Submitted:
31 October 2025
Posted:
03 November 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Light as a Therapeutic Tool
2.1. Mechanisms of Light on Sleep
| Population | Light Intervention | Reported Outcomes | Evidence Level | Reference |
| Infants / children | Controlled morning daylight, dim evening environment | Enhanced circadian consolidation, reduced sleep latency | Expert consensus/small observational studies | [52] |
| Typical adults | Morning bright-light exposure (>1000 lux); reduced evening light | Advanced circadian phase, improved sleep quality | Systematic review of mixed quality studies | [32] |
| Adults with insomnia / shift workers | Morning or shift-timed bright-light therapy | Advanced circadian phase, reduced fatigue | Systematic review and meta-analysis of RCTs | [30] |
| Neurodivergent populations (ASD/ADHD) | Timed bright-light exposure with sensory regulation | Reduced night awakenings, improved adaptability | Small pilot studies and case series | [35] |
| Older adults / neurodegenerative disease | Daylight or biologically directed bright-light therapy | Improved sleep efficiency, mood, and circadian stability | RCT and meta-analysis of RCTs | [64] |
2.2. Clinical Applications Across Populations
2.2.1. Typical Adults
2.2.2. Sleep Disorders
2.2.3. Mood Disorders
2.2.4. Neurodivergent Populations
2.2.5. Pain Management
2.2.6. Aging and Neurodegenerative Diseases
3. Auditory Interventions for Sleep
3.1. Mechanisms of Common Sound Types on Sleep
3.2. Clinical Applications and Populations
3.2.1. Typical Adults
3.2.2. Intensive Care Units (ICUs) Environment
3.2.3. Neurodivergent Populations
3.2.4. Aging and Neurodegenerative Diseases
4. Thermoregulation for Sleep
4.1. Mechanism of Cooling on Sleep
4.2. Clinical Applications and Populations
4.2.1. Menopausal Women
4.2.2. Other Adults
4.2.3. Veterans
5. Sensory Profile Assessment and Individualization
6. Multisensory Integration
7. Clinical Integration with CBT-I
7.1. Sensory Support for Stimulus Control and Sleep Restriction
7.2. Sensory Reassurance for Cognitive Restructuring and Sleep Hygiene
7.3. Sequential Sensory Cues for Relaxation Training
7.4. Integration of Sensory Interventions into CBT-I
8. Conclusions
Author Contributions
Acknowledgments
Disclosures
Data Availability
References
- Ramar, K.; Malhotra, R.K.; Carden, K.A.; Martin, J.L.; Abbasi-Feinberg, F.; Aurora, R.N.; Kapur, V.K.; Olson, E.J.; Rosen, C.L.; Rowley, J.A.; et al. Sleep is essential to health: an American Academy of Sleep Medicine position statement. J. Clin. Sleep. Med. 2021, 17, 2115–2119. [Google Scholar] [CrossRef]
- Garbarino, S.; Lanteri, P.; Bragazzi, N.L.; Magnavita, N.; Scoditti, E. Role of sleep deprivation in immune-related disease risk and outcomes. Commun. Biol. 2021, 4, 1304. [Google Scholar] [CrossRef]
- Everson, C.A.; Henchen, C.J.; Szabo, A.; Hogg, N. Cell injury and repair resulting from sleep loss and sleep recovery in laboratory rats. Sleep. 2014, 37, 1929–1940. [Google Scholar] [CrossRef]
- Centers_for_Disease_Control_and_Prevention. FastStats: Sleep in Adults. 2024.
- NIH HLaBI. What Are Sleep Deprivation and Deficiency? 2022.
- Morin, C.M.; Jarrin, D.C. Epidemiology of Insomnia: Prevalence, Course, Risk Factors, and Public Health Burden. Sleep. Med. Clin. 2022, 17, 173–191. [Google Scholar] [CrossRef]
- Iannella, G.; Pace, A.; Bellizzi, M.G.; Magliulo, G.; Greco, A.; De Virgilio, A.; Croce, E.; Gioacchini, F.M.; Re, M.; Costantino, A.; et al. The Global Burden of Obstructive Sleep Apnea. Diagnostics 2025, 15. [Google Scholar] [CrossRef]
- Meyer, N.; Lok, R.; Schmidt, C.; Kyle, S.D.; McClung, C.A.; Cajochen, C.; Scheer, F.; Jones, M.W.; Chellappa, S.L. The sleep-circadian interface: A window into mental disorders. Proc. Natl. Acad. Sci. U S A 2024, 121, e2214756121. [Google Scholar] [CrossRef]
- Miller, M.A.; Howarth, N.E. Sleep and cardiovascular disease. Emerg. Top. Life Sci. 2023, 7, 457–466. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Ji, L.; Wang, Y.; Zhang, Y.; Wang, H.; Wang, J.; Zhu, Q.; Xie, M.; Ou, W.; Liu, J.; et al. Acetate enables metabolic fitness and cognitive performance during sleep disruption. Cell Metab. 2024, 36, 1998–2014. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.; Muench, A.; Perlis, M.L.; Vargas, I. Cognitive Behavioral Therapy for Insomnia (CBT-I): A Primer. Klin. Spec. Psihol. 2022, 11, 123–137. [Google Scholar] [CrossRef] [PubMed]
- Lie, J.D.; Tu, K.N.; Shen, D.D.; Wong, B.M. Pharmacological Treatment of Insomnia. P. T 2015, 40, 759–771. [Google Scholar] [PubMed]
- Hubler, A. Influence of Sensory Needs on Sleep and Neurodevelopmental Care in At-Risk Neonates. Children 2025, 12. [Google Scholar] [CrossRef]
- Borbely, A. The two-process model of sleep regulation: Beginnings and outlook. J. Sleep. Res. 2022, 31, e13598. [Google Scholar] [CrossRef] [PubMed]
- Bayramzadeh, S.; Ahmadpour, S.; Aghaei, P. The relationship between sensory stimuli and the physical environment in complex healthcare settings: A systematic literature review. Intensive Crit. Care Nurs. 2021, 67, 103111. [Google Scholar] [CrossRef]
- Emens, J.S.; Burgess, H.J. Effect of Light and Melatonin and Other Melatonin Receptor Agonists on Human Circadian Physiology. Sleep. Med. Clin. 2015, 10, 435–453. [Google Scholar] [CrossRef]
- Riemann, D.; Espie, C.A.; Altena, E.; Arnardottir, E.S.; Baglioni, C.; Bassetti, C.L.A.; Bastien, C.; Berzina, N.; Bjorvatn, B.; Dikeos, D.; et al. The European Insomnia Guideline: An update on the diagnosis and treatment of insomnia 2023. J Sleep Res 2023, 32, e14035. [Google Scholar] [CrossRef]
- Auger, R.R.; Burgess, H.J.; Emens, J.S.; Deriy, L.V.; Thomas, S.M.; Sharkey, K.M. Clinical Practice Guideline for the Treatment of Intrinsic Circadian Rhythm Sleep-Wake Disorders: Advanced Sleep-Wake Phase Disorder (ASWPD), Delayed Sleep-Wake Phase Disorder (DSWPD), Non-24-Hour Sleep-Wake Rhythm Disorder (N24SWD), and Irregular Sleep-Wake Rhythm Disorder (ISWRD). An Update for 2015: An American Academy of Sleep Medicine Clinical Practice Guideline. J Clin Sleep Med 2015, 11, 1199–1236. [Google Scholar] [CrossRef] [PubMed]
- Capezuti, E.; Pain, K.; Alamag, E.; Chen, X.; Philibert, V.; Krieger, A.C. Systematic review: auditory stimulation and sleep. J. Clin. Sleep. Med. 2022, 18, 1697–1709. [Google Scholar] [CrossRef]
- Okamoto-Mizuno, K.; Mizuno, K. Effects of thermal environment on sleep and circadian rhythm. J. Physiol. Anthropol. 2012, 31, 14. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.K.; Reddy, V.; Shumway, K.R.; Araujo, J.F. Physiology, Sleep Stages. In StatPearls, Treasure Island (FL), 2025.
- Sang, D.; Lin, K.; Yang, Y.; Ran, G.; Li, B.; Chen, C.; Li, Q.; Ma, Y.; Lu, L.; Cui, X.Y.; et al. Prolonged sleep deprivation induces a cytokine-storm-like syndrome in mammals. Cell 2023, 186, 5500–5516. [Google Scholar] [CrossRef]
- Sun, S.Y.; Chen, G.H. Treatment of Circadian Rhythm Sleep-Wake Disorders. Curr. Neuropharmacol. 2022, 20, 1022–1034. [Google Scholar] [CrossRef]
- Lam, C.; Chung, M.H. Dose-response effects of light therapy on sleepiness and circadian phase shift in shift workers: a meta-analysis and moderator analysis. Sci. Rep. 2021, 11, 11976. [Google Scholar] [CrossRef]
- Zisapel, N. Circadian rhythm sleep disorders: pathophysiology and potential approaches to management. CNS Drugs 2001, 15, 311–328. [Google Scholar] [CrossRef]
- Brown, T.M.; Brainard, G.C.; Cajochen, C.; Czeisler, C.A.; Hanifin, J.P.; Lockley, S.W.; Lucas, R.J.; Munch, M.; O'Hagan, J.B.; Peirson, S.N.; et al. Recommendations for daytime, evening, and nighttime indoor light exposure to best support physiology, sleep, and wakefulness in healthy adults. PLoS Biol. 2022, 20, e3001571. [Google Scholar] [CrossRef] [PubMed]
- Campbell, P.D.; Miller, A.M.; Woesner, M.E. Bright Light Therapy: Seasonal Affective Disorder and Beyond. Einstein J. Biol. Med. 2017, 32, E13–E25. [Google Scholar] [PubMed]
- Dautovich, N.D.; Schreiber, D.R.; Imel, J.L.; Tighe, C.A.; Shoji, K.D.; Cyrus, J.; Bryant, N.; Lisech, A.; O'Brien, C.; Dzierzewski, J.M. A systematic review of the amount and timing of light in association with objective and subjective sleep outcomes in community-dwelling adults. Sleep. Health 2019, 5, 31–48. [Google Scholar] [CrossRef] [PubMed]
- Chambe, J.; Reynaud, E.; Maruani, J.; Fraih, E.; Geoffroy, P.A.; Bourgin, P. Light therapy in insomnia disorder: A systematic review and meta-analysis. J. Sleep. Res. 2023, 32, e13895. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Li, N.; Miao, W.; He, Y.; Lin, Y. A systematic review and meta-analysis on light therapy for sleep disorders in shift workers. Sci. Rep. 2025, 15, 134. [Google Scholar] [CrossRef]
- Stothard, E.R.; McHill, A.W.; Depner, C.M.; Birks, B.R.; Moehlman, T.M.; Ritchie, H.K.; Guzzetti, J.R.; Chinoy, E.D.; LeBourgeois, M.K.; Axelsson, J.; et al. Circadian Entrainment to the Natural Light-Dark Cycle across Seasons and the Weekend. Curr. Biol. 2017, 27, 508–513. [Google Scholar] [CrossRef]
- He, M.; Ru, T.; Li, S.; Li, Y.; Zhou, G. Shine light on sleep: Morning bright light improves nocturnal sleep and next morning alertness among college students. J. Sleep. Res. 2023, 32, e13724. [Google Scholar] [CrossRef]
- Figueiro, M.G.; Steverson, B.; Heerwagen, J.; Kampschroer, K.; Hunter, C.M.; Gonzales, K.; Plitnick, B.; Rea, M.S. The impact of daytime light exposures on sleep and mood in office workers. Sleep. Health 2017, 3, 204–215. [Google Scholar] [CrossRef]
- Glickman, G.L.; Harrison, E.M.; Herf, M.; Herf, L.; Brown, T.M. Optimizing the Potential Utility of Blue-Blocking Glasses for Sleep and Circadian Health. Transl. Vis. Sci. Technol. 2025, 14, 25. [Google Scholar] [CrossRef] [PubMed]
- Abouzed, M.; Salama, B.; Gabr, A.; Elag, K.A.; Soliman, M.; Elsaadouni, N.; Elzahab, N.A. Impact of smart technology use on sleep quality in individuals with autism spectrum disorder: a mixed-methods investigation. Front. Psychiatry 2024, 15, 1411993. [Google Scholar] [CrossRef]
- Fishbein, A.B.; Knutson, K.L.; Zee, P.C. Circadian disruption and human health. J. Clin. Invest. 2021, 131. [Google Scholar] [CrossRef]
- Cyr, M.; Artenie, D.Z.; Al Bikaii, A.; Lee, V.; Raz, A.; Olson, J.A. An evening light intervention reduces fatigue and errors during night shifts: A randomized controlled trial. Sleep. Health 2023, 9, 373–380. [Google Scholar] [CrossRef]
- Soreca, I.; Arnold, N.; Dombrovski, A.Y. Bright light therapy for CPAP-resistant OSA symptoms. J. Clin. Sleep. Med. 2024, 20, 211–219. [Google Scholar] [CrossRef]
- Moderie, C.; Boivin, D.B. Diagnosing and treating hypersomnolence in depression. Sleep. Med. 2024, 124, 462–470. [Google Scholar] [CrossRef]
- Martino, J.K.; Freelance, C.B.; Willis, G.L. The effect of light exposure on insomnia and nocturnal movement in Parkinson's disease: an open label, retrospective, longitudinal study. Sleep. Med. 2018, 44, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Vincent, N.; Dirkse, D.; Giannouli, E.; McQuarrie, A. Transdiagnostic cognitive behavioral therapy for nightmares and parasomnias. J. Clin. Sleep. Med. 2023, 19, 499–509. [Google Scholar] [CrossRef] [PubMed]
- Rutten, S.; Vriend, C.; van den Heuvel, O.A.; Smit, J.H.; Berendse, H.W.; van der Werf, Y.D. Bright light therapy in Parkinson's disease: an overview of the background and evidence. Parkinsons Dis. 2012, 2012, 767105. [Google Scholar] [CrossRef]
- Dollish, H.K.; Tsyglakova, M.; McClung, C.A. Circadian rhythms and mood disorders: Time to see the light. Neuron 2024, 112, 25–40. [Google Scholar] [CrossRef]
- Tong, H.; Dong, N.; Lam, C.L.M.; Lee, T.M.C. The effect of bright light therapy on major depressive disorder: A systematic review and meta-analysis of randomised controlled trials. Asian J. Psychiatr. 2024, 99, 104149. [Google Scholar] [CrossRef]
- Menegaz de Almeida, A.; Aquino de Moraes, F.C.; Cavalcanti Souza, M.E.; Cavalcanti Orestes Cardoso, J.H.; Tamashiro, F.; Miranda, C.; Fernandes, L.; Kreuz, M.; Alves Kelly, F. Bright Light Therapy for Nonseasonal Depressive Disorders: A Systematic Review and Meta-Analysis. JAMA Psychiatry 2025, 82, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Rastad, C.; Ulfberg, J.; Lindberg, P. Improvement in Fatigue, Sleepiness, and Health-Related Quality of Life with Bright Light Treatment in Persons with Seasonal Affective Disorder and Subsyndromal SAD. Depress. Res. Treat. 2011, 2011, 543906. [Google Scholar] [CrossRef] [PubMed]
- Riedinger, M.A.; van Son, G.E. , van der Wee, N.J.A., Giltay, E.J., de Leeuw, M. Effectiveness of bright light therapy in patients suffering from unipolar or bipolar depression; A naturalistic study. The European Journal of Psychiatry 2025, 39. [Google Scholar] [CrossRef]
- Yoon, H.; Baek, H.J. External Auditory Stimulation as a Non-Pharmacological Sleep Aid. Sensors 2022, 22. [Google Scholar] [CrossRef]
- Tsai, Y.C.; Jou, J.H.; Hsu, C.C.; Shih, M.C.; The, L.; Sharma, D. Circadian lighting effect for inpatients with schizophrenia: A prospective cohort study. Brain Behav. 2024, 14, e70003. [Google Scholar] [CrossRef]
- Maruani, J.; Geoffroy, P.A. Bright Light as a Personalized Precision Treatment of Mood Disorders. Front. Psychiatry 2019, 10, 85. [Google Scholar] [CrossRef]
- Petti, T.; Gupta, M.; Fradkin, Y.; Gupta, N. Management of sleep disorders in autism spectrum disorder with co-occurring attention-deficit hyperactivity disorder: update for clinicians. BJPsych Open 2023, 10, e11. [Google Scholar] [CrossRef]
- Albertini, M.L.; Spoto, G.; Ceraolo, G.; Fichera, M.F.; Consoli, C.; Nicotera, A.G.; Di Rosa, G. Sleep Disorders in Children with Autism Spectrum Disorder: Developmental Impact and Intervention Strategies. Brain Sci. 2025, 15. [Google Scholar] [CrossRef]
- Hamilton, C.; Liebert, A.; Pang, V.; Magistretti, P.; Mitrofanis, J. Lights on for Autism: Exploring Photobiomodulation as an Effective Therapeutic Option. Neurol. Int. 2022, 14, 884–893. [Google Scholar] [CrossRef]
- Mische Lawson, L.; Foster, L.; Hodges, M.; Murphy, M.; O'Neal, M.; Peters, L. Effects of Sensory Garments on Sleep of Children with Autism Spectrum Disorder. Occup. Ther. Int. 2022, 2022, 2941655. [Google Scholar] [CrossRef]
- Irwin, M.R.; Olmstead, R.; Bjurstrom, M.F.; Finan, P.H.; Smith, M.T. Sleep disruption and activation of cellular inflammation mediate heightened pain sensitivity: a randomized clinical trial. Pain. 2023, 164, 1128–1137. [Google Scholar] [CrossRef] [PubMed]
- Haack, M.; Simpson, N.; Sethna, N.; Kaur, S.; Mullington, J. Sleep deficiency and chronic pain: potential underlying mechanisms and clinical implications. Neuropsychopharmacology 2020, 45, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Phipps-Nelson, J.; Redman, J.R.; Dijk, D.J.; Rajaratnam, S.M. Daytime exposure to bright light, as compared to dim light, decreases sleepiness and improves psychomotor vigilance performance. Sleep. 2003, 26, 695–700. [Google Scholar] [CrossRef] [PubMed]
- Leichtfried, V.; Matteucci Gothe, R.; Kantner-Rumplmair, W.; Mair-Raggautz, M.; Bartenbach, C.; Guggenbichler, H.; Gehmacher, D.; Jonas, L.; Aigner, M.; Winkler, D.; et al. Short-term effects of bright light therapy in adults with chronic nonspecific back pain: a randomized controlled trial. Pain. Med. 2014, 15, 2003–2012. [Google Scholar] [CrossRef]
- Burgess, H.J.; Bahl, S.; Wilensky, K.; Spence, E.; Jouppi, R.J.; Rizvydeen, M.; Goldstein, C.; Kim, H.M.; Williams, D.A.; Burns, J.W. A 4-week morning light treatment with stable sleep timing for individuals with fibromyalgia: a randomized controlled trial. Pain. Med. 2023, 24, 787–795. [Google Scholar] [CrossRef]
- Liu, L.; Ancoli-Israel, S. Sleep Disturbances in Cancer. Psychiatr. Ann. 2008, 38, 627–634. [Google Scholar] [CrossRef]
- Lai, F.; Luo, Z.; Zhang, J.; Xia, W.; Tian, L. Bright light therapy has a positive effect on sleep quality in patients with cancer: A meta-analysis. Sleep. Med. Rev. 2024, 75, 101925. [Google Scholar] [CrossRef]
- Burns, J.W.; Gerhart, J.; Rizvydeen, M.; Kimura, M.; Burgess, H.J. Morning Bright Light Treatment for Chronic Low Back Pain: Potential Impact on the Volatility of Pain, Mood, Function, and Sleep. Pain. Med. 2020, 21, 1153–1161. [Google Scholar] [CrossRef]
- Leng, Y.; Musiek, E.S.; Hu, K.; Cappuccio, F.P.; Yaffe, K. Association between circadian rhythms and neurodegenerative diseases. Lancet Neurol. 2019, 18, 307–318. [Google Scholar] [CrossRef]
- Feigl, B.; Lewis, S.J.G.; Burr, L.D.; Schweitzer, D.; Gnyawali, S.; Vagenas, D.; Carter, D.D.; Zele, A.J. Efficacy of biologically-directed daylight therapy on sleep and circadian rhythm in Parkinson's disease: a randomised, double-blind, parallel-group, active-controlled, phase 2 clinical trial. EClinicalMedicine 2024, 69, 102474. [Google Scholar] [CrossRef] [PubMed]
- Zang, L.; Liu, X.; Li, Y.; Liu, J.; Lu, Q.; Zhang, Y.; Meng, Q. The effect of light therapy on sleep disorders and psychobehavioral symptoms in patients with Alzheimer's disease: A meta-analysis. PLoS One 2023, 18, e0293977. [Google Scholar] [CrossRef]
- Aini, N.; Chen, R.; Chu, H.; Chang, C.Y.; Lin, H.C.; Jen, H.J.; Liu, D.; Lee, T.Y.; Chou, K.R. The Effects of Light Therapy on Sleep, Depression, Neuropsychiatric Behaviors, and Cognition Among People Living With Dementia: A Meta-Analysis of Randomized Controlled Trials. Am. J. Geriatr. Psychiatry 2024, 32, 681–706. [Google Scholar] [CrossRef]
- Figueiro, M.G.; Pedler, D.; Plitnick, B.; Zecena, E.; Leahy, S. Tailored lighting intervention (TLI) for improving sleep-wake cycles in older adults living with dementia. Front. Physiol. 2023, 14, 1290678. [Google Scholar] [CrossRef]
- Riedy, S.M.; Smith, M.G.; Rocha, S.; Basner, M. Noise as a sleep aid: A systematic review. Sleep. Med. Rev. 2021, 55, 101385. [Google Scholar] [CrossRef]
- Smith, M.G.; Cordoza, M.; Basner, M. Environmental Noise and Effects on Sleep: An Update to the WHO Systematic Review and Meta-Analysis. Environ. Health Perspect. 2022, 130, 76001. [Google Scholar] [CrossRef]
- Hestermann, E.; Schreve, K.; Vandenheever, D. Enhancing Deep Sleep Induction Through a Wireless In-Ear EEG Device Delivering Binaural Beats and ASMR: A Proof-of-Concept Study. Sensors 2024, 24. [Google Scholar] [CrossRef] [PubMed]
- Belojevic, G. Sound and Alzheimer's Disease-From Harmful Noise to Beneficial Soundscape Augmentation and Music Therapy. Noise Health 2024, 26, 445–448. [Google Scholar] [CrossRef]
- Papathanassoglou, E.; Pant, U.; Meghani, S.; Saleem Punjani, N.; Wang, Y.; Brulotte, T.; Vyas, K.; Dennett, L.; Johnston, L.; Kutsogiannis, D.J.; et al. A systematic review of the comparative effects of sound and music interventions for intensive care unit patients' outcomes. Aust. Crit. Care 2025, 38, 101148. [Google Scholar] [CrossRef]
- Lustenberger, C.; Ferster, M.L.; Huwiler, S.; Brogli, L.; Werth, E.; Huber, R.; Karlen, W. Auditory deep sleep stimulation in older adults at home: a randomized crossover trial. Commun Med (Lond) 2022, 2, 30. [Google Scholar] [CrossRef] [PubMed]
- World_Health_Organization. Environmental noise guidelines for the European Region. 2019.
- Sharman, R.L.; Perlis, M.L.; Bastien, C.H.; Barclay, N.L.; Ellis, J.G.; Elder, G.J. Pre-Sleep Cognitive Arousal Is Negatively Associated with Sleep Misperception in Healthy Sleepers during Habitual Environmental Noise Exposure: An Actigraphy Study. Clocks Sleep. 2022, 4, 88–99. [Google Scholar] [CrossRef] [PubMed]
- Pando-Naude, V. , Jespersen, K.V., Johnsen, E., Vuust, P. Rhythmic auditory stimulation for motor rehabilitation in Parkinson’s disease. Cochrane Database Syst. Rev. 2024, 2024, CD015759. [Google Scholar]
- Ramirez, C.; Alayine, G.A.; Akafia, C.S.K.; Adichie, K.; Watts, D.; Galdamez, Y.; Harding, L.; Allsop, A.S. Music mindfulness acutely modulates autonomic activity and improves psychological state in anxiety and depression. Front. Neurosci. 2025, 19, 1554156. [Google Scholar] [CrossRef]
- Delaney, L.J.; Van Haren, F.; Lopez, V. Sleeping on a problem: the impact of sleep disturbance on intensive care patients - a clinical review. Ann. Intensive Care 2015, 5, 3. [Google Scholar] [CrossRef]
- Fang, C.S.; Tu, Y.K.; Chang, S.L.; Kuo, C.C.; Fang, C.J.; Chou, F.H. Effectiveness of sound and darkness interventions for critically ill patients' sleep quality: A systematic review and component network meta-analysis. Nurs. Crit. Care 2024, 29, 134–143. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y.; Cheng, C.; Hou, G.; Ding, X.; Ma, J. Based -evidence, an intervention study to improve sleep quality in awake adult ICU patients: a prospective, single-blind, clustered controlled trial. Crit. Care 2024, 28, 365. [Google Scholar] [CrossRef]
- Topal, T.; Surme, Y. The Effect of Music and Eye Masks on Sleep Quality and Delirium in Abdominal Surgery Intensive Care Patients: Randomized Controlled Trial. Nurs. Crit. Care 2025, 30, e70072. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, Y.; Yuan, D.; Wang, C.; Wang, X.; Liang, X.; Wang, J.; Duan, J. Effects of Sensory-Based Interventions on Delirium Prevention in Critically Ill Patients: A Systematic Review and Meta-Analysis. Int. J. Nurs. Pract. 2025, 31, e13321. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Zhang, A.; Li, H.; Li, Y.; Ying, F.; Wang, X.; Yang, Q.; Zhang, Z.; Huang, G. The role of arts therapies in mitigating Sleep Initiation and Maintenance Disorders: a systematic review. Front. Psychiatry 2024, 15, 1386529. [Google Scholar] [CrossRef]
- Salmeron Medina, M.; Blazquez, A.; Cercos, A.; Calvo, R. Application of White Noise in Minors with Autism Spectrum Disorder. Behav Sci 2025, 15. [Google Scholar] [CrossRef]
- Wang, M.; Fan, S.; Wang, Z.; Ren, J. A systematic review and meta-analysis of acoustic stimulation in the treatment of insomnia. Front. Neurosci. 2025, 19, 1572086. [Google Scholar] [CrossRef]
- Mindell, J.A.; Williamson, A.A. Benefits of a bedtime routine in young children: Sleep, development, and beyond. Sleep. Med. Rev. 2018, 40, 93–108. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Lv, Q.K.; Xie, W.Y.; Gong, S.Y.; Zhuang, S.; Liu, J.Y.; Mao, C.J.; Liu, C.F. Circadian disruption and sleep disorders in neurodegeneration. Transl. Neurodegener. 2023, 12, 8. [Google Scholar] [CrossRef]
- Petrovsky, D.V.; Ramesh, P.; McPhillips, M.V.; Hodgson, N.A. Effects of music interventions on sleep in older adults: A systematic review. Geriatr. Nurs. 2021, 42, 869–879. [Google Scholar] [CrossRef]
- Chen, C.T.; Tung, H.H.; Fang, C.J.; Wang, J.L.; Ko, N.Y.; Chang, Y.J.; Chen, Y.C. Effect of music therapy on improving sleep quality in older adults: A systematic review and meta-analysis. J. Am. Geriatr. Soc. 2021, 69, 1925–1932. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, G.; Zheng, L.; Meng, X.; Meng, Q.; Wang, S.; Yin, H.; Chu, J.; Chen, L. Effects of music intervention on sleep quality of older adults: A systematic review and meta-analysis. Complement. Ther. Med. 2021, 59, 102719. [Google Scholar] [CrossRef] [PubMed]
- Bleibel, M.; El Cheikh, A.; Sadier, N.S.; Abou-Abbas, L. The effect of music therapy on cognitive functions in patients with Alzheimer's disease: a systematic review of randomized controlled trials. Alzheimers Res. Ther. 2023, 15, 65. [Google Scholar] [CrossRef]
- Thepsatitporn, S.; Rujiganjanarat, K.; Makmee, P. Multi-Sensory Stimuli Improve Relaxation and Sleep Quality in Rotating Shift Workers: A Randomized Controlled Trial. J. Multidiscip. Healthc. 2024, 17, 1435–1445. [Google Scholar] [CrossRef]
- Grimaldi, D.; Papalambros, N.A.; Zee, P.C.; Malkani, R.G. Neurostimulation techniques to enhance sleep and improve cognition in aging. Neurobiol. Dis. 2020, 141, 104865. [Google Scholar] [CrossRef]
- Szymusiak, R. Body temperature and sleep. Handb. Clin. Neurol. 2018, 156, 341–351. [Google Scholar] [CrossRef]
- Bigalke, J.A.; Cleveland, E.L.; Barkstrom, E.; Gonzalez, J.E.; Carter, J.R. Core body temperature changes before sleep are associated with nocturnal heart rate variability. J Appl Physiol (1985) 2023, 135, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Baniassadi, A.; Manor, B.; Yu, W.; Travison, T.; Lipsitz, L. Nighttime ambient temperature and sleep in community-dwelling older adults. Sci. Total Environ. 2023, 899, 165623. [Google Scholar] [CrossRef]
- Harding, E.C.; Franks, N.P.; Wisden, W. The Temperature Dependence of Sleep. Front. Neurosci. 2019, 13, 336. [Google Scholar] [CrossRef]
- Knill-Jones, J.; Shadwell, G.; Hurst, H.T.; Mawhinney, C.; Sinclair, J.K.; Allan, R. Influence of acute and chronic therapeutic cooling on cognitive performance and well-being. Physiol. Behav. 2025, 289, 114728. [Google Scholar] [CrossRef]
- Li, X.; Halaki, M.; Chow, C.M. How do sleepwear and bedding fibre types affect sleep quality: A systematic review. J. Sleep. Res. 2024, 33, e14217. [Google Scholar] [CrossRef]
- Avis, N.E.; Levine, B.J.; Coeytaux, R. Results of a pilot study of a cooling mattress pad to reduce vasomotor symptoms and improve sleep. Menopause 2022, 29, 973–978. [Google Scholar] [CrossRef]
- Composto, J.; Leichman, E.S.; Luedtke, K.; Mindell, J.A. Thermal Comfort Intervention for Hot-flash Related Insomnia Symptoms in Perimenopausal and Postmenopausal-aged Women: An Exploratory Study. Behav. Sleep. Med. 2021, 19, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Marshall-McKenna, R.; Morrison, A.; Stirling, L.; Hutchison, C.; Rice, A.M.; Hewitt, C.; Paul, L.; Rodger, M.; Macpherson, I.R.; McCartney, E. A randomised trial of the cool pad pillow topper versus standard care for sleep disturbance and hot flushes in women on endocrine therapy for breast cancer. Support. Care Cancer 2016, 24, 1821–1829. [Google Scholar] [CrossRef]
- Krauchi, K.; Glos, M.; Fietze, I.; Penzel, T.; Mason, M.; Herberger, S. Slow nocturnal body cooling during sleep increases interbeat intervals and is tightly coupled to high-frequency heart rate variability in healthy men. Physiol. Rep. 2025, 13, e70478. [Google Scholar] [CrossRef] [PubMed]
- Roth, T.; Mayleben, D.; Feldman, N.; Lankford, A.; Grant, T.; Nofzinger, E. A novel forehead temperature-regulating device for insomnia: a randomized clinical trial. Sleep. 2018, 41. [Google Scholar] [CrossRef]
- Moyen, N.E.; Ediger, T.R.; Taylor, K.M.; Hancock, E.G.; Holden, L.D.; Tracy, E.E.; Kay, P.H.; Irick, C.R.; Kotzen, K.J.; He, D.D. Sleeping for One Week on a Temperature-Controlled Mattress Cover Improves Sleep and Cardiovascular Recovery. Bioengineering 2024, 11. [Google Scholar] [CrossRef]
- Xu, X. , Li, S., Yang, Y., Lian, Z. Effects of thermal environment on body temperature rhythm and thermal sensation before and after getting into bed: A laboratory study in Shanghai, China. Energy and Buildings 2023, 301. [Google Scholar] [CrossRef]
- Baker, F.C.; Lampio, L.; Saaresranta, T.; Polo-Kantola, P. Sleep and Sleep Disorders in the Menopausal Transition. Sleep. Med. Clin. 2018, 13, 443–456. [Google Scholar] [CrossRef] [PubMed]
- Uçar, N. , Shirvani, A., Holick, M.F. Peripheral Thermoregulatory Modulation for Hot Flash Management: Efficacy of Novel Wrist Cooling Device in Cancer Treatment-Induced and Menopausal Vasomotor Symptoms. AACE Endocrinology and Diabetes.
- Baker, F.C.; de Zambotti, M.; Chiappetta, L.; Nofzinger, E.A. Effects of forehead cooling and supportive care on menopause-related sleep difficulties, hot flashes and menopausal symptoms: a pilot study. Behav. Sleep. Med. 2021, 19, 615–628. [Google Scholar] [CrossRef] [PubMed]
- Weaver, M.D. , Qadri, S., Ejikeme, C., Quan, S.F., Czeisler, C.A., Robbins, R. A non-randomized pre-post pilot study of cooling bed sheets in hot sleeping people. Front. Sleep. 2025, 4. [Google Scholar] [CrossRef]
- Pasquier, F.; Chauvineau, M.; Castellini, G.; Gianola, S.; Bargeri, S.; Vitale, J.; Nedelec, M. Does body cooling facilitated by bedding compared to control condition improve sleep among adults (18-64 years old)? A systematic review and meta-analysis. J. Therm. Biol. 2025, 127, 104030. [Google Scholar] [CrossRef]
- Khazaie, H.; Ghadami, M.R.; Masoudi, M. Sleep disturbances in veterans with chronic war-induced PTSD. J. Inj. Violence Res. 2016, 8, 99–107. [Google Scholar] [CrossRef]
- Herberger, S.; Penzel, T.; Fietze, I.; Glos, M.; Cicolin, A.; Fattori, E.; Grimaldi, D.; Reid, K.; Zee, P.; Mason, M.; et al. Enhanced conductive body heat loss during sleep increases slow-wave sleep and calms the heart. Sci. Rep. 2024, 14, 4669. [Google Scholar] [CrossRef]
- Mysliwiec, V.; Neylan, T.C.; Chiappetta, L.; Nofzinger, E.A. Effects of a forehead cooling device in veterans with chronic insomnia disorder and co-morbid medical and psychiatric conditions: a pilot study. Sleep. Breath. 2021, 25, 441–448. [Google Scholar] [CrossRef]
- Ren, S.; Han, M.; Fang, J. Personal Cooling Garments: A Review. Polymers 2022, 14. [Google Scholar] [CrossRef]
- Gigliotti, F.; Giovannone, F.; Belli, A.; Sogos, C. Atypical Sensory Processing in Neurodevelopmental Disorders: Clinical Phenotypes in Preschool-Aged Children. Children 2024, 11. [Google Scholar] [CrossRef]
- Manelis-Baram, L.; Meiri, G.; Ilan, M.; Faroy, M.; Michaelovski, A.; Flusser, H.; Menashe, I.; Dinstein, I. Sleep Disturbances and Sensory Sensitivities Co-Vary in a Longitudinal Manner in Pre-School Children with Autism Spectrum Disorders. J. Autism Dev. Disord. 2022, 52, 923–937. [Google Scholar] [CrossRef] [PubMed]
- Drahota, A.; Ward, D.; Mackenzie, H.; Stores, R.; Higgins, B.; Gal, D.; Dean, T.P. Sensory environment on health-related outcomes of hospital patients. Cochrane Database Syst. Rev. 2012, 2012, CD005315. [Google Scholar] [CrossRef]
- Passarello, N.; Tarantino, V.; Chirico, A.; Menghini, D.; Costanzo, F.; Sorrentino, P.; Fuca, E.; Gigliotta, O.; Alivernini, F.; Oliveri, M.; et al. Sensory Processing Disorders in Children and Adolescents: Taking Stock of Assessment and Novel Therapeutic Tools. Brain Sci. 2022, 12. [Google Scholar] [CrossRef] [PubMed]
- Kashefimehr, B.; Kayihan, H.; Huri, M. The Effect of Sensory Integration Therapy on Occupational Performance in Children With Autism. OTJR (Thorofare N J) 2018, 38, 75–83. [Google Scholar] [CrossRef]
- Desjardins, S.; Lapierre, S.; Vasiliadis, H.M.; Hudon, C. Evaluation of the Effects of an Intervention Intended to Optimize the Sleep Environment Among the Elderly: An Exploratory Study. Clin. Interv. Aging 2020, 15, 2117–2127. [Google Scholar] [CrossRef] [PubMed]
- Phillips, A.J.K.; Vidafar, P.; Burns, A.C.; McGlashan, E.M.; Anderson, C.; Rajaratnam, S.M.W.; Lockley, S.W.; Cain, S.W. High sensitivity and interindividual variability in the response of the human circadian system to evening light. Proc. Natl. Acad. Sci. U S A 2019, 116, 12019–12024. [Google Scholar] [CrossRef]
- Lu, S.Y.; Huang, Y.H.; Lin, K.Y. Spectral content (colour) of noise exposure affects work efficiency. Noise Health 2020, 22, 19–27. [Google Scholar] [CrossRef]
- McCabe, S.M.; Abbiss, C.R.; Libert, J.P.; Bach, V. Functional links between thermoregulation and sleep in children with neurodevelopmental and chronic health conditions. Front. Psychiatry 2022, 13, 866951. [Google Scholar] [CrossRef]
- Pellegrino, G.; Pinardi, M.; Schuler, A.L.; Kobayashi, E.; Masiero, S.; Marioni, G.; di Lazzaro, V.; Keller, F.; Arcara, G.; Piccione, F.; et al. Stimulation with acoustic white noise enhances motor excitability and sensorimotor integration. Sci. Rep. 2022, 12, 13108. [Google Scholar] [CrossRef]
- Wickwire, E.M.; Geiger-Brown, J.; Scharf, S.M.; Drake, C.L. Shift Work and Shift Work Sleep Disorder: Clinical and Organizational Perspectives. Chest 2017, 151, 1156–1172. [Google Scholar] [CrossRef]
- Lechat, B.; Hansen, K.; Micic, G.; Decup, F.; Dunbar, C.; Liebich, T.; Catcheside, P.; Zajamsek, B. K-complexes are a sensitive marker of noise-related sensory processing during sleep: a pilot study. Sleep. 2021, 44. [Google Scholar] [CrossRef]
- Dang-Vu, T.T.; Schabus, M.; Desseilles, M.; Sterpenich, V.; Bonjean, M.; Maquet, P. Functional neuroimaging insights into the physiology of human sleep. Sleep. 2010, 33, 1589–1603. [Google Scholar] [CrossRef] [PubMed]
- Mazurek, M.O.; Petroski, G.F. Sleep problems in children with autism spectrum disorder: examining the contributions of sensory over-responsivity and anxiety. Sleep. Med. 2015, 16, 270–279. [Google Scholar] [CrossRef]
- Lane, S.J.; Leao, M.A.; Spielmann, V. Sleep, Sensory Integration/Processing, and Autism: A Scoping Review. Front. Psychol. 2022, 13, 877527. [Google Scholar] [CrossRef] [PubMed]
- Deliens, G.; Peigneux, P. Sleep-behaviour relationship in children with autism spectrum disorder: methodological pitfalls and insights from cognition and sensory processing. Dev. Med. Child. Neurol. 2019, 61, 1368–1376. [Google Scholar] [CrossRef]
- Foster, R.G. Sleep, circadian rhythms and health. Interface Focus. 2020, 10, 20190098. [Google Scholar] [CrossRef]
- Ogilvy Dunstan, O.B.; Hanjani, L.S.; Rodriguez, F.; Garcia-Hansen, V.; Hubbard, R.E.; Young, A.; Ellender, C.M. Scoping review of the measurement of care environment factors that impact sleep in the rehabilitation, subacute, and aged care settings. Sleep. Adv. 2025, 6, zpaf011. [Google Scholar] [CrossRef]
- Jonescu, E.E.; Litton, E.; Farrell, B. Investigating the Interplay of Thermal, Lighting, and Acoustics in Intensive Care for Enhanced Patient Well-being and Clinical Outcomes. HERD 2025, 18, 362–377. [Google Scholar] [CrossRef] [PubMed]
- Stanford, T.R.; Stein, B.E. Superadditivity in multisensory integration: putting the computation in context. Neuroreport 2007, 18, 787–792. [Google Scholar] [CrossRef] [PubMed]
- Ohla, K.; Hochenberger, R.; Freiherr, J.; Lundstrom, J.N. Superadditive and Subadditive Neural Processing of Dynamic Auditory-Visual Objects in the Presence of Congruent Odors. Chem. Senses 2017, 43, 35–44. [Google Scholar] [CrossRef]
- Huber, A.; Koenig, J.; Bruns, B.; Bendszus, M.; Friederich, H.C.; Simon, J.J. Brain activation and heart rate variability as markers of autonomic function under stress. Sci. Rep. 2025, 15, 28114. [Google Scholar] [CrossRef] [PubMed]
- Herman, J.P.; McKlveen, J.M.; Ghosal, S.; Kopp, B.; Wulsin, A.; Makinson, R.; Scheimann, J.; Myers, B. Regulation of the Hypothalamic-Pituitary-Adrenocortical Stress Response. Compr. Physiol. 2016, 6, 603–621. [Google Scholar] [CrossRef]
- Chen, S.; Xie, Y.; Liang, Z.; Lu, Y.; Wang, J.; Xing, F.; Mao, Y.; Wei, X.; Wang, Z.; Yang, J.; et al. A Narrative Review of the Reciprocal Relationship Between Sleep Deprivation and Chronic Pain: The Role of Oxidative Stress. J. Pain. Res. 2024, 17, 1785–1792. [Google Scholar] [CrossRef] [PubMed]
- Chu, W.T.; Mitchell, T.; Foote, K.D.; Coombes, S.A.; Vaillancourt, D.E. Functional imaging of the brainstem during visually-guided motor control reveals visuomotor regions in the pons and midbrain. Neuroimage 2021, 226, 117627. [Google Scholar] [CrossRef] [PubMed]
- Koning, E.; Powers, J.M.; Ioachim, G.; Stroman, P.W. A Comparison of Functional Connectivity in the Human Brainstem and Spinal Cord Associated with Noxious and Innocuous Thermal Stimulation Identified by Means of Functional MRI. Brain Sci. 2023, 13. [Google Scholar] [CrossRef]
- Campanella, C.; Byun, K.; Senerat, A.; Li, L.; Zhang, R.; Aristizabal, S.; Porter, P.; Bauer, B. The Efficacy of a Multimodal Bedroom-Based 'Smart' Alarm System on Mitigating the Effects of Sleep Inertia. Clocks Sleep. 2024, 6, 183–199. [Google Scholar] [CrossRef]
- Eron, K.; Kohnert, L.; Watters, A.; Logan, C.; Weisner-Rose, M.; Mehler, P.S. Weighted Blanket Use: A Systematic Review. Am. J. Occup. Ther. 2020, 74, 7402205010p1–7402205010p14. [Google Scholar] [CrossRef]
- Yu, J.; Yang, Z.; Sun, S.; Sun, K.; Chen, W.; Zhang, L.; Xu, J.; Xu, Q.; Liu, Z.; Ke, J.; et al. The effect of weighted blankets on sleep and related disorders: a brief review. Front. Psychiatry 2024, 15, 1333015. [Google Scholar] [CrossRef]
- Hwang, E.; Shin, S. The effects of aromatherapy on sleep improvement: a systematic literature review and meta-analysis. J. Altern. Complement. Med. 2015, 21, 61–68. [Google Scholar] [CrossRef]
- Alimoradi, Z.; Jafari, E.; Brostrom, A.; Ohayon, M.M.; Lin, C.Y.; Griffiths, M.D.; Blom, K.; Jernelov, S.; Kaldo, V.; Pakpour, A.H. Effects of cognitive behavioral therapy for insomnia (CBT-I) on quality of life: A systematic review and meta-analysis. Sleep. Med. Rev. 2022, 64, 101646. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, Y.; Sakata, M.; Yamamoto, R.; Nakajima, S.; Kikuchi, S.; Inoue, M.; Ito, M.; Noma, H.; Takashina, H.N.; Funada, S.; et al. Components and Delivery Formats of Cognitive Behavioral Therapy for Chronic Insomnia in Adults: A Systematic Review and Component Network Meta-Analysis. JAMA Psychiatry 2024, 81, 357–365. [Google Scholar] [CrossRef]
- Swanson, L.M.; Raglan, G.B. Circadian Interventions as Adjunctive Therapies to Cognitive-Behavioral Therapy for Insomnia. Sleep. Med. Clin. 2023, 18, 21–30. [Google Scholar] [CrossRef]
- Sharma, M.P.; Andrade, C. Behavioral interventions for insomnia: Theory and practice. Indian. J. Psychiatry 2012, 54, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Simon, L.; Terhorst, Y.; Kuchler, A.M.; Riemann, D.; Ebert, D.D.; Rozental, A.; Spiegelhalder, K.; Baumeister, H. Negative effects of cognitive behavioral therapy for insomnia: Psychometric evaluation of an insomnia-specific extension for the Negative Effect Questionnaire. Sleep. Med. 2025, 129, 200–211. [Google Scholar] [CrossRef]
- Sakurai, N.; Ohno, K.; Kasai, S.; Nagasaka, K.; Onishi, H.; Kodama, N. Induction of Relaxation by Autonomous Sensory Meridian Response. Front. Behav. Neurosci. 2021, 15, 761621. [Google Scholar] [CrossRef] [PubMed]
- Gradisar, M.; Dohnt, H.; Gardner, G.; Paine, S.; Starkey, K.; Menne, A.; Slater, A.; Wright, H.; Hudson, J.L.; Weaver, E.; et al. A randomized controlled trial of cognitive-behavior therapy plus bright light therapy for adolescent delayed sleep phase disorder. Sleep. 2011, 34, 1671–1680. [Google Scholar] [CrossRef]
- Rossman, J. Cognitive-Behavioral Therapy for Insomnia: An Effective and Underutilized Treatment for Insomnia. Am. J. Lifestyle Med. 2019, 13, 544–547. [Google Scholar] [CrossRef]
- Doorley, J.; Greenberg, J.; Stauder, M.; Vranceanu, A.M. The role of mindfulness and relaxation in improved sleep quality following a mind-body and activity program for chronic pain. Mindfulness (N Y) 2021, 12, 2672–2680. [Google Scholar] [CrossRef]
- Cain, T.; Brinsley, J.; Bennett, H.; Nelson, M.; Maher, C.; Singh, B. Effects of cold-water immersion on health and wellbeing: A systematic review and meta-analysis. PLoS One 2025, 20, e0317615. [Google Scholar] [CrossRef]
- MacLean, J.; Finkelstein, S.A.; Paredes-Echeverri, S.; Perez, D.L.; Ranford, J. Sensory Processing Difficulties in Patients with Functional Neurological Disorder: Occupational Therapy Management Strategies and Two Cases. Semin. Pediatr. Neurol. 2022, 41, 100951. [Google Scholar] [CrossRef]
- De Jong, R.W.; Davis, G.S.; Chelf, C.J.; Marinelli, J.P.; Erbele, I.D.; Bowe, S.N. Continuous white noise exposure during sleep and childhood development: A scoping review. Sleep. Med. 2024, 119, 88–94. [Google Scholar] [CrossRef]
- Richter, M. Towards the de ds the development of music as an inter elopment of music as an intervention for ention for Insomnia treatment: A research synthesis University of Plymouth 2019.
- Li, D.; Larsen, L.; Yang, Y.; Wang, L.; Zhai, Y.; Sullivan, W.C. Exposure to nature for children with autism spectrum disorder: Benefits, caveats, and barriers. Health Place. 2019, 55, 71–79. [Google Scholar] [CrossRef]
- Fan, L.; Baharum, M.R. The effect of exposure to natural sounds on stress reduction: a systematic review and meta-analysis. Stress. 2024, 27, 2402519. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, N.; Nagasaka, K.; Sasaki, K.; Yuguchi, Y.; Takahashi, S.; Kasai, S.; Onishi, H.; Kodama, N. The relaxation effect of autonomous sensory meridian response depends on personal preference. Front. Hum. Neurosci. 2023, 17, 1249176. [Google Scholar] [CrossRef] [PubMed]
- Haghayegh, S.; Khoshnevis, S.; Smolensky, M.H.; Diller, K.R.; Castriotta, R.J. Before-bedtime passive body heating by warm shower or bath to improve sleep: A systematic review and meta-analysis. Sleep. Med. Rev. 2019, 46, 124–135. [Google Scholar] [CrossRef]
- Bigalke, J.A.; Greenlund, I.M.; Nicevski, J.R.; Carter, J.R. Effect of evening blue light blocking glasses on subjective and objective sleep in healthy adults: A randomized control trial. Sleep. Health 2021, 7, 485–490. [Google Scholar] [CrossRef]
- Ebben, M.R.; Yan, P.; Krieger, A.C. The effects of white noise on sleep and duration in individuals living in a high noise environment in New York City. Sleep. Med. 2021, 83, 256–259. [Google Scholar] [CrossRef]
- Nigg, J.T.; Bruton, A.; Kozlowski, M.B.; Johnstone, J.M.; Karalunas, S.L. Systematic Review and Meta-Analysis: Do White Noise or Pink Noise Help With Task Performance in Youth With Attention-Deficit/Hyperactivity Disorder or With Elevated Attention Problems? J. Am. Acad. Child. Adolesc. Psychiatry 2024, 63, 778–788. [Google Scholar] [CrossRef] [PubMed]
- Zaniboni, L. , Hansen, N.G., Israelsen, F., Toftum, J. Thermal comfort of autistic people with and without a view out. Build. Environ. 2025, 270, 112483. [Google Scholar] [CrossRef]
- Delemere, E.; Dounavi, K. Parent-Implemented Bedtime Fading and Positive Routines for Children with Autism Spectrum Disorders. J. Autism Dev. Disord. 2018, 48, 1002–1019. [Google Scholar] [CrossRef] [PubMed]
- Pattison, E.; Papadopoulos, N.; Fuller-Tyszkiewicz, M.; Sciberras, E.; Hiscock, H.; Williams, K.; McGillivray, J.; Mihalopoulos, C.; Bellows, S.T.; Marks, D.; et al. Randomised Controlled Trial of a Behavioural Sleep Intervention, 'Sleeping Sound', for Autistic Children: 12-Month Outcomes and Moderators of Treatment. J. Autism Dev. Disord. 2024, 54, 442–457. [Google Scholar] [CrossRef] [PubMed]
| Sound Type | Description | Sleep-Related Effect | Population / Context | Reference |
| White noise | Equal intensity across all frequencies | Masks environmental noise, reduces nighttime awakenings | School-aged children with poor sleep hygiene | [157] |
| Pink noise | Emphasis on lower frequencies | Promotes slow-wave sleep and improves memory consolidation | Older adults and individuals with mild insomnia | [73] |
| Brown noise | Deep, low-frequency emphasis | Calms hyper-responsivity, supports relaxation | Adults with sensory over-responsivity or anxiety-related insomnia | [158] |
| Nature sounds | Water, wind, or forest ambient sounds | Induces relaxation and decreases sleep latency | Preschoolers with ASD; adults with stress-related insomnia | [159,160] |
| ASMR (audio-sensory response) | Soft whispering, tapping, rhythmic audio cues | Triggers tingling relaxation response, decreases heart rate, improves subjective sleep onset | Young adults with sleep onset difficulties | [161] |
| Music therapy | Calm instrumental or slow-tempo rhythmic patterns (≤ 60 bpm) | Reduces sleep onset latency, enhances perceived sleep quality | Older adults and individuals with insomnia symptoms | [88] |
| Intervention | Reported Effect | Population | Reference |
| Warm bath before bedtime | Improved sleep onset and efficiency through thermoregulation | Healthy adults | [162] |
| Cooling the sleep environment | Reduced nighttime awakenings, improved sleep satisfaction | Menopausal women | [107] |
| Temperature-controlled bedding | Enhanced sleep continuity, decreased awakenings | Healthy adults | [105] |
| Gentle thermal gradients (fan + ambient cooling) | Improved alertness, reduced sleep inertia | Shift workers | [126] |
| Step | Action | Purpose / Clinical Rationale | Evidence Basis | Example |
| Step 1 | Deliver standard CBT-I modules. | Establish behavioral and cognitive foundations for sleep improvement. | Established (meta-analysis of 241 RCTs, n>30,000) [147] | Weekly sessions addressing sleep-wake schedule consolidation, challenging catastrophic thoughts about sleep. |
| Step 2 | Introduce targeted sensory adjustments (light, sound, or temperature) when progress stalls. | Address residual sensory contributors to hyperarousal or poor sleep consolidation. | Emerging (small RCTs and pilot studies) [163,164] | Adding blue-blocking glasses 2 hours pre-bedtime for patients with evening light exposure; introducing white noise for noise-sensitive patients. |
| Step 3 | Tailor sensory interventions to the patient’s unique sensory profile, assessed via occupational therapy tools. | Personalize treatment for greater adherence and symptom improvement. | Theoretical framework with partial empirical support [50,165,166] | For sensory-sensitive patients: dim light (<30 lux), soft pink noise (35-65 dB), moderate cooling (17-20°C). For low-registration patients: bright morning light (2,000-10,000 lux), white noise, larger temperature contrasts. |
| Step 4 | Embed these strategies into daily occupational routines, ensuring consistency and generalization. | Promote sustained behavioral change and long-term maintenance of sleep gains. | Emerging (neurodivergent populations) [167,168] | Establishing 30-minute wind-down routine: dim lights at 9pm, activate sound machine, adjust thermostat to 68°F, maintain nightly consistency |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
