Submitted:
17 October 2025
Posted:
20 October 2025
You are already at the latest version
Abstract
Keywords:
Introduction
2. Physicochemical Constraints and Exposure Relevance
2.1. Bacterial Porins versus LNP Dimensions
2.2. Free Lipid versus Formulated Behavior
3. Cellular Uptake and PBMC Relevance
3.1. PBMC Cell Types and Uptake Capacity
3.2. Implication for Micronucleus and Other PBMC In Vitro Assays
4. What Companies Tested
4.1. Moderna
4.2. U.S. FDA and Other Regulators
4.3. Pfizer/BioNTech Approach
4.4. Older or Foreign Platform Constructs Not Included in U.S. Submissions
5. Evidence That Reactive Impurities in Ionizable Lipids Form Adducts
6. Linearized DNA Plasmid Contaminants and Potential Intracellular Interactions
7. Limitations of Conventional Ames and PBMC Assays Relative to ICH M7 Guidance
8. Recommended Approach
Conclusions
Author Contributions
Funding
Conflict of Interest
References
- Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics--developing a new class of drugs. Nat Rev Drug Discov. 2014;13:759–780.
- Packer M, Gyawali D, Yerabolu R, et al. A novel mechanism for the loss of mRNA activity in lipid nanoparticle delivery systems. Nat Commun. 2021;12:6777. [CrossRef]
- Speicher DJ, Rose J, McKernan K. Quantification of residual plasmid DNA and SV40 promoter-enhancer sequences in Pfizer/BioNTech and Moderna modRNA COVID-19 vaccines from Ontario, Canada. Autoimmunity. 2025 Dec;58(1):2551517. Epub 2025 Sep 6. PMID: 40913499. [CrossRef]
- International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH). ICH M7(R2): Assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk. Step 5. EMA/CHMP/ICH/83812/2013. Published July 2023. Available from https://www.ema.europa.eu/en/ich-m7-assessment-control-dna-reactive-mutagenic-impurities-pharmaceuticals-limit-potential-carcinogenic-risk-scientific-guideline#:~:text=This%20guideline%20emphasizes%20considerations%20of,intended%20conditions%20of%20human%20use.
- European Medicines Agency (EMA). M7(R2) Assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk: Questions and Answers. EMA/CHMP/ICH/321999/2020. Published July 2023.
- U.S. Food and Drug Administration (FDA). Redbook 2000: Toxicological Principles for the Safety Assessment of Food Ingredients. IV.C.1.a. Bacterial Reverse Mutation Test. Final. July 2000. Available from: https://www.fda.gov/food/ingredient-and-packaging-guidance-documents-guidance-documents-food-and-dietary-supplements/redbook-2000-toxicological-principles-safety-assessment-food-ingredients.
- U.S. Food and Drug Administration (FDA). Guidance for industry: M7(R2) Assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk. Published July 2023. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-m7r2-assessment-and-control-dna-reactive-mutagenic-impurities-pharmaceuticals.
- Sundara Baalaji N, Mathew MK, Krishnaswamy S. Functional assay of Salmonella typhi OmpC using reconstituted large unilamellar vesicles: a general method for characterization of outer membrane proteins. Biochimie. 2006;88(10):1419–24. [CrossRef]
- Albertsen CH, Kulkarni JA, Witzigmann D, Lind M, Petersson K, Simonsen JB. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Adv Drug Deliv Rev. 2022;188:114416. [CrossRef]
- Zhang L, More KR, Ojha A, et al. Effect of mRNA-LNP components of two globally-marketed COVID-19 vaccines on efficacy and stability. NPJ Vaccines. 2023;8:156. [CrossRef]
- Wilson B, Geetha KM. Lipid nanoparticles in the development of mRNA vaccines for COVID-19. J Drug Deliv Sci Technol. 2022;74:103553. [CrossRef]
- PubChem. ALC-0315. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Alc-0315.
- Cayman Chemical. ALC-0315 (CAS 2036272-55-4). Available from: https://www.caymanchem.com/product/34337/alc-0315.
- ABP Biosciences. ALC-0315. Available from: https://broadpharm.com/product/bp-25498.
- Ren Y, Lin L, Abdallah M, Zhu X, Liu H, Fabb SA, Payne TJ, Pouton CW, Johnston APR, Trevaskis NL. Impact of ionizable lipid type on the pharmacokinetics and biodistribution of mRNA-lipid nanoparticles after intravenous and subcutaneous injection. J Control Release. 2025;384:113945. [CrossRef]
- Lu ZR, Sun D. Mechanism of pH-sensitive amphiphilic endosomal escape of ionizable lipid nanoparticles for cytosolic nucleic acid delivery. Pharm Res. 2025;42(7):1065–1077. [CrossRef]
- Pearce EL. Metabolism in T cell activation and differentiation. Curr Opin Immunol. 2010;22(3):314–320. [CrossRef]
- Diniz VLS, Alvares-Saraiva AM, Serdan TDA, dos Santos-Oliveira LC, Cruzat V, Lobato TB, Manoel R, Alecrim AL, Machado OA, Hirabara SM, Masi LN, Pithon-Curi TC, Curi R, Gorjão R, Newsholme P. Essential metabolism required for T and B lymphocyte functions: an update. Clin Sci (Lond). 2023;137(10):807–821. [CrossRef]
- Kuang L, Wu L, Li Y. Extracellular vesicles in tumor immunity: mechanisms and novel insights. Mol Cancer. 2025;24(1):45. [CrossRef]
- Diniz VLS, Alvares-Saraiva AM, Serdan TDA, dos Santos-Oliveira LC, Cruzat V, Lobato TB, Manoel R, Alecrim AL, Machado OA, Hirabara SM, Masi LN, Pithon-Curi TC, Curi R, Gorjão R, Newsholme P. Essential metabolism required for T and B lymphocyte functions: an update. Clin Sci (Lond). 2023;137(10):807–821. [CrossRef]
- Wang R, Lan C, Benlagha K, Camara NOS, Miller H, Kubo M, Heegaard S, Lee P, Yang L, Forsman H, Li X, Zhai Z, Liu C. The interaction of innate immune and adaptive immune system. MedComm. 2024;5(10):e714. [CrossRef]
- Lima AC, Reis RL, Ferreira H, Neves NM. Cellular uptake of three different nanoparticles in an inflammatory arthritis scenario versus normal conditions. Mol Pharm. 2021;18(9):3235–3246. [CrossRef]
- Kim EH, Teerdhala SV, Padilla MS, Joseph RA, Li JJ, Haley RM, Mitchell MJ. Lipid nanoparticle-mediated RNA delivery for immune cell modulation. Eur J Immunol. 2024;54(12):e2451008. [CrossRef]
- Tilsed CM, Sadiq BA, Papp TE, Areesawangkit P, Kimura K, Noguera-Ortega E, Scholler J, Cerda N, Aghajanian H, Bot A, Mui B, Tam Y, Weissman D, June CH, Albelda SM, Parhiz H. IL7 increases targeted lipid nanoparticle–mediated mRNA expression in T cells in vitro and in vivo by enhancing T cell protein translation. Proc Natl Acad Sci U S A. 2024;121(13):e2319856121. [CrossRef]
- Zhang Y, Sun C, Wang C, Jankovic KE, Dong Y. Lipids and lipid derivatives for RNA delivery. Chem Rev. 2021;121(20):12181–12277. [CrossRef]
- Oliveres R. Endosomal escape: a critical challenge in LNP-mediated therapeutics [Internet]. 2025 Oct 2 [cited 2025 Oct 12].
- Liu H, Chen MZ, Payne T, Porter CJH, Pouton CW, Johnston APR. Beyond the endosomal bottleneck: understanding the efficiency of mRNA/LNP delivery. Adv Funct Mater. [Internet]. [cited 2025 Oct 12].
- Broudic K, Amberg A, Schaefer M, Spirkl HP, Bernard MC, Desert P. Nonclinical safety evaluation of a novel ionizable lipid for mRNA delivery. Toxicol Appl Pharmacol. 2022;451:116143. [CrossRef]
- Baslé A, Rummel G, Storici P, Rosenbusch JP, Schirmer T. Crystal structure of osmoporin OmpC from E. coli at 2.0 Å. J Mol Biol. 2006;362(5):933–942. [CrossRef]
- Benz R, Ishii J, Nakae T. Determination of ion permeability through the channels made of porins from the outer membrane of Salmonella typhimurium in lipid bilayer membranes. J Membr Biol. 1980;56(1):19–29. PMID: 7003150. [CrossRef]
- Kulkarni JA, Witzigmann D, Chen S, Cullis PR, van der Meel R. Lipid nanoparticle technology for nucleic acid therapeutics. Nat Rev Drug Discov. 2021;20(9):653-654. [CrossRef]
- Albertsen HK, Kulkarni JA, Witzigmann D, et al. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Adv Drug Deliv Rev. 2022;188:114416. [CrossRef]
- European Medicines Agency. Spikevax (COVID-19 Vaccine Moderna): EPAR – Public Assessment Report. EMA/473748/2021. Amsterdam: EMA; 2021.
- U.S. Food and Drug Administration. Summary Basis for Regulatory Action: Moderna COVID-19 Vaccine (mRNA-1273). Silver Spring, MD: FDA; 2020.
- U.S. Food and Drug Administration. Spikevax (elasomeran) Package Insert. Silver Spring, MD: FDA; 2022.
- Moderna, Inc. Safety Data Sheet: SARS-CoV-2 vaccine (mRNA-1273). Version 2.1. Cambridge, MA: Moderna; 2022.
- U.S. Food and Drug Administration. Summary Basis for Regulatory Action: Pfizer-BioNTech COVID-19 Vaccine (BNT162b2). Silver Spring, MD: FDA; 2020.
- Hald Albertsen C, Kulkarni JA, Witzigmann D, Lind M, Petersson K, Simonsen JB. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Adv Drug Deliv Rev. 2022;188:114416. [CrossRef]
- U.S. FDA. VRBPAC Briefing Document: Moderna COVID-19 Vaccine [Internet]. Silver Spring, MD: FDA; 2020–2021. https://www.fda.gov/media/144434/download.
- EMA Comirnaty (Pfizer/BioNTech) Assessment Report, 2021. European Medicines Agency. Available: https://www.ema.europa.eu/en/documents/assessment-report/comirnaty-epar-public-assessment-report_en.pdf.
- Bajaj H, Acosta Gutierrez S, Bodrenko I, Malloci G, Scorciapino MA, Winterhalter M, Ceccarelli M. Bacterial outer membrane porins as electrostatic nanosieves: exploring transport rules of small polar molecules. ACS Nano. 2017 May 9;11(6):6050–6060. [CrossRef]
- Witte I, Plappert U, de Wall H, Hartmann A. Genetic toxicity assessment: employing the best science for human safety evaluation part III: the comet assay as an alternative to in vitro clastogenicity tests for early drug candidate selection. Toxicol Sci. 2007 May;97(1):21–6. Epub 2007 Jan 4. PMID: 17204584. [CrossRef]
- Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine. 2017;12:1227–1249. [CrossRef]
- Lindsay S, Hussain M, Binici B, Perrie Y. Exploring the challenges of lipid nanoparticle development: the in vitro–in vivo correlation gap. Vaccines (Basel). 2025;13(4):339. [CrossRef]
- Chatterjee S, Kon E, Sharma P, Peer D. Endosomal escape: a bottleneck for LNP-mediated therapeutics. Proc Natl Acad Sci U S A. 2024;121(11):e2307800120. [CrossRef]
- Binici B, Rattray Z, Zinger A, Perrie Y. Exploring the impact of commonly used ionizable and pegylated lipids on mRNA-LNPs: a combined in vitro and preclinical perspective. J Control Release. 2025;377:162–173. [CrossRef]
- Kim KQ, Burgute BD, Tzeng SC, Jing C, Jungers C, Zhang J, Yan LL, Vierstra RD, Djuranovic S, Evans BS, Zaher HS. N1-methylpseudouridine found within COVID-19 mRNA vaccines produces faithful protein products. Cell Rep. 2022;40(9):111300. [CrossRef]
- Sui Y, Hou X, Zhang J, Hong X, Wang H, Xiao Y, Zeng X. Lipid nanoparticle-mediated targeted mRNA delivery and its application in cancer therapy. J Mater Chem B. 2025;13:10085–10117. [CrossRef]
- Kang M, Kim H, Leal C. Self-organization of nucleic acids in lipid constructs. Curr Opin Colloid Interface Sci. 2016;26:58–65. [CrossRef]
- Dass CR. Improving anti-angiogenic therapy via selective delivery of cationic liposomes to tumour vasculature. Int J Pharm. 2003;267(1–2):1–12. [CrossRef]
- Kwizera R, Xie J, Nurse N, Yuan C, Kirchmaier AL. Impacts of nucleosome positioning elements and pre-assembled chromatin states on expression and retention of transgenes. Genes (Basel). 2024;15(9):1232. [CrossRef]
- Zierhut C, Jenness C, Kimura H, Funabiki H. Nucleosomal regulation of chromatin composition and nuclear assembly revealed by histone depletion. Nat Struct Mol Biol. 2014;21(7):617–625. [CrossRef]
- Ross JA, Nesnow S. Polycyclic aromatic hydrocarbons: correlations between DNA adducts and ras oncogene mutations. Mutat Res. 1999;424(1–2):155–166. [CrossRef]
- Hwa Yun B, Guo J, Bellamri M, Turesky RJ. DNA adducts: formation, biological effects, and new biospecimens for mass spectrometric measurements in humans. Mass Spectrom Rev. 2020;39(1–2):55–82. [CrossRef]
- Cai X, Chiu YH, Chen ZJ. The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Mol Cell. 2014;54(2):289–296. [CrossRef]
- Schlich M, Palomba R, Costabile G, Mizrahy S, Pannuzzo M, Peer D, Decuzzi P. Cytosolic delivery of nucleic acids: the case of ionizable lipid nanoparticles. Bioeng Transl Med. 2021;6(2):e10213. [CrossRef]
- Lim S, Yocum RR, Silver PA, et al. High spontaneous integration rates of end-modified linear DNAs upon mammalian cell transfection. Sci Rep. 2023;13:6835. [CrossRef]
- Haraguchi T, Koujin T, Shindo T, et al. Transfected plasmid DNA is incorporated into the nucleus via nuclear envelope reformation at telophase. Commun Biol. 2022;5:78. [CrossRef]
- Christopher JA, Stadler C, Martin CE, Morgenstern M, Pan Y, Betsinger CN, et al. Subcellular proteomics. Nat Rev Methods Primers. 2021;1:32. [CrossRef]
- Galloway SM. International regulatory requirements for genotoxicity testing for pharmaceuticals used in human medicine, and their impurities and metabolites. Environ Mol Mutagen. 2017;58(5):296–324. Epub 2017 Mar 16. PMID: 28299826. [CrossRef]
- International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH). ICH M7: Assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk. European Medicines Agency; 2023 Sep 30. Available from: https://www.ema.europa.eu/en/ich-m7-assessment-control-dna-reactive-mutagenic-impurities-pharmaceuticals-limit-potential-carcinogenic-risk-scientific-guideline.
- Fuerst JA, Sagulenko E. Protein uptake by bacteria: an endocytosis-like process in the planctomycete Gemmata obscuriglobus. Commun Integr Biol. 2010;3(6):572–575. [CrossRef]
- Wang J, Chen R, Xie Y, Qin X, Zhou Y, Xu C. Endo/lysosomal-escapable lipid nanoparticle platforms for enhancing mRNA delivery in cancer therapy. Pharmaceutics. 2025;17(7):803. [CrossRef]
- Bai H, Lester GMS, Petishnok LC, Dean DA. Cytoplasmic transport and nuclear import of plasmid DNA. Biosci Rep. 2017;37(6):BSR20160616. [CrossRef]
- Wang J, Ding Y, Chong K, Cui M, Cao Z, Tang C, Tian Z, Hu Y, Zhao Y, Jiang S. Recent advances in lipid nanoparticles and their safety concerns for mRNA delivery. Vaccines (Basel). 2024;12(10):1148. [CrossRef]
- Kwon J, Bakhoum SF. The cytosolic DNA-sensing cGAS-STING pathway in cancer. Cancer Discov. 2020;10(1):26–39. [CrossRef]
- Leitner A, Dorn G, Allain FH. Combining mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy for integrative structural biology of protein-RNA complexes. Cold Spring Harb Perspect Biol. 2019;11(7):a032359. [CrossRef]
- Kurashige T, Shimamura M, Nagayama Y. Differences in quantification of DNA double-strand breaks assessed by 53BP1/γH2AX focus formation assays and the comet assay in mammalian cells treated with irradiation and N-acetyl-L-cysteine. J Radiat Res. 2016;57(3):312–7. PMID:26951077; PMCID:PMC4915540. [CrossRef]
- Lu Y, Liu Y, Yang C. Evaluating in vitro DNA damage using comet assay. J Vis Exp. 2017;(128):56450. [CrossRef]
- Jennings LJ, Arcila ME, Corless C, Kamel-Reid S, Lubin IM, Pfeifer J, et al. Guidelines for validation of next-generation sequencing-based oncology panels: a joint consensus recommendation of the Association for Molecular Pathology and College of American Pathologists. J Mol Diagn. 2017;19(3):341–65. [CrossRef]
- Yu L, Liu P. Cytosolic DNA sensing by cGAS: regulation, function, and human diseases. Signal Transduct Target Ther. 2021;6:170. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
