Submitted:
24 November 2025
Posted:
25 November 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction and Preliminaries
2. Definitions and Notations
3. Main Results
4. Some Auxiliary Results
- a)
- The statements and are equivalent. So and are also equivalent.
- b)
-
If thenwhere is a constant, depending on
5. Proofs
6. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdullayev, F.G.; Andrievskii, V.V. : On the orthogonal polynomials in the domains with K-quasiconformal boundary. Izv. Akad. Nauk Az. SSR, Ser. Fiz.-Tekh. Mat. Nauk 1983, 1, 3–7. [Google Scholar]
- Abdullayev, F.G. : Uniform convergence of the generalized Bieberbach polynomials in regions with non zero angles. Acta Math. Hung 1997, 77(3), 223–246. [Google Scholar] [CrossRef]
- Abdullayev, F.G. : On the some properties of the orthogonal polynomials over the region of the complex plane I. Ukr. Math. J. 2000, 52(12), 1807–1817. [Google Scholar] [CrossRef]
- Abdullayev, F.G. : On the some properties of the orthogonal polynomials over the region of the complex plane II. Ukr. Math. J. 2001, 53(1), 1–14. [Google Scholar] [CrossRef]
- Abdullayev, F.G. : On the some properties of the orthogonal polynomials over the region of the complex plane III. Ukr. Math. J. 2001, 53(12), 1934–1978. [Google Scholar] [CrossRef]
- Abdullayev, F.G. : On the interference of the weight boundary contour for orthogonal polynomials over the region. J. Comp. Anal. Appl. 2004, 6(1), 31–42. [Google Scholar]
- Abdullayev, F.G.; Değer, U. : On the orthogonal polynomials with weight having singularities on the boundary of regions in the complex plane. Bull. Belg. Math. Soc. Simon Stevin 2009, 16(2), 235–250. [Google Scholar] [CrossRef]
- Abdullayev, F.G.; Aral, D. : On the Bernstein-Walsh type lemmas in regions of the complex plane. Ukr. Math. J. 2011, 63(3), 337–350. [Google Scholar] [CrossRef]
- Abdullayev, F.G.; Özkartepe, P. : An analogue of the Bernstein-Walsh lemma in Jordan regions of the complex plane. J. Ineq. Appl. 2013, 570, 7. [Google Scholar] [CrossRef]
- Abdullayev, F.G.; Gün, C.D. : On the behavior of the algebraic polynomials in regions with piecewise smooth boundary without cusps. Ann. Pol. Math. 2014, 111, 39–58. [Google Scholar] [CrossRef]
- Abdullayev, F.G.; Özkartepe, P. : On the behavior of the algebraic polynomial in unbounded regions with piecewise Dini-smooth boundary. Ukr. Math. J. 2014, 66(5), 645–665. [Google Scholar] [CrossRef]
- Abdullayev, F.G.; Özkartepe, P. : On the growth of algebraic polynomials in the whole complex plane. J. Korean Math. Soc. 2015, 52(4), 699–725. [Google Scholar] [CrossRef]
- Abdullayev, F.G.; Özkartepe, P. : Uniform and pointwise Bernstein-Walsh-type inequalities on a quasidisk in the complex plane. Bull. Belg. Math. Soc. Simon Stevin 2016, 23(2), 285–310. [Google Scholar] [CrossRef]
- Abdullayev, F.G.; Tunç, T. : Uniform and pointwise polynomial inequalities in regions with asymptotically conformal curve on weighted Bergman space. Lobachevskii J. Math. 2017, 38(2), 193–205. [Google Scholar] [CrossRef]
- Abdullayev, F.G.; Tunç, T.; Abdullayev, G.A. : Polynomial inequalities in quasidisks on weighted Bergman space. Ukr. Math. J. 2017, 69(5), 675–695. [Google Scholar] [CrossRef]
- Abdullayev, F.G.; Abdullayev, G.A.; Şimşek, D. : Bernstein-Walsh-type polynomial inequalities in regions bounded by piecewise asymptotically conformal curve with interior nonzero angles in the Bergman space. Ukr. Math. J. 2019, 71(5), 663–676. [Google Scholar] [CrossRef]
- Abdullayev, F.G. : Bernstein-Walsh-type inequalities for derivatives of algebraic polynomials in quasidiscs. Open Math. 2021, 19, 1847–1876. [Google Scholar] [CrossRef]
- Abdullayev, F.G.; Gün, C.D. : Bernstein-Nikolskii-type inequalities for algebraic polynomials in Bergman space in regions of complex plane. Ukr. Math. J. 2021, 73(4), 513–531. [Google Scholar] [CrossRef]
- Abdullayev, F.G.; Gün, C.D. : Bernstein-Walsh-type inequalities for derivatives of algebraic polynomials. Bull. Korean Math. Soc. 2022, 59(1), 45–72. [Google Scholar] [CrossRef]
- Abdullayev, F.G.; Imashkyzy, M. : On the behavior of m–th derivatives of polynomials in bounded and unbounded regions without zero angles in weighted Lebesgue spaces. Anal. Math. Phys. 2025, 15(56), 2025 34. [Google Scholar] [CrossRef]
- Andrievskii, V.V.; Belyi, V.I.; Dzyadyk, V.K. Conformal Invariants in Constructive Theorey of Functions of Complex Plane; World Federation Publishers Company: Atlanta, 1995. [Google Scholar]
- Andrievskii, V.V. : Weighted Polynomial Inequalities in the Complex Plane. J. Approx. Theory 2012, 164(9), 1165–1183. [Google Scholar] [CrossRef]
- Ahlfors, L. Lectures on quasiconformal mappings; D. Van Nostrand Company: Princeton, 1966. [Google Scholar]
- Balcı, S.; Imashkyzy, M.; Abdullayev, F.G. : Polynomial inequalities in regions with interior zero angles in the Bergman space. Ukr. Math. J. 2018, 70(3), 362–384. [Google Scholar] [CrossRef]
- Belinskii, P.P. General Properties of Quasiconformal Mappings; (in Russian). Izdat. Nauka Sibirsk. Otdel.: Novosibirsk, 1974. [Google Scholar]
- Bernstein, S.N. : Sur la limitation des derivees des polnomes. C. R. Acad. Sci. Paris. 1930, 190, 338–341. [Google Scholar]
- Bernstein, S.N. : On the best approximation of continuos functions by polynomials of given degree. Izd Akad Nauk SSSR. I, (1952), II (1954) (O nailuchshem problizhenii nepreryvnykh funktsii posredstrvom mnogochlenov dannoi stepeni). Sobraniye sochinenii.I(4), 11–96 (1912)). Izd. Akad. Nauk. SSSR 1952, I(4). [Google Scholar]
- Değer, U.; Abdullayev, F.G. : On the behavior of derivatives of algebraic polynomials in regions with piecewise quasismooth boundary having cusps. Filomat 2024, 38(10), 3467–3492. [Google Scholar] [CrossRef]
- Değer, U.; Imashkyzy, M.; Abdullayev, F.G. : Asymptotic growth of moduli of m-th derivatives of algebraic polynomials in weighted Bergman spaces on regions without zero angles. Axioms 2025, 14(5), 380. [Google Scholar] [CrossRef]
- Ditzian, Z.; Prymak, A. : Nikol’skii inequalities for Lorentz space. Rocky Mt. J. Math. 2010, 40(1), 209–223. [Google Scholar] [CrossRef]
- V.K. Dzyadyk, V.K. Introduction to the Theory of Uniform Approximation of Function by Polynomials; Nauka: Moscow, 1977. [Google Scholar]
- Dzyadyk, V.K.; Shevchuk, I.A. : Theory of Uniform Approximation of Functions by Polynomials. In Chapter 7; Walter de Gruyter: New York, 2008. [Google Scholar]
- Gaier, D. : On the convergence of the Bieberbach polynomials in regions with corners. Const. Approx. 1988, 4, 289–305. [Google Scholar] [CrossRef]
- Gün, C.D. : On some inequalities for derivatives of algebraic polynomials in unbounded regions with angles. Manas J. Eng. 2021, 9(1), 93–103. [Google Scholar] [CrossRef]
- Halan, V.D.; Shevchuk, I.O. : Exact constant in Dzyadyk’s inequality for the derivative of an algebraic polynomial. Ukr. Math. J. 2017, 69(5), 725–733. [Google Scholar] [CrossRef]
- Hille, E.; Szegö, G.; Tamarkin, J.D. : On some generalization of a theorem of A. Markoff. Duke. Math. J. 1937, 3, 729–739. [Google Scholar] [CrossRef]
- Lehto, O.; Virtanen, K.I. Quasiconformal Mappings in the Plane; Springer-Verlag: Berlin, 1973. [Google Scholar]
- Mamedhanov, D.I. : Inequalities of S.M.Nikol’skii type for polynomials in the complex variable on curves. Soviet Math Dokl. 1974, 15, 34–37. [Google Scholar]
- Nikol’skii, S.M. Approximation of Function of Several Variable and Imbeding Theorems; Springer-Verlag: New York, 1975. [Google Scholar]
- Özkartepe, P. : Pointwise Bernstein-Walsh-type inequalities in regions with piecewise Dini-smooth boundary. Manas J. Eng. 2017, 5(3), 35–47. [Google Scholar]
- Özkartepe, P.; Gün, C.D.; Abdullayev, F.G. : Bernstein-Walsh-type inequalities for derivatives of algebraic polynomials on the regions of complex plane. Turk. J. Math. 2022, 46(7), 2572–2609. [Google Scholar] [CrossRef]
- Özkartepe, P. : Inequalities of the Markov-Nikol’skii type in regions with zero interior angles in the Bergman space. Ukr. Math. J. 2023, 75(3), 419–438. [Google Scholar] [CrossRef]
- Özkartepe, P.; Abdullayev, F.G. : On the growth of m-th derivatives of algebraic polynomials in regions with corners in a weighted Bergman space. Proc. Inst. Math. Mech. 2023, 49(1), 109–153. [Google Scholar]
- Pritsker, I. : Comparing norms of polynomials in one and several variables. J. Math. Anal. Appl. 1997, 216, 685–695. [Google Scholar] [CrossRef]
- Rickman, S. : Characterisation of quasiconformal arcs. Ann. Fenn. Math. Series A I. Mathematica 1966, 395, 30. [Google Scholar]
- Stylianopoulos, N. : Strong asymptotics for Bergman polynomials over domains with corners and applications. Const. Approx. 2012, 38(1), 59–100. [Google Scholar] [CrossRef]
- Suetin, P.K. Polynomials Orthogonal over the Region and Bieberbach Polynomials; American Math Soc: Providence, Rhode Island, 1974. [Google Scholar]
- Szegö, G.; Zygmund, A. : On certain mean values of polynomials. J. Anal. Math. 1953, 3(1), 225–244. [Google Scholar] [CrossRef]
- Walsh, J.L. : Interpolation and Approximation by Rational Functions in the Complex Domain. AMS 1960. [Google Scholar]
- Warschawski, S.E. : Über dasrandverhalten der ableitung der abbildungsfunktion bei konformer. Math. Z 1932, 35, 321–456. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).