of the prefrontal cortex-basal ganglia circuits. Cereb. Cortex 2006, 16, 916–928. [Google Scholar] [CrossRef]
- Arias-Carrión, O.; Ortega-Robles, E. Treatment strategies for motor fluctuations in Parkinson’s disease: A systematic review of efficacy, functionality, and drug accessibility with a focus on Latin America. Frontiers in Pharmacology 2025, 16. [Google Scholar] [CrossRef]
- Cheng, H.C.; Ulane, C.M.; Burke, R.E. Clinical progression in Parkinson disease and the neurobiology of axons. Ann. Neurol. 2010, 67, 715–725. [Google Scholar] [CrossRef]
- Lang, A.E.; Siderowf, A.D.; Macklin, E.A.; Poewe, W.; Brooks, D.J.; Fernandez, H.H.; Rascol, O.; Giladi, N.; Stocchi, F.; Tanner, C.M.; et al. Trial of Cinpanemab in Early Parkinson’s Disease. N. Engl. J. Med. 2022, 387, 408–420. [Google Scholar] [CrossRef]
- Ahlskog, J.E. Aerobic Exercise: Evidence for a Direct Brain Effect to Slow Parkinson Disease Progression. Mayo Clin. Proc. 2018, 93, 360–372. [Google Scholar] [CrossRef]
- Mak, M.K.; Wong-Yu, I.S.; Shen, X.; Chung, C.L. Long-term effects of exercise and physical therapy in people with Parkinson disease. Nat. Rev. Neurol. 2017, 13, 689–703. [Google Scholar] [CrossRef]
- Fahn, S.; Oakes, D.; Shoulson, I.; Kieburtz, K.; Rudolph, A.; Lang, A.; Olanow, C.W.; Tanner, C.; Marek, K.; Parkinson Study, G. Levodopa and the progression of Parkinson’s disease. N. Engl. J. Med. 2004, 351, 2498–2508. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.J.; Lees, A.; Rocha, J.F.; Poewe, W.; Rascol, O.; Soares-da-Silva, P.; Bi-Park, i. Opicapone as an adjunct to levodopa in patients with Parkinson’s disease and end-of-dose motor fluctuations: A randomised, double-blind, controlled trial. Lancet Neurol. 2016, 15, 154–165. [Google Scholar] [CrossRef] [PubMed]
- Hauser, R.A.; Deckers, F.; Lehert, P. Parkinson’s disease home diary: Further validation and implications for clinical trials. Mov. Disord. 2004, 19, 1409–1413. [Google Scholar] [CrossRef]
- Poewe, W.; Seppi, K.; Tanner, C.M.; Halliday, G.M.; Brundin, P.; Volkmann, J.; Schrag, A.E.; Lang, A.E. Parkinson disease. Nat. Rev. Dis. Primers 2017, 3, 17013. [Google Scholar] [CrossRef]
- Olanow, C.W.; Kieburtz, K.; Odin, P.; Espay, A.J.; Standaert, D.G.; Fernandez, H.H.; Vanagunas, A.; Othman, A.A.; Widnell, K.L.; Robieson, W.Z.; et al. Continuous intrajejunal infusion of levodopa-carbidopa intestinal gel for patients with advanced Parkinson’s disease: A randomised, controlled, double-blind, double-dummy study. Lancet Neurol. 2014, 13, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Follett, K.A.; Weaver, F.M.; Stern, M.; Hur, K.; Harris, C.L.; Luo, P.; Marks, W.J., Jr.; Rothlind, J.; Sagher, O.; Moy, C.; et al. Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N. Engl. J. Med. 2010, 362, 2077–2091. [Google Scholar] [CrossRef] [PubMed]
- Weaver, F.M.; Follett, K.; Stern, M.; Hur, K.; Harris, C.; Marks, W.J., Jr.; Rothlind, J.; Sagher, O.; Reda, D.; Moy, C.S.; et al. Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: A randomized controlled trial. JAMA 2009, 301, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Dorsey, E.R.; Sherer, T.; Okun, M.S.; Bloem, B.R. The Emerging Evidence of the Parkinson Pandemic. J. Parkinsons Dis. 2018, 8, S3–S8. [Google Scholar] [CrossRef]
- Adams, J.L.; Kangarloo, T.; Tracey, B.; O’Donnell, P.; Volfson, D.; Latzman, R.D.; Zach, N.; Alexander, R.; Bergethon, P.; Cosman, J.; et al. Using a smartwatch and smartphone to assess early Parkinson’s disease in the WATCH-PD study. NPJ Parkinsons Dis. 2023, 9, 64. [Google Scholar] [CrossRef] [PubMed]
| Domain | Symptom | Typical Stage | Core Mechanisms/Substrates | Clinical Relevance |
|---|---|---|---|---|
| Autonomic | Constipation | Prodromal | α-Synuclein pathology in the enteric nervous system, dorsal motor nucleus of the vagus; gut dysbiosis | Early biomarker; years before motor onset |
| Orthostatic hypotension | Early–late | Sympathetic denervation; norepinephrine depletion; baroreflex failure | Falls, syncope, and mortality risk | |
| Urinary dysfunction (urgency, nocturia, retention) | Early–late | Pontine micturition centre, sacral parasympathetic nuclei, pelvic plexus involvement | Quality of life, sleep disruption | |
| Sexual dysfunction | Early | Hypothalamic, limbic and spinal autonomic degeneration | Underreported; psychosocial impact | |
| Sialorrhoea | Early | Brainstem cholinergic dysfunction; impaired swallowing | Aspiration risk, social disability | |
| Dysphagia | Early–late | Nucleus ambiguus and DMV degeneration | Pneumonia, mortality | |
| Seborrhoea / seborrhoeic dermatitis | Early | Autonomic skin denervation; sebaceous gland α-synuclein | Peripheral biomarker potential | |
| Hyperhidrosis / anhidrosis | Early–late | Hypothalamic and sympathetic dysfunction | Thermoregulatory instability | |
| Cardiac autonomic dysfunction | Early | Cardiac sympathetic denervation (MIBG loss) | Sudden death risk | |
| Sensory | Hyposmia | Prodromal | Olfactory bulb Lewy pathology; limbic spread | Strong prodromal marker |
| Ageusia | Early–late | Orbitofrontal cortex, insula, cholinergic loss | Nutritional consequences | |
| Visual disturbances | Early | Retinal dopamine loss; visual cortex involvement | Falls, hallucination risk | |
| Pain (musculoskeletal, dystonic, neuropathic) | Prodromal–late | Spinal cord, limbic and nociceptive network dysfunction | Disability, reduced quality of life | |
| Paresthesias | Prodromal | Small-fiber neuropathy; peripheral α-synuclein | Peripheral nervous system involvement | |
| Sleep-related | REM sleep behaviour disorder | Prodromal | Pontine tegmentum degeneration; REM atonia failure | Highly specific synucleinopathy marker |
| Insomnia/sleep fragmentation | Early–late | Brainstem monoaminergic degeneration | Cognitive and mood deterioration | |
| Excessive daytime sleepiness | Early–late | Hypothalamic hypocretin loss; medication effects | Accident risk | |
| Restless legs syndrome | Early | Dopaminergic and iron dysregulation | Sleep quality impairment | |
| Obstructive sleep apnoea | Late | Upper airway control, autonomic dysfunction | Cognitive decline, hypoxia | |
| Neuropsychiatric | Depression | Prodromal–late | Limbic, serotonergic and noradrenergic degeneration | Predictor of faster progression |
| Anxiety | Prodromal–late | Amygdala and salience network dysfunction | Motor fluctuation exacerbation | |
| Apathy | Early–late | Mesocorticolimbic dopamine disruption | Predictor of dementia | |
| Visual hallucinations | Early–late | Cholinergic deficit; visual network dysintegration | Dementia risk | |
| Phantosmia | Early | Olfactory predictive-coding disruption | Hallucination spectrum marker | |
| Cognitive | Inattention / executive dysfunction | Prodromal | Frontostriatal dopaminergic loss | Early cognitive phenotype |
| Bradyphrenia | Early | Subcortical–frontal network slowing | Functional impairment | |
| Impulse-control disorders | Early | Mesolimbic dopamine overstimulation | Treatment-related complication | |
| Parkinson’s disease dementia | Late | Cortical α-synuclein ± tau/amyloid co-pathology | Institutionalization, mortality |
| Treatment | Evidence Certainty* | Effect on OFF Time | Functional Outcome (UPDRS-II) | Quality of Life (PDQ-39/EQ-5D) | Availability in LMICs† |
|---|---|---|---|---|---|
| Levodopa–carbidopa extended release (IPX066) | High | ↓ ~1.2 h/day | Small improvement (below MCID) | No clinically meaningful change | Rare |
| Opicapone | High | ↓ ~0.7–2.0 h/day | Minimal | No clinically meaningful change | Limited |
| Pramipexole (IR/ER) | High | ↓ ≥1 h/day | Clinically relevant improvement | Variable | Wide |
| Rotigotine (transdermal) | High | ↓ ≥1 h/day | Variable | Inconsistent | Limited |
| Safinamide | High | ↓ ~1 h/day | Not consistently assessed | Inconsistent | Limited |
| Levodopa–carbidopa intestinal gel (LCIG) | Moderate | ↓ ~1.9 h/day | Clinically meaningful improvement | Clinically meaningful improvement | Not available |
| Foslevodopa–foscarbidopa (subcutaneous) | Moderate | ↓ ~1.8 h/day | Not assessed | Not assessed | Not available |
| Apomorphine (continuous infusion) | Moderate | ↓ ~1.9 h/day | Modest | No sustained benefit | Select centres |
| Rasagiline | Moderate | ↓ ~0.5–0.9 h/day | Small (below MCID) | Small (below MCID) | Wide |
| Zonisamide | Moderate | ↓ ~0.7–1.4 h/day | Modest | Not assessed | Regional |
| Ropinirole (IR) | Moderate | ↓ ~1 h/day | Modest | Inconsistent | Wide |
| Entacapone | Moderate | ↓ ~0.6–1 h/day | Minimal | Insufficient evidence | Wide |
| Amantadine ER | Moderate | Modest | Not assessed | Not assessed | Rare |
| Istradefylline | Moderate | ↓ ~0.7–1 h/day | Limited | Not assessed | Limited |
| Levodopa–carbidopa CR | Low | Inconsistent | No improvement | No benefit | Wide |
| Selegiline | Low | Inconsistent | No sustained benefit | No benefit | Wide |
| Nicotine (patch) | Very low | Uncertain | Not assessed | Not assessed | Not used |
| Terguride | Very low | No benefit | No benefit | Not assessed | Not available |
| Perampanel | Very low | No benefit | No benefit | Not assessed | Not available |
| Intervention | Evidence Certainty* | Motor Outcome | Functional Outcome | Quality of Life | Safety Profile | Availability in LMICs |
|---|---|---|---|---|---|---|
| GPi Deep Brain Stimulation | High | Large, sustained improvement | Clinically meaningful | Clinically meaningful | Favourable cognitive profile | Limited |
| Unilateral Pallidotomy | Moderate | Sustained improvement | Modest | Modest | Irreversible; no sham controls | Select |
| Subthalamotomy | Low | Modest | Not assessed | Not assessed | High risk of hemiballismus | Rare |
| Zona incerta DBS | Very low | Inconsistent | No clear benefit | No clear benefit | High risk of bias | Not available |
| GDNF (intraputaminal) | Very low | No benefit | No benefit | No benefit | Safe but ineffective | Experimental |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
