Submitted:
20 October 2025
Posted:
20 October 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Results
2.1. Soil Moisture and Water Consumption

2.2. Irrigation Water Use in Sweet Cherry by Treatments and Years
| Treatments / Years | Sum of applied water in m3/ha | Days of application | Sum of applied water with rain fall in m3/ha |
|---|---|---|---|
| SLECI mod.2019 / 2021 | 70.3018 | 72 | 171.1522 |
| SLECI mod.2019 / 2022 | 226.4932 | 237 | 422.6245 |
| SLECI mod.2019 / 2023 | 174.8074 | 182 | 349.0611 |
| SLECI mod.2019 / Average | 157.1986 | 314.2771 | |
| Drip irrigation REF. / 2021 | 960.48 | 72 | 1061.33 |
| Drip irrigation REF. / 2022 | 3161.58 | 237 | 3357.711 |
| Drip irrigation REF. / 2023 | 2427.88 | 182 | 2602.134 |
| Drip irrigation REF. / Average | 2183.311 | 2340.39 | |
| Non-irrigation REF. / 2021 | 0 | 72 | 100.8504 |
| Non-irrigation REF. / 2022 | 0 | 237 | 196.1314 |
| Non-irrigation REF. / 2023 | 0 | 182 | 174.2538 |
| Non-irrigation REF. / Average (rainfed) | 0 | 157.0785 |
2.3. Sweet Cherry Yield by Irrigation Treatments and Year
2.4. Irrigation Water Productivity in Sweet Cherry Under SLECI and Drip Irrigation Techniques
2.5. Fruits Quality Traits and Yield

3. Discussion
3.1. S.L.E.C.I. Origin and Principles
3.2. S.L.E.C.I. Devevelopment and Testing
3.3. S.L.E.C.I. Alternatives and Competition
3.4. S.L.E.C.I. Future Development and Possible Applications
4. Materials and Methods
4.1. Research Design
4.2. Climate and Soil Conditions at the Experimental site in Plovdiv, Bulgaria
4.3. Soil Moisture and Water Consumption
4.4. Irrigation Water Productivity Analysis
4.5. Fruits Quality Traits and Yield
4.6. Data Analysis and Processing
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| MDPI | Multidisciplinary Digital Publishing Institute |
| SLECI | Self-Regulating, Low Energy, Clay-Based Irrigation |
| SICE | Subsurface Irrigation with Ceramic Emitters |
| CP-SDIL | Ceramic-Patch-Type Subsurface Drip Irrigation Line |
| SDI | Sub-surface drip irrigation |
| IWP | Irrigation water productivity |
| DIVAGRI | 101000348 – DIVAGRI “Revenue diversification pathways in Africa through bio-based and circular agricultural innovations” |
References
- Falkenmark, M. Growing Water Scarcity in Agriculture: Future Challenge to Global Water Security. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2013, 371. [Google Scholar] [CrossRef]
- Taft, H.L. Water Scarcity: Global Challenges for Agriculture. Food, Energy, and Water: The Chemistry Connection 2015, 395–429. [Google Scholar] [CrossRef]
- Mancosu, N.; Snyder, R.L.; Kyriakakis, G.; Spano, D. Water Scarcity and Future Challenges for Food Production. Water 2015, Vol. 7, Pages 975-992 2015, 7, 975–992. [Google Scholar] [CrossRef]
- Dinar, A.; Tieu, A.; Huynh, H. Water Scarcity Impacts on Global Food Production. Glob Food Sec 2019, 23, 212–226. [Google Scholar] [CrossRef]
- Moteva, M.; Spalevic, V.; Gigova, A.; Tanaskovik, V. Water Use Efficiency and Yield-Dependences for Canola (Brassica Napus, L.) under Irrigation. The Journal “Agriculture and Forestry” 2016, 62, 403–413. [Google Scholar] [CrossRef]
- Yazar, A.; Gökçel, F.; Sezen, M.S. Corn Yield Response to Partial Rootzone Drying and Deficit Irrigation Strategies Applied with Drip System. PLANT SOIL ENVIRON. 2009, 55, 494–503. [Google Scholar] [CrossRef]
- Blanco, V.; Blaya-Ros, P.J.; Torres-Sánchez, R.; Domingo, R. Influence of Regulated Deficit Irrigation and Environmental Conditions on Reproductive Response of Sweet Cherry Trees. Plants 2020, Vol. 9, Page 94 2020, 9, 94. [Google Scholar] [CrossRef] [PubMed]
- Blanco, V.; Martínez-Hernández, G.B.; Artés-Hernández, F.; Blaya-Ros, P.J.; Torres-Sánchez, R.; Domingo, R. Water Relations and Quality Changes throughout Fruit Development and Shelf Life of Sweet Cherry Grown under Regulated Deficit Irrigation. Agric Water Manag 2019, 217, 243–254. [Google Scholar] [CrossRef]
- Naor, A. Irrigation Scheduling of Peach - Deficit Irrigation at Different Phenological Stages and Water Stress Assessment. Acta Hortic 2006, 713, 339–349. [Google Scholar] [CrossRef]
- Neilsen, G.H.; Neilsen, D.; Forge, T. Environmental Limiting Factors for Cherry Production. In Cherries: Botany, Production and Uses; Quero-García, J., Lezzoni, A., Puławska, J., Lang, G., Eds.; CABI International, 2017; pp. 189–222. ISBN 9781780648378.
- Koumanov, K.S. Drought Mitigation Effects of Microirrigation in Orchards. In Proceedings of the ICID International Conference on „Drought Mitigation and Prevention of Land Desertification, Bled, Slovenia; 2002; Vol. 20, p. 26.
- Correia, S.; Schouten, R.; Silva, A.P.; Gonçalves, B. Sweet Cherry Fruit Cracking Mechanisms and Prevention Strategies: A Review. Sci Hortic 2018, 240, 369–377. [Google Scholar] [CrossRef]
- Blanco, V.; Domingo, R.; Pérez-Pastor, A.; Blaya-Ros, P.J.; Torres-Sánchez, R. Soil and Plant Water Indicators for Deficit Irrigation Management of Field-Grown Sweet Cherry Trees. Agric Water Manag 2018, 208, 83–94. [Google Scholar] [CrossRef]
- Blanco, V.; Zoffoli, J.P.; Ayala, M. Eco-Physiological Response, Water Productivity and Fruit Quality of Sweet Cherry Trees under High Tunnels. Sci Hortic 2021, 286, 110180. [Google Scholar] [CrossRef]
- Koumanov, K. Development of Irrigation and Drainage in Bulgaria. In Vodoprivreda; 2003; Vol. 35, pp. 86–90.
- Clemmens, A.J.; Dedrick, A.R. Irrigation Techniques and Evaluations. 1994, 64–103. [CrossRef]
- Abdelhafez, A.A.; Metwalley, S.M.; Abbas, H.H. Irrigation: Water Resources, Types and Common Problems in Egypt. Springer Water 2020, 15–34. [Google Scholar] [CrossRef]
- Malchev, S.; Kornov, G.; Hansmann, H. Innovative Clay-Based Micro-Irrigation System “SLECI” (Self-Regulating, Low Energy, Clay-Based Irrigation): Preliminary Results from Cherry Orchard Trials. Journal of Agricultural, Food and Environmental Sciences 2022, 76, 45–55. [Google Scholar] [CrossRef]
- Revenue Diversification Pathways in Africa through Bio-Based and Circular Agricultural Innovations | DIVAGRI | Projekt | Fact Sheet | H2020 | CORDIS | European Commission. Available online: https://cordis.europa.eu/project/id/101000348 (accessed on 8 May 2025).
- Tharaga, P.C.; Tesfuhuney, W.A.; Coetzer, G.M.; Savage, M.J. Heat Pulse Velocity Method for Determining Water Requirements in Rainfed Sweet Cherry Trees (Prunus Avium L.). Frontiers in Horticulture 2023, 2, 1155862. [Google Scholar] [CrossRef]
- Tanaskovik, V.; Cukaliev, O.; Kanwar, R.S.; Heng, L.K.; Markoski, M.; Spalevic, V. Nitrogen Fertilizer Use Efficiency of Pepper as Affected by Irrigation and Fertilization Regime. Not Bot Horti Agrobot Cluj Napoca 2016, 44, 525–532. [Google Scholar] [CrossRef]
- University of Ss. Cyril and Methodius in Skopje, F. of A.S. and F.-S.N.M. Technical Report on SLECI Pilot Sites Installed within the DIVAGRI Project; 2025;
- Osei, G.; Owusu-Sekyere, J.; Sam-Amoah, L.K.; Kumi, F.; Hansmann, H.; Agyemang, V.O.; Darko, R.O.; Mensah, K.; Okhumai, D. Bell Pepper (Capsicum Annuum) Response to Self-Regulating Low Energy Clay-Based Irrigation (SLECI) System, Burying Depth and Fertilizer Application Dosage. Journal of Central European Agriculture 2024, 25, 1148–1161. [Google Scholar] [CrossRef]
- Mahler, E. Innovations in Clay-Based Irrigation Technologies—A Systematic Review. Sustainability (Switzerland) 2024, 16, 7029. [Google Scholar] [CrossRef]
- Agbesi, W.E.K.; Sam-Amoah, L.K.; Darko, R.O.; Kumi, F.; Boafo, G. Numerical Models for Predicting Water Flow Characteristics and Optimising a Subsurface Self-Regulating, Low-Energy, Clay-Based Irrigation (SLECI) System in Sandy Loam Soil. Water 2025, Vol. 17, Page 2058 2025, 17, 2058. [Google Scholar] [CrossRef]
- Neilsen, G.H.; Neilsen, D.; Kappel, F.; Forge, T. Interaction of Irrigation and Soil Management on Sweet Cherry Productivity and Fruit Quality at Different Crop Loads That Simulate Those Occurring by Environmental Extremes. 2014, 49, 215–220. [CrossRef]
- Cai, Y.; Wu, P.; Zhu, D.; Zhang, L.; Zhao, X.; Gao, X.; Ge, M.; Song, X.; Wu, Y.; Dai, Z. Subsurface Irrigation with Ceramic Emitters: An Effective Method to Improve Apple Yield and Irrigation Water Use Efficiency in the Semiarid Loess Plateau. Agric Ecosyst Environ 2021, 313, 107404. [Google Scholar] [CrossRef]
- Hansmann, H.; Siering, J. Verhinderung Des Algenbefalls von Saugsystemen Aus Ton Zur Bewässerung von Nutzpflanzen in Tropischen Gebieten Der Sahel-Zone Am Beispiel Ghanas; Wismar, 2018;
- Han, M.; Zhang, L.; Liu, X. Subsurface Irrigation with Ceramic Emitters Improves Wolfberry Yield and Economic Benefits on the Tibetan Plateau, China. J Arid Land 2023, 15, 1376–1390. [Google Scholar] [CrossRef]
- Predieri, S. Influence of Environmental Factors and Orchard Management on Yield and Quality of Sweet Cherry. J Food Agric Environ 2003. [Google Scholar]
- Ali, N.; Dong, Y.; Lavely, E. Impact of Irrigation Scheduling on Yield and Water Use Efficiency of Apples, Peaches, and Sweet Cherries: A Global Meta-Analysis. Agric Water Manag 2024, 306, 109148. [Google Scholar] [CrossRef]
- Long, L.E.; Yin, X.; Huang, X.L.; Jaja, N. Responses of Sweet Cherry Water Use and Productivity and Soil Quality to Alternate Groundcover and Irrigation Systems. Acta Hortic 2014, 1020, 331–338. [Google Scholar] [CrossRef]
- Yin, X.; Seavert, C.F.; Le Roux, J. Responses of Irrigation Water Use and Productivity of Sweet Cherry to Single-Lateral Drip Irrigation and Ground Covers. Soil Sci 2011, 176, 39–47. [Google Scholar] [CrossRef]
- Marsal, J.; Lopez, G.; del Campo, J.; Mata, M.; Arbones, A.; Girona, J. Postharvest Regulated Deficit Irrigation in “Summit” Sweet Cherry: Fruit Yield and Quality in the Following Season. Irrig Sci 2010, 28, 181–189. [Google Scholar] [CrossRef]
- Carrasco-Benavides, M.; Espinoza Meza, S.; Olguín-Cáceres, J.; Muñoz-Concha, D.; von Bennewitz, E.; Ávila-Sánchez, C.; Ortega-Farías, S. Effects of Regulated Post-Harvest Irrigation Strategies on Yield, Fruit Quality and Water Productivity in a Drip-Irrigated Cherry Orchard. N Z J Crop Hortic Sci 2020, 48, 97–116. [Google Scholar] [CrossRef]
- Blanco, V.; Blaya-Ros, P.J.; Torres-Sánchez, R.; Domingo, R. Irrigation and Crop Load Management Lessen Rain-Induced Cherry Cracking. Plants 2022, Vol. 11, Page 3249 2022, 11, 3249. [Google Scholar] [CrossRef] [PubMed]
- Penzel, M.; Möhler, M. Auswirkungen von Mulch Und Bewässerung Auf Wachstum, Ertrag Und Fruchtmasse von Süßkirschen. Journal für Kulturpflanzen 2023, 75, 185–195. [Google Scholar] [CrossRef]
- Zhao, J.; Li, M.; Guo, P.; Zhang, C.; Tan, Q. Agricultural Water Productivity Oriented Water Resources Allocation Based on the Coordination of Multiple Factors. Water 2017, Vol. 9, Page 490 2017, 9, 490. [Google Scholar] [CrossRef]
- Tanaskovik, V.; Cukaliev, O.; Romić, D.; Ondrasek, G.; Savić, R.; Nechkovski, S. WATER USE EFFICIENCY AND PEPPER YIELD UNDER DIFFERENT IRRIGATION AND FERTILIZATION REGIME #. CONTRIBUTIONS, Section of Natural, Mathematical and Biotechnical Sciences, MASA 2019, 40, 53–62. [Google Scholar] [CrossRef]
- Kang, Y.; Khan, S.; Ma, X. Climate Change Impacts on Crop Yield, Crop Water Productivity and Food Security – A Review. Progress in Natural Science 2009, 19, 1665–1674. [Google Scholar] [CrossRef]
- Li, G.; Zhang, C.; Huo, Z.; Liu, Y. Achieving Comprehensive Water Productivity Improvement: A Multi-Objective Simulation-Optimization Model for Water Productivity-Oriented Irrigation Water Management. Agric Water Manag 2025, 309, 109316. [Google Scholar] [CrossRef]
- Ali, M.H.; Talukder, M.S.U. Increasing Water Productivity in Crop Production—A Synthesis. Agric Water Manag 2008, 95, 1201–1213. [Google Scholar] [CrossRef]
- Cetin, O.; Doğanay, K.; Tari, A. ASSESSEMENT OF WATER AND ECONOMIC PRODUCTIVITY IN IRRIGATION MANAGEMENT. In Proceedings of the Proceedings of the XII International Scientific Agricultural Symposium “Agrosym 2021”; Jahorina, 2021; pp. 968–974.
- Lacerda, N.B.; Oliveira, T.S. Agricultura Irrigada e a Qualidade de Vida Dos Agricultores Em Perímetros Do Estado Do Ceará, Brasil. Revista Ciência Agronômica 2007, 38, 216–223. [Google Scholar]
- AQUASTAT - FAO’s Global Information System on Water and Agriculture. Available online: https://www.fao.org/aquastat/en/overview/methodology/water-use (accessed on 1 October 2025).
- Morison, J.I.L.; Baker, N.R.; Mullineaux, P.M.; Davies, W.J. Improving Water Use in Crop Production. Philosophical Transactions of the Royal Society B: Biological Sciences 2007, 363, 639–658. [Google Scholar] [CrossRef]
- Transnational Partnership for the Implementation of a Microirrigation Technology - Hochschule Wismar. Available online: https://www.hs-wismar.de/en/research/from-the-research/rdb/detail/n/mikro-irrigation/ (accessed on 8 May 2025).
- DIVAGRI | About Us. Available online: https://divagri.org/ (accessed on 8 May 2025).
- Amponsah, S.K.; Frimpong, F.; Danquah, E.O.; Amankwaa-Yeboah, P.; Amengor, N.E.; Dzomeku, J.B.; Agyemang, S.M.; Adu, J.K.; Frimpong, T.; Azumah, D.D. Performance of a Horizontal Subsurface Flow Constructed Wetland in Treating Aquaculture Wastewater. Journal of Ecological Engineering 2024, 25, 53–61. [Google Scholar] [CrossRef]
- Cai, Y.; Wu, P.; Zhu, D.; Li, X.; Zhang, L.; Chen, J. Preparation Technology Optimization of Diatomite Porous Ceramic Irrigation Emitter. Transactions of the Chinese Society of Agricultural Engineering 2015, 31, 70–76. [Google Scholar]
- Cai, Y.; Zhao, X.; Wu, P.; Zhang, L.; Zhu, D.; Chen, J.; Lin, L. Ceramic Patch Type Subsurface Drip Irrigation Line: Construction and Hydraulic Properties. Biosyst Eng 2019, 182, 29–37. [Google Scholar] [CrossRef]
- Malchev, S.; Kornov, G. “SLECI” the Innovative Microirrigation System Presented by the Fruit Growing Institute – Plovdiv at the AGRA Innovation Competition 2023. Agriculture Plus 2023, 303, 11–13. [Google Scholar]
- Ryan, J.; Setefan, G.; Rashid, A. Soil and Plant Analysis Laboratory Manual.; 2nd ed.; Jointly published by the International Center for Agricultural Research in the Dry Areas (ICARDA) and the National Agricultural Research Center (NARC). Available from ICARDA, Aleppo, Syria., 2001. ISBN 92-9127-118-7.
- Evett, S.R. Soil Water and Monitoring Technology. Irrigation of Agricultural Crops 2015, 23–84. [Google Scholar] [CrossRef]
- Çetin, O.; Kara, A. Assesment of Water Productivity Using Different Drip Irrigation Systems for Cotton. Agric Water Manag 2019, 223, 105693. [Google Scholar] [CrossRef]
- Fernández, J.E.; Alcon, F.; Diaz-Espejo, A.; Hernandez-Santana, V.; Cuevas, M. V. Water Use Indicators and Economic Analysis for On-Farm Irrigation Decision: A Case Study of a Super High Density Olive Tree Orchard. Agric Water Manag 2020, 237, 106074. [Google Scholar] [CrossRef]
- De Mendiburu, F. Title Statistical Procedures for Agricultural Research; 2023;



| Treatments / Years | Average sweet cherry yield in kg/ha | Frost damage (%) |
|---|---|---|
| SLECI mod.2019 / 2021 | Single fruits* | No damage |
| SLECI mod.2019 / 2022 | 680.34 | No damage |
| SLECI mod.2019 / 2023 | 1614.14 | 35.93 |
| SLECI mod.2019 / Average | 1147.24 | |
| Drip irrigation REF. / 2021 | Single fruits* | No damage |
| Drip irrigation REF. / 2022 | 480.24 | No damage |
| Drip irrigation REF. / 2023 | 1987.66 | 16.05 |
| Drip irrigation REF. / Average | 1233.95 | |
| Non-irrigation REF. / 2021 | Not fruits** | No damage |
| Non-irrigation REF. / 2022 | 306.82 | No damage |
| Non-irrigation REF. / 2023 | 306.82 | 51.6 |
| Non-irrigation REF. / Average (rainfed) | 306.82 |
| Irrigation treatments / Year | Average sweet cherry yield in kg/ha | Water applied for irrigation in m3/ha | Irrigation water productivity in kg/m3 |
| SLECI mod.2019 / 2022 | 680.34 | 226.49 | 3.00 |
| SLECI mod.2019 / 2023 | 1614.14 | 174.81 | 9.23 |
| SLECI mod.2019 / Average | 1147.24 | 200.65 | 5.72 |
| Drip irrigation REF. / 2022 | 480.24 | 3161.58 | 0.15 |
| Drip irrigation REF. / 2023 | 1987.66 | 2427.88 | 0.82 |
| Drip irrigation REF. / Average | 1233.95 | 2794.73 | 0.44 |
| Non-irrigation REF. / 2022 | 306.82 | 0 | n/a* |
| Non-irrigation REF. / 2023 | 306.82 | 0 | n/a* |
| Non-irrigation REF. / Average (rainfed) | 306.82 | 0 | n/a* |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
