Submitted:
19 November 2025
Posted:
19 November 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Literature Review
3. Methodology
4. Results

5. Conclusions
References
- Falaki, H., Mahajan, R., Kandula, S., Lymberopoulos, D., Govindan, R., & Estrin, D. (2010, June). Diversity in smartphone usage. In Proceedings of the 8th international conference on Mobile systems, applications, and services (pp. 179-194).
- Amez, S., & Baert, S. (2020). Smartphone use and academic performance: A literature review. International journal of educational research, 103, 101618.
- Andone, I., Błaszkiewicz, K., Eibes, M., Trendafilov, B., Montag, C., & Markowetz, A. (2016, September). How age and gender affect smartphone usage. In Proceedings of the 2016 ACM international joint conference on pervasive and ubiquitous computing: adjunct (pp. 9-12).
- Montag, C., Błaszkiewicz, K., Sariyska, R., Lachmann, B., Andone, I., Trendafilov, B., ... & Markowetz, A. (2015). Smartphone usage in the 21st century: who is active on WhatsApp?. BMC research notes, 8(1), 331.
- Sarker, I. H., Kayes, A. S. M., & Watters, P. (2019). Effectiveness analysis of machine learning classification models for predicting personalized context-aware smartphone usage. Journal of Big Data, 6(1), 1-28.
- Lee, J. , & Kim, W. (2021). Prediction of problematic smartphone use: A machine learning approach. International journal of environmental research and public health, 18(12), 6458.
- Aboujaoude, E. , Vera Cruz, G., Rochat, L., Courtois, R., Ben Brahim, F., Khan, R., & Khazaal, Y. (2022). Assessment of the popularity and perceived effectiveness of smartphone tools that track and limit smartphone use: survey study and machine learning analysis. Journal of medical Internet research, 24(10), e38963.
- Guinness, R. E. (2015). Beyond where to how: A machine learning approach for sensing mobility contexts using smartphone sensors. Sensors, 15(5), 9962-9985.
- Likhith, S. , Chitteti, C., Dharani, M., Nivedhitha, V., Geethika, N. G., & Godwin, V. (2024, April). Machine Learning Model for Prediction of Smartphone Addiction. In 2024 International Conference on Expert Clouds and Applications (ICOECA) (pp. 924-929). IEEE.
- Lee, J. , & Kim, W. (2021). Prediction of problematic smartphone use: A machine learning approach. International journal of environmental research and public health, 18(12), 6458.
- Walelgne, E. A., Asrese, A. S., Manner, J., Bajpai, V., & Ott, J. (2021). Clustering and predicting the data usage patterns of geographically diverse mobile users. Computer Networks, 187, 107737.
- Neophytou, E. , Manwell, L. A., & Eikelboom, R. (2021). Effects of excessive screen time on neurodevelopment, learning, memory, mental health, and neurodegeneration: A scoping review. International Journal of Mental Health and Addiction, 19(3), 724-744.
- Noë, B., Turner, L. D., & Whitaker, R. M. (2019, September). Smartphone interaction and survey data as predictors of snapchat usage. In Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers (pp. 438-445).
- Ellis, D. A. , Davidson, B. I., Shaw, H., & Geyer, K. (2019). Do smartphone usage scales predict behavior?. International Journal of Human-Computer Studies, 130, 86-92.
- Stachl, C., Hilbert, S., Au, J. Q., Buschek, D., De Luca, A., Bischl, B., ... & Bühner, M. (2017). Personality traits predict smartphone usage. European Journal of Personality, 31(6), 701-722.
- Han, S. , & Yi, Y. J. (2019). How does the smartphone usage of college students affect academic performance?. Journal of Computer Assisted Learning, 35(1), 13-22.
- Deng, T. , Kanthawala, S., Meng, J., Peng, W., Kononova, A., Hao, Q.,... & David, P. (2019). Measuring smartphone usage and task switching with log tracking and self-reports. Mobile Media & Communication, 7(1), 3-23.
- Wilcockson, T. D. , Ellis, D. A., & Shaw, H. (2018). Determining typical smartphone usage: What data do we need?. Cyberpsychology, Behavior, and Social Networking, 21(6), 395-398.
- Ahmed, Q. W. , Garg, S., Rai, A., Ramachandran, M., Jhanjhi, N. Z., Masud, M., & Baz, M. (2022). Ai-based resource allocation techniques in wireless sensor internet of things networks in energy efficiency with data optimization. Electronics, 11(13), 2071.
- Khan, N. A. , Jhanjhi, N. Z., Brohi, S. N., Almazroi, A. A., & Almazroi, A. A. (2022). A secure communication protocol for unmanned aerial vehicles. CMC-Computers Materials & Continua, 70(1), 601-618.
- Muzafar, S. , & Jhanjhi, N. Z. (2020). Success stories of ICT implementation in Saudi Arabia. In Employing Recent Technologies for Improved Digital Governance (pp. 151-163). IGI Global Scientific Publishing.
- Jabeen, T., Jabeen, I., Ashraf, H., Jhanjhi, N. Z., Yassine, A., & Hossain, M. S. (2023). An intelligent healthcare system using IoT in wireless sensor network. Sensors, 23(11), 5055.
- Shah, I. A. , Jhanjhi, N. Z., & Laraib, A. (2023). Cybersecurity and blockchain usage in contemporary business. In Handbook of Research on Cybersecurity Issues and Challenges for Business and FinTech Applications (pp. 49-64). IGI Global.
- Hanif, M. , Ashraf, H., Jalil, Z., Jhanjhi, N. Z., Humayun, M., Saeed, S., & Almuhaideb, A. M. (2022). AI-based wormhole attack detection techniques in wireless sensor networks. Electronics, 11(15), 2324.
- Shah, I. A. , Jhanjhi, N. Z., Amsaad, F., & Razaque, A. (2022). The role of cutting-edge technologies in industry 4.0. In Cyber Security Applications for Industry 4.0 (pp. 97-109). Chapman and Hall/CRC.
- Humayun, M., Almufareh, M. F., & Jhanjhi, N. Z. (2022). Autonomous traffic system for emergency vehicles. Electronics, 11(4), 510.
- Muzammal, S. M. , Murugesan, R. K., Jhanjhi, N. Z., & Jung, L. T. (2020, October). SMTrust: Proposing trust-based secure routing protocol for RPL attacks for IoT applications. In 2020 International Conference on Computational Intelligence (ICCI) (pp. 305-310). IEEE.
- Brohi, S. N. , Jhanjhi, N. Z., Brohi, N. N., & Brohi, M. N. (2023). Key applications of state-of-the-art technologies to mitigate and eliminate COVID-19. Authorea Preprints.
- Khalil, M. I., Humayun, M., Jhanjhi, N. Z., Talib, M. N., & Tabbakh, T. A. (2021). Multi-class segmentation of organ at risk from abdominal ct images: A deep learning approach. In Intelligent Computing and Innovation on Data Science: Proceedings of ICTIDS 2021 (pp. 425-434). Singapore: Springer Nature Singapore.
- Humayun, M., Jhanjhi, N. Z., Niazi, M., Amsaad, F., & Masood, I. (2022). Securing drug distribution systems from tampering using blockchain. Electronics, 11(8), 1195.




| Study | Data Set Size | Key Outcomes | Findings | Accuracy |
| [12] | 44 articles from 16 countries | Examine effects of excessive screen time on: (i) neurodevelopment, (ii) learning & memory, (iii) mental health, (iv) substance use disorders, and (v) neurodegeneration | Excessive screen time linked to lower self-esteem, higher risk of mental health issues and addictions, slowed cognitive development, and potential early onset dementia | N/A |
| [13] | 64 participants over 8 weeks | Predictors of Snapchat usage using survey and smartphone interaction data | Age, smartphone addiction, happiness, and usage of WhatsApp and Facebook Messenger were significant predictors of Snapchat usage | High |
| [14] | 10 datasets | Evaluate whether smartphone usage self-report scales can accurately predict actual usage behavior | Self-reported scales correlate poorly with objective smartphone behavior; scales focused on habit (not addiction) showed slightly better predictive value | 85% |
| [15] | 624 users | Personality aspects are linked to specific phone habits | Random forest model | 91% prediction |
| [16] | College students | Balanced phone use improves academic performance | Structural equation modeling | 76% performance correlation |
| [17] | 50 users | Users overestimate usage; unique patterns identified | Mixed effects models | 82% usage accuracy |
| [18] | 5 days | Short periods reveal habitual phone checking behavior | Time-series analysis | 87% weekly usage pattern accuracy |
| Class | Precision (%) | Recall (%) |
| Moderate Usage | 97.73 | 96.63 |
| High Usage | 100.00 | 99.32 |
| Low Usage | 95.52 | 98.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).