Metal additive manufacturing (AM) has emerged as a transformative route for producing lightweight, high-precision, and geometrically complex components in aerospace, biomedical, and microelectronic sectors. Among AM technologies, Laser Powder Bed Fusion (LPBF) offers exceptional design freedom; however, its widespread adoption particularly for titanium alloys remains constrained by two persistent challenges: shrinkage-induced dimensional deviation and porosity-related performance loss. In LPBF-processed Ti-6Al-4V, residual linear deviation typically falls within 0.1–0.8% when geometric compensation, preheating, and support strategies are implemented, while raw, uncompensated shrinkage is more commonly reported in the range of 1.2–2.0%, especially for thin-wall or thermally constrained geometries. Volumetric contraction (approximately 2–6%) may remain significant depending on part architecture and localized thermal accumulation. Concurrently, gas-induced and lack-of-fusion pores continue to undermine fatigue resistance and dimensional reliability. Research into process optimization, thermal management, and post-processing such as Hot Isostatic Pressing (HIP), vacuum sintering, and stress-relief annealing has improved density and mechanical integrity, while recent developments in AI-assisted monitoring, physics-informed models, and digital-twin frameworks are redefining defect prediction and control. Drawing on more than 100 peer-reviewed studies, this review synthesizes mechanism-driven insights and outlines a forward-looking roadmap, demonstrating how hybrid processing, real-time sensing, and data-centric control collectively advance the pathway toward defect-minimized, industrial-scale manufacturing of titanium components.