Submitted:
10 November 2025
Posted:
11 November 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Unlocking the Potential of Electronic Health Records (EHR)
2.1. Establishing a Common Ground for Health Data
- Terminologies (Systematized Nomenclature of Medicine - Clinical Terms (SNOMED CT) [12], Logical Observation Identifiers Names and Codes (LOINC) [13], Orphanet Rare Disease Ontology (ORPHA) [14], etc.) act as the “universal medical dictionary”. They give every medical concept- like "Charcot foot" or a "neuropathy test" - a unique code. This ensures that when different systems use the word "Charcot foot," they are all referring to the exact same condition.
- OpenEHR [15] is like the “architect’s detailed blueprint”. It focuses on how to design the optimal, future-proof digital patient record itself. It allows clinicians to define precisely what information should be captured and stored in a way that computers can understand unambiguously.
- Fast Healthcare Interoperability Resources (FHIR) [16] (pronounced "fire") is designed for the “secure delivery service”. Once the data is stored (using the blueprint), FHIR provides a modern, standard way to quickly and securely package and send that information between different systems, like from a hospital’s computer to a patient’s phone app.
- The Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) [17] is the “standardized research frame”. Its job is to help us learn from diverse types of health information. It takes data from all sorts of different systems and translates it into a common format, allowing researchers to run large-scale analyses to find better treatments and understand diseases. Additionally, OHDSI community provides associated tools for preparing data and conducting research.
2.2. Technological Ability Is Not Enough
2.3. Bridging the Clinician-IT Designer Divide
3. Collaborative Care in the Digital Age
4. Prediction Models and AI
5. Systemic Approach to Better Insights and Quality Improvement
5.1. Support for Local Insights and FAIR Quality Measures
5.2. Utilizing Real World Data
6. Conclusions
Funding
Conflicts of Interest
Abbreviations
| AI | Artificial intelligence |
| CDM | Common Data Model |
| CPG | clinical practice guidelines |
| EEHRxF | European Electronic Health Record Exchange Format |
| EHDS | European Health Data Space |
| EHR | electronic health record |
| EUBIROD | European Best Information Through Regional Outcomes in Diabetes |
| FAIR | Findable, Accessible, Interoperable, and Reusable |
| FHIR | Fast Healthcare Interoperability Resources |
| HCP | health care professionals |
| ICHOM | International Consortium for Health Outcomes Measurement |
| IDF | International Diabetes Federation |
| IT | information technology |
| IWGDF | International Working Group on the Diabetic Foot |
| LLM | Large Language Model |
| LOINC | Logical Observation Identifiers Names and Codes |
| OECD | Organisation for Economic Co-operation and Development |
| OHDSI | Observational Health Data Sciences and Informatics |
| OMOP | Observational Medical Outcomes Partnership |
| ORPHA | Orphanet Rare Disease Ontology |
| OpenEHR | open Electronic Health Record |
| RWD | real world data |
| RWE | real world evidence |
| SNOMED CT | Systematized Nomenclature of Medicine - Clinical Terms |
| WHO | World Health Organization |
References
- Jossen S. The world’s most valuable resource is no longer oil, but data [Internet]. The Economist. 2017 [cited 2025 Aug 25]. Available from: https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data.
- Edmonds, M.; Manu, C.; Vas, P. The current burden of diabetic foot disease. J. Clin. Orthop. Trauma 2021, 17, 88–93. [CrossRef]
- The Saint Vincent Declaration on diabetes care and research in Europe. Acta Diabetol 1989 10 Suppl. (143-144).
- Administrative Tasks Take Up More Time than Patient Care for Many PCPs | College of Medicine Peoria | University of Illinois College of Medicine [Internet]. [cited 2025 Aug 27]. Available from: https://peoria.medicine.uic.edu/administrative-tasks-take-up-more-time-than-patient-care-for-many-pcps/.
- Budd, J. Burnout Related to Electronic Health Record Use in Primary Care. J. Prim. Care Community Health 2023, 14. [CrossRef]
- Lohmann-Lafrenz, S.; Gismervik, S.Ø.; Ose, S.O.; Aasdahl, L.; Lauritzen, H.B.; Faxvaag, A.; Bardal, E.M.; Skarpsno, E.S. Usability of an electronic health record 6 months post go-live and its association with burnout, insomnia and turnover intention: a cross-sectional study in a hospital setting. BMJ Health Care Informatics 2025, 32, e101200. [CrossRef]
- Sæthre E, Ose SO, Krokstad S, Gismervik SØ. “Terrible Stuff. We’ve been had“: hospital staff reactions to a new electronic health record and implications for employee well-being – A qualitative study. Int J Med Inf. 2025 Dec 1;204:106039.
- Standing Committee of European Doctors (CPME). Electronic Health Record Systems need to be Feasible, Functional and Findable [Internet]. CPME.eu. 2024 [cited 2025 Aug 27]. Available from: https://www.cpme.eu/news/electronic-health-record-systems-need-to-be-feasible-functional-and-findable.
- Tsafnat, G.; Dunscombe, R.; Gabriel, D.; Grieve, G.; Reich, C. Converge or Collide? Making Sense of a Plethora of Open Data Standards in Health Care. J. Med Internet Res. 2024, 26, e55779. [CrossRef]
- Pedrera-Jiménez, M.; García-Barrio, N.; Frid, S.; Moner, D.; Boscá-Tomás, D.; Lozano-Rubí, R.; Kalra, D.; Beale, T.; Muñoz-Carrero, A.; Serrano-Balazote, P. Can OpenEHR, ISO 13606, and HL7 FHIR Work Together? An Agnostic Approach for the Selection and Application of Electronic Health Record Standards to the Next-Generation Health Data Spaces. J. Med Internet Res. 2023, 25, e48702. [CrossRef]
- Øvrelid, E. Exploring adaptive mirroring in healthcare IT architectures. Health Syst. 2023, 13, 109–120. [CrossRef]
- Vuokko, R.; Vakkuri, A.; Palojoki, S. Systematized Nomenclature of Medicine–Clinical Terminology (SNOMED CT) Clinical Use Cases in the Context of Electronic Health Record Systems: Systematic Literature Review. JMIR Public Health Surveill. 2023, 11, e43750. [CrossRef]
- McDonald, C.J.; Huff, S.M.; Suico, J.G.; Hill, G.; Leavelle, D.; Aller, R.; Forrey, A.; Mercer, K.; DeMoor, G.; Hook, J.; et al. LOINC, a Universal Standard for Identifying Laboratory Observations: A 5-Year Update. Clin. Chem. 2003, 49, 624–633. [CrossRef]
- Orphadata – Orphanet datasets [Internet]. [cited 2025 Aug 30]. Available from: https://www.orphadata.com/.
- Kalra, D.; Beale, T.; Heard, S. The openEHR Foundation. In: Regional Health Economies and ICT Services [Internet]. IOS Press; 2005 [cited 2025 Aug 30]. p. 153–73. Available from: https://ebooks.iospress.nl/publication/10257.
- Benson, T.; Grieve, G. Principles of Health Interoperability: FHIR, HL7 and SNOMED CT [Internet]. Cham: Springer International Publishing; 2021 [cited 2025 Aug 30]. (Health Information Technology Standards). [CrossRef]
- Hripcsak, G.; Duke, J.D.; Shah, N.H.; Reich, C.G.; Huser, V.; Schuemie, M.J.; A Suchard, M.; Park, R.W.; Wong, I.C.K.; Rijnbeek, P.R.; et al. Observational Health Data Sciences and Informatics (OHDSI): Opportunities for Observational Researchers. Stud Health Technol Inform. 2015, 216, 574–8.
- Informatics OHDS and. The Book of OHDSI [Internet]. [cited 2025 Aug 30]. Available from: https://ohdsi.github.io/TheBookOfOhdsi/.
- Systems SG Ocean Health. Clinical Knowledge Manager [Internet]. [cited 2025 Aug 30]. Available from: https://ckm.openehr.org/ckm/.
- Developer ecosystem – openehr.org [Internet]. [cited 2025 Aug 30]. Available from: https://openehr.org/developer-ecosystem/.
- Li, Y.; Wang, H.; Yerebakan, H.Z.; Shinagawa, Y.; Luo, Y. FHIR-GPT Enhances Health Interoperability with Large Language Models. NEJM AI 2024, 1. [CrossRef]
- Brat, G.A.; Mandel, J.C.; McDermott, M.B. Do We Need Data Standards in the Era of Large Language Models?. NEJM AI 2024, 1. [CrossRef]
- Tang, U.H.; Tranberg, R.; Sundberg, L.; Scandurra, I. How do patients and healthcare professionals experience foot examinations in diabetes care? – A randomised controlled study of digital foot examinations versus traditional foot examinations. BMC Health Serv. Res. 2024, 24, 1–16. [CrossRef]
- Brunner, J.; Cannedy, S.; McCoy, M.; Hamilton, A.B.; Shelton, J. Software is Policy: Electronic Health Record Governance and the Implications of Clinical Standardization. J. Gen. Intern. Med. 2023, 38, 949–955. [CrossRef]
- European Health Data Space Regulation (EHDS) - European Commission [Internet]. 2025 [cited 2025 Sept 3]. Available from: https://health.ec.europa.eu/ehealth-digital-health-and-care/european-health-data-space-regulation-ehds_en.
- Solvang, Ø.S.; Cassidy, S.; Granja, C.; Solvoll, T. Healthcare professionals’ cross-organizational access to electronic health records: A scoping review. Int. J. Med Informatics 2024, 193, 105688. [CrossRef]
- Kissel, A.M.; Maddox, K.; Francis, J.K.; Diaz, M.I.; Sanghavi, R.; Rao, D.; Menzies, C.; Lehmann, C.U. Effects of the electronic health record on job satisfaction of academic pediatric faculty. Int. J. Med Informatics 2022, 168, 104881. [CrossRef]
- Ball, S.L.; Rucci, J.M.; Molloy-Paolillo, B.K.; Cutrona, S.L.; Brunner, J.; Mohr, D.C.; Kim, B.; Moldestad, M.; Zepeda, E.D.; Orlander, J.D.; et al. “For the first time…I am seriously fighting burnout”: clinician experiences with a challenging electronic health record transition. JAMIA Open 2024, 7, ooae067. [CrossRef]
- Goodchild L. Clinician of the Future 2025 [Internet]. Elsevier; 2025. Available from: https://www.elsevier.com/insights/clinician-of-the-future/2025.
- Bansler, J.P. Challenges in user-driven optimization of EHR: A case study of a large Epic implementation in Denmark. Int. J. Med Informatics 2021, 148, 104394. [CrossRef]
- Hertzum, M.; Ellingsen, G.; Cajander, Å. Implementing Large-Scale Electronic Health Records: Experiences from implementations of Epic in Denmark and Finland. Int. J. Med Informatics 2022, 167, 104868. [CrossRef]
- Sand, A.; Hertzum, M.; Ellingsen, G.; Dahl, Y. Implementing EHR Suites: Lessons from a Norwegian Configuration Process. In: Context Sensitive Health Informatics: AI for Social Good [Internet]. IOS Press; 2025 [cited 2025 Aug 30]. p. 34–8. Available from: https://ebooks.iospress.nl/doi/10.3233/SHTI250232.
- Vial, G.; Motulsky, A.; Ringeval, M.; Raymond, L.; Paré, G. Tensions in large-scale electronic health record implementations: insights from a meta-synthesis. J. Am. Med Informatics Assoc. 2025, 32, 1241–1253. [CrossRef]
- Guse, R.; Warsinsky, S.; Thiebes, S.; Sunyaev, A. Employee-driven Digital Innovation in Healthcare – A Scoping Review [Internet]. 2025 [cited 2025 Aug 29]. Available from: https://hdl.handle.net/10125/109267.
- Raymond, L.; Motulsky, A.; Vial, G.; Ringeval, M.; Paré, G. Navigating large-scale EHR implementations in public health systems: Lessons learned and recommendations from a rapid review. Health Informatics J. 2025, 31. [CrossRef]
- Molloy-Paolillo, B.; Mohr, D.; Levy, D.R.; Cutrona, S.L.; Anderson, E.; Rucci, J.; Helfrich, C.; Sayre, G.; Rinne, S.T. Assessing Electronic Health Record (EHR) Use during a Major EHR Transition: An Innovative Mixed Methods Approach. J. Gen. Intern. Med. 2023, 38, 999–1006. [CrossRef]
- Implementing a user-friendly and intuitive electronic health record is the only way forward [Internet]. CPME.eu. [cited 2025 Aug 30]. Available from: https://www.cpme.eu/news/implementing-a-user-friendly-and-intuitive-electronic-health-record-is-the-only-way-forward.
- Busse, T.S.; Jux, C.; Laser, J.; Rasche, P.; Vollmar, H.C.; Ehlers, J.P.; Kernebeck, S. Involving Health Care Professionals in the Development of Electronic Health Records: Scoping Review. JMIR Hum. Factors 2023, 10, e45598. [CrossRef]
- Frauenberger, C.; Good, J.; Fitzpatrick, G.; Iversen, O.S. In pursuit of rigour and accountability in participatory design. Int. J. Human-Computer Stud. 2015, 74, 93–106. [CrossRef]
- Pizzuti, C.; Palmieri, C.; Shaw, T. The role of medical regulations and medical regulators in fostering the use of eHealth data for strengthened continuing professional development (CPD): a document analysis with key informants’ interviews. BMC Med Educ. 2025, 25, 1–15. [CrossRef]
- Pizzuti, C. Integrating eHealth data analytics into Continuing Professional Development for medical practitioners: an ecosystemic perspective. Front. Med. 2025, 12, 1553479. [CrossRef]
- Barba T, Robert M, Hot A. IA en santé : guide pour l’interniste averti. Rev Médecine Interne [Internet]. 2025 Feb 20 [cited 2025 Aug 29]; Available from: https://www.sciencedirect.com/science/article/pii/S0248866325000475.
- Golburean, O.; Pedersen, R.; Melby, L.; Faxvaag, A. Exploring Physicians’ Dual Perspectives on the Transition From Free Text to Structured and Standardized Documentation Practices: Interview and Participant Observational Study. JMIR Form. Res. 2025, 9, e63902. [CrossRef]
- Naumann, L.; Babitsch, B.; Hübner, U.H. eHealth policy processes from the stakeholders’ viewpoint: A qualitative comparison between Austria, Switzerland and Germany. Health Policy Technol. 2021, 10. [CrossRef]
- XiA – Xpanding Innovative Alliance [Internet]. [cited 2025 Aug 30]. Available from: https://xia-project.iscte-iul.pt/.
- Olakotan, O.; Samuriwo, R.; Ismaila, H.; Atiku, S. Usability Challenges in Electronic Health Records: Impact on Documentation Burden and Clinical Workflow: A Scoping Review. J. Evaluation Clin. Pr. 2025, 31, e70189. [CrossRef]
- Gandhi, T.K.; Classen, D.; A Sinsky, C.; Rhew, D.C.; Garde, N.V.; Roberts, A.; Federico, F. How can artificial intelligence decrease cognitive and work burden for front line practitioners?. JAMIA Open 2023, 6, ooad079. [CrossRef]
- Ebbers, T.; Takes, R.P.; Smeele, L.E.; Kool, R.B.; Broek, G.B.v.D.; Dirven, R. The implementation of a multidisciplinary, electronic health record embedded care pathway to improve structured data recording and decrease electronic health record burden. Int. J. Med Informatics 2024, 184, 105344. [CrossRef]
- Ceriello, A.; Colagiuri, S. IDF global clinical practice recommendations for managing type 2 diabetes – 2025. Diabetes Res. Clin. Pr. 2025, 222, 112152. [CrossRef]
- van Netten, J.J.; Apelqvist, J.; A Bus, S.; Fitridge, R.; Game, F.; Monteiro-Soares, M.; Senneville, E.; Schaper, N.C. The International Working Group on the Diabetic Foot: Stories and Numbers Behind Three Decades of Evidence-Based Guidelines for the Management of Diabetes-Related Foot Disease. Diabetes Ther. 2023, 15, 19–31. [CrossRef]
- Guideline Definition Language v2 (GDL2) [Internet]. [cited 2025 Aug 30]. Available from: https://specifications.openehr.org/releases/CDS/latest/GDL2.html.
- Michaels, M.M. Adapting Clinical Guidelines for the Digital Age: Summary of a Holistic and Multidisciplinary Approach. Am. J. Med Qual. 2023, 38, S3–S11. [CrossRef]
- Boxwala, A.A.; Rocha, B.H.; Maviglia, S.; Kashyap, V.; Meltzer, S.; Kim, J.; Tsurikova, R.; Wright, A.; Paterno, M.D.; Fairbanks, A.; et al. A multi-layered framework for disseminating knowledge for computer-based decision support. J. Am. Med Informatics Assoc. 2011, 18 (Supplement_1), i132–i139. [CrossRef]
- Malm-Nicolaisen, K.; Ellingsen, G.; Hertzum, M.; Silsand, L.; Severinsen, G.-H. Evolution of Information Infrastructures in Healthcare as Convergence of Digital Trajectories. Comput. Support. Cooperative Work. (CSCW) 2024, 33, 1373–1400. [CrossRef]
- Golburean, O.; Nordheim, E.S.; Faxvaag, A.; Pedersen, R.; Lintvedt, O.; Marco-Ruiz, L. A systematic review and proposed framework for sustainable learning healthcare systems. Int. J. Med Informatics 2024, 192, 105652. [CrossRef]
- Advancements and best practices in diabetic foot Care: A comprehensive review of global progress. Diabetes Res Clin Pract. 2024 Nov 1;217:111845.
- Qi, H.; Zhang, T.; Hou, L.; Li, Q.; Huang, R.; Ma, L. Research progress on risk prediction models for the diabetic foot. Acta Diabetol. 2025, 1–14. [CrossRef]
- Giorgino, F.; Alzaid, F.; Stoian, A.P.; Chan, J.C.N.; Ji, L.; Lumu, W.; Manrique, H.; Mauricio, D.; Saboo, B.; Senior, P.A.; et al. Global challenges in diabetes research and care: which way forward? An appraisal from the EASD Global Council. Diabetologia 2025, 68, 1–20. [CrossRef]
- Štotl, I.; Blagus, R.; Urbančič-Rovan, V. Individualised screening of diabetic foot: creation of a prediction model based on penalised regression and assessment of theoretical efficacy. Diabetologia 2021, 65, 291–300. [CrossRef]
- Lin, P.-C.; Li, T.-C.; Huang, T.-H.; Hsu, Y.-L.; Ho, W.-C.; Xu, J.-L.; Hsieh, C.-L.; Jhang, Z.-E. Machine learning for diabetic foot care: accuracy trends and emerging directions in healthcare AI. Front. Public Health 2025, 13, 1613946. [CrossRef]
- Ardelean, A.; Balta, D.-F.; Neamtu, C.; Neamtu, A.A.; Rosu, M.; Totolici, B. Personalized and predictive strategies for diabetic foot ulcer prevention and therapeutic management: potential improvements through introducing Artificial Intelligence and wearable technology. Med. Pharm. Rep. 2024, 97, 419–428. [CrossRef]
- Humphries, M.D. Social and Structural Determinants of Lower Extremity Amputations in Diabetes. Curr. Diabetes Rep. 2025, 25, 1–6. [CrossRef]
- Sarp, S.; Kuzlu, M.; Zhao, Y.; Gueler, O. Digital Twin in Healthcare: A Study for Chronic Wound Management. IEEE J. Biomed. Health Informatics 2023, 27, 5634–5643. [CrossRef]
- Wang, S.; An, M.; Lin, S.; Kuy, S.; Li, D. Artificial intelligence and digital twins: revolutionizing diabetes care for tomorrow. Intell. Med. 2025, 5, 173–177. [CrossRef]
- Alizadeh JM, Patel MK, Wu H. DT4PCP: A Digital Twin Framework for Personalized Care Planning Applied to Type 2 Diabetes Management [Internet]. 2025 [cited 2025 Sept 5]. Available from: http://arxiv.org/abs/2507.07809. [CrossRef]
- Roth, L.; Wagner, C.J.; Riesner, P.; Krage, B.; Steckhan, N.; Schwarz, P.E.H. Evaluation of a Digital Health Application for Diabetics Under Real-World Conditions: Superior Outcomes Compared to Standard Care in an Observational Matched Case–Control Study. Diabetology 2025, 6, 85. [CrossRef]
- Shilo, S.; Rossman, H.; Segal, E. Axes of a revolution: challenges and promises of big data in healthcare. Nat. Med. 2020, 26, 29–38. [CrossRef]
- Klingelhöfer, D.; Braun, M.; Dröge, J.; Groneberg, D.A.; Brüggmann, D. Research on artificial intelligence, machine and deep learning in medicine: global characteristics, readiness, and equity. Glob. Health 2025, 21, 1–18. [CrossRef]
- Xie, Y.; Zhai, Y.; Lu, G. Evolution of artificial intelligence in healthcare: a 30-year bibliometric study. Front. Med. 2025, 11, 1505692. [CrossRef]
- Rafiq, S.; Majeed, T.; Din, N.M.U.; Sabha, S.U.; Assad, A. Artificial Intelligence in Obesity and Diabetes. In: Macha MA, Assad A, Bhat MR, editors. Artificial Intelligence in Human Health and Diseases [Internet]. Singapore: Springer Nature; 2025 [cited 2025 Sept 1]. p. 205–19. [CrossRef]
- Pahune, S.; Akhtar, Z.; Mandapati, V.; Siddique, K. The Importance of AI Data Governance in Large Language Models. Big Data Cogn. Comput. 2025, 9, 147. [CrossRef]
- Misir, A. Artificial Intelligence and Machine Learning in Diabetic Foot Ulcer Care: Advances in Diagnosis, Treatment, Prognosis, and Novel Therapeutic Strategies. J. Diabetes Sci. Technol. 2025. [CrossRef]
- Directorate-General for Health and Food Safety (European Commission), EEIG, Open Evidence, PwC. Study on the deployment of AI in healthcare: final report [Internet]. Publications Office of the European Union; 2025 [cited 2025 Aug 31]. Available from: https://data.europa.eu/doi/10.2875/2169577.
- How to develop AI policies that work for your organization’s needs [Internet]. American Medical Association. 2025 [cited 2025 Aug 31]. Available from: https://www.ama-assn.org/practice-management/digital-health/how-develop-ai-policies-work-your-organization-s-needs.
- The Swedish National Diabetes Register. 20 years of successful improvements. 2016.
- Siddiqui, M.K.; Hall, C.; Cunningham, S.G.; McCrimmon, R.; Morris, A.; Leese, G.P.; Pearson, E.R. Using Data to Improve the Management of Diabetes: The Tayside Experience. Diabetes Care 2022, 45, 2828–2837. [CrossRef]
- Carinci, F.; Štotl, I.; Cunningham, S.G.; Poljicanin, T.; Pristas, I.; Traynor, V.; Olympios, G.; Scoutellas, V.; Azzopardi, J.; Doggen, K.; et al. Making Use of Comparable Health Data to Improve Quality of Care and Outcomes in Diabetes: The EUBIROD Review of Diabetes Registries and Data Sources in Europe. Front. Clin. Diabetes Health 2021, 2, 744516. [CrossRef]
- International Diabetes Federation. The Diabetes Atlas [Internet]. Diabetes Atlas. 2025 [cited 2025 Aug 31]. Available from: https://diabetesatlas.org/.
- Health at a Glance 2023 [Internet]. OECD. 2023 [cited 2025 Sept 7]. Available from: https://www.oecd.org/en/publications/health-at-a-glance-2023_7a7afb35-en.html.
- ICHOM’s Mission: Putting Patients at the Heart of Healthcare [Internet]. ICHOM. [cited 2025 Sept 7]. Available from: https://www.ichom.org/about-us/.
- Rasooly, A.; Manor, O.; Shao, R.; Ellen, M.E.; Davidovitch, N. Towards Equitable Diabetes Care: A Global Perspective on Quality Measurement Exchange. Health Syst. Reform 2025, 11, 2435076. [CrossRef]
- Amato, E.; Giangreco, F.; Iacopi, E.; Piaggesi, A. Patient-Reported Experience (PREMs) and Outcome (PROMs) Measures in Diabetic Foot Disease Management—A Scoping Review. J. Clin. Med. 2025, 14, 6116. [CrossRef]
- Kolossváry, E.; Ferenci, T.; Kováts, T. Potentials, challenges, and limitations of the analysis of administrative data on vascular limb amputations in health care. Vasa 2020, 49, 87–97. [CrossRef]
- Hassan, S.; Ibrahim, S.; Bielecki, J.; Stanimirovic, A.; Mathew, S.; Hooey, R.; Bowen, J.M.; E Rac, V. Integrating artificial intelligence in community-based diabetes care programmes: enhancing inclusiveness, diversity, equity and accessibility a realist review protocol. BMJ Open 2025, 15, e100512. [CrossRef]
- Egwudo, A.E.; Jegede, A.O.; Oyeniyi, T.A.; Ezekwelu, N.J.; Abdu-Aguye, S.N.; Okwuraiwe, A.P.; Onyeaghala, C.A.; Ozoude, T.O.; Suleiman, M.O.; Aziken, G.O.; et al. Integrating digital health technologies into the healthcare system: Challenges and opportunities in Nigeria. PLOS Digit. Health 2025, 4, e0000928. [CrossRef]
- SCORE2-Diabetes Working Group and the ESC Cardiovascular Risk Collaboration. SCORE2-Diabetes: 10-year cardiovascular risk estimation in type 2 diabetes in Europe. Eur Heart J. 2023 July 21;44(28):2544–56.
- Software Tools – OHDSI [Internet]. [cited 2025 Sept 5]. Available from: https://www.ohdsi.org/software-tools/.
- Nicholson, N.; Štotl, I. A generic framework for the semantic contextualization of indicators. Front. Comput. Sci. 2024, 6, 1463989. [CrossRef]
- Nicholson, N.; Carvalho, R.N.; Štotl, I. A FAIR Perspective on Data Quality Frameworks. Data 2025, 10, 136. [CrossRef]
- Kim, J.-W.; Kim, C.; Kim, K.-H.; Lee, Y.; Yu, D.H.; Yun, J.; Baek, H.; Park, R.W.; You, S.C. Scalable Infrastructure Supporting Reproducible Nationwide Healthcare Data Analysis toward FAIR Stewardship. Sci. Data 2023, 10, 1–9. [CrossRef]
- Liu, F.; Panagiotakos, D. Real-world data: a brief review of the methods, applications, challenges and opportunities. BMC Med Res. Methodol. 2022, 22, 1–10. [CrossRef]
- Zou, K.H.; Berger, M.L. Real-World Data and Real-World Evidence in Healthcare in the United States and Europe Union. Bioengineering 2024, 11, 784. [CrossRef]
- Arffman M, Metso S, Sund R, Winell K, Kurkela O, Lindström J, et al. Diabetes in Finland (FinDM) : Monitoring diabetes, related complications and costs [Internet]. Finnish Institute for Health and Welfare = Terveyden ja hyvinvoinnin laitos THL; 2025 [cited 2025 Aug 29]. Available from: https://www.julkari.fi/handle/10024/151994.
- Fitridge R, Chuter V, Mills J, Hinchliffe R, Azuma N, Behrendt CA, et al. The intersocietal IWGDF, ESVS, SVS guidelines on peripheral artery disease in people with diabetes mellitus and a foot ulcer. J Vasc Surg. 2023 Nov 1;78(5):1101–31.


| Layer | Narrative(L1) | Semi-structured(L2) | Structured(L3) | Executable(L4) |
|---|---|---|---|---|
| Format | Narrative text | Organized text | Coded and interpretable by computer | Coded and interpretable by CDS systems; variety of formats |
| Shareability of Knowledge | Broad | Broad | Broad | Very limited |
| CDS Modality and Tool Independent | Yes | Yes | Yes | No |
| Site Independent | Yes | Yes | Yes | No |
| Author | Guideline developer | Clinical domain expert | Knowledge engineer | CDS implementer |
| Purpose | Communication of policy; synthesis of evidence | Recommendations for implementation in CDS |
Precise communication; validation | Implementation for a particular site |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
