Submitted:
15 October 2025
Posted:
16 October 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Theoretical Framework and Biological Inspiration
2.1. Bayesian Foundations of Learning
2.2. The Predictive Coding Paradigm
2.3. Chronotropic Frequencies and Temporal Dynamics
3. System Architecture and Algorithmic Implementation
3.1. Core Data Structure: Crumb and Counters
go
type Counter struct {
ID uint32 // Unique pattern identifier
Value int // Frequency weight (probability proxy)
Matches uint32 // Number of confirmations
}
3.2. The Bidirectional Processing Pipeline
- Beginning Processor: Analyzes data chunks in their natural, forward sequence, identifying cause-and-effect relationships.
- Inverse Processor: Processes data in reverse order, specializing in detecting structural patterns and holistic configurations.
3.3. The Bayesian Updating Algorithm
go
func processCrumb(counters map[uint32]int, crumb uint32) {
thresholdCheck(counters) // Prevents overflow, akin to homeostatic plasticity (Turrigiano, 2008)
if count, exists := counters[crumb]; exists {
// Bayesian Update: Stronger priors get larger updates
if count > config.CounterValue/2 {
counters[crumb] += config.PredictIncrement // Significant pattern reinforcement
} else {
counters[crumb] += config.Increment // Standard update
}
} else {
counters[crumb] = config.Increment // New hypothesis creation
}
}
3.4. Memory Management: Filtration and Normalization
- Adaptive Filtration: Periodically removes the least-used counters (e.g., the bottom 1%). This implements Bayesian model selection, pruning low-probability hypotheses to free resources, mirroring synaptic pruning in neural development (Hua & Smith, 2004).
- Threshold Normalization: When any counter exceeds a maximum value (CounterValue), all counters are halved. This prevents numerical overflow while preserving relative probability relationships, analogous to synaptic scaling mechanisms that maintain neural circuit stability (Turrigiano & Nelson, 2004).
4. Empirical Validation and Comparative Analysis
| Metric | Ze System | LSTM Networks | Markov Models | Count-Min Sketch |
|---|---|---|---|---|
| Prediction Accuracy | 78-92% | 75-90%* | 70-85% | 60-80% |
| Data Efficiency | Very High | Low (Large datasets) | Moderate | High |
| Adaptation Speed | 2-3 seconds | Slow (Retraining) | Very Slow | N/A |
| Computational Savings | 37-42% | Baseline | 10-15% | 20-25% |
| Noise Resilience | Up to 15% | Moderate (10%) | Low (5%) | High (Varies with ε, δ) |
| Memory Complexity | Sublogarithmic | High (O(parameters)) | O(states^k) | O(1/ε) |
| Interpretability | High | Low (Black box) | Moderate | Low |
| *LSTM accuracy is achievable only after extensive training on large datasets. |
4.1. Key Findings
- Superior Efficiency: Ze’s resource-optimized architecture resulted in 37-42% fewer operations than a comparable LSTM implementation (Hochreiter & Schmidhuber, 1997), making it ideal for edge devices.
- Rapid Adaptation: The system adapted to sudden changes in the data stream within 12.4±3.1 iterations (approx. 2-3 seconds in the test environment), significantly faster than the retraining required by neural networks (Kirkpatrick et al., 2017).
- Robustness: The Bayesian framework provided inherent noise resistance, maintaining functionality with 15% input distortion, a feature linked to the stochastic nature of neural computation (Ma, Beck, Latham, & Pouget, 2006).
5. Discussion
6. Future Perspectives
- Extension to Non-Binary Data: Developing adaptive crumb sizing and representations for continuous and categorical data.
- Hierarchical Bayesian Integration: Creating multi-level Ze architectures to capture patterns at different temporal and spatial scales, mirroring the brain’s cortical hierarchy (Kiebel, Daunizeau, & Friston, 2008).
- Hybrid Machine Learning: Integrating Ze as a fast, efficient pre-processing or anomaly detection layer within larger deep-learning systems.
- Hardware Acceleration: Designing memristor-based circuits or FPGA implementations that physically embody the Bayesian updating and filtration processes, promising orders-of-magnitude gains in speed and energy efficiency (Prezioso et al., 2015).
7. Conclusion
References
- Abraham, W. C., & Bear, M. F. (1996). Metaplasticity: the plasticity of synaptic plasticity. Trends in Neurosciences, 19(4), 126–130. [CrossRef]
- Anderson, J. R., & Schooler, L. J. (1991). Reflections of the environment in memory. Psychological Science, 2(6), 396–408. [CrossRef]
- Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181–204. [CrossRef]
- Cormode, G., & Muthukrishnan, S. (2005). An improved data stream summary: the count-min sketch and its applications. Journal of Algorithms, 55(1), 58–75. [CrossRef]
- Deneve, S. (2008). Bayesian spiking neurons I: Inference. Neural Computation, 20(1), 91–117. [CrossRef]
- Feldman, H., & Friston, K. J. (2010). Attention, uncertainty, and free-energy. Frontiers in Human Neuroscience, 4, 215. [CrossRef]
- Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1456), 815–836. [CrossRef]
- Friston, K. (2010). The free-energy principle: a unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138. [CrossRef]
- Gazzaniga, M. S. (2000). Cerebral specialization and interhemispheric communication: Does the corpus callosum enable the human condition? Brain, 123(7), 1293–1326. [CrossRef]
- Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. (2017). LSTM: A search space odyssey. IEEE Transactions on Neural Networks and Learning Systems, 28(10), 2222–2232. [CrossRef]
- Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. [CrossRef]
- Hua, J. Y., & Smith, S. J. (2004). Neural activity and the dynamics of central nervous system development. Nature Neuroscience, 7(4), 327–332. [CrossRef]
- Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31. [CrossRef]
- Kiebel, S. J., Daunizeau, J., & Friston, K. J. (2008). A hierarchy of time-scales and the brain. PLoS Computational Biology, 4(11), e1000209. [CrossRef]
- Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A., ... & Hadsell, R. (2017). Overcoming catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences, 114(13), 3521–3526. [CrossRef]
- Knill, D. C., & Pouget, A. (2004). The Bayesian brain: the role of uncertainty in neural coding and computation. Trends in Neurosciences, 27(12), 712–719. [CrossRef]
- Lennie, P. (2003). The cost of cortical computation. Current Biology, 13(6), 493–497. [CrossRef]
- Ma, W. J., Beck, J. M., Latham, P. E., & Pouget, A. (2006). Bayesian inference with probabilistic population codes. Nature Neuroscience, 9(11), 1432–1438. [CrossRef]
- Prezioso, M., Merrikh-Bayat, F., Hoskins, B. D., Adam, G. C., Likharev, K. K., & Strukov, D. B. (2015). Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature, 521(7550), 61–64. [CrossRef]
- Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), 257–286. [CrossRef]
- Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1), 79–87. [CrossRef]
- Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593–1599. [CrossRef]
- Tkemaladze, J. (2025a). Adaptive Cognitive System Ze. Longevity Horizon, 1(3). [CrossRef]
- Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. Molecular Biology Reports, 50(3), 2751-2761. https://pubmed.ncbi.nlm.nih.gov/36583780/.
- Tkemaladze, J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycative and oxidative stress. Front Pharmacol. 2024 Mar 6;14:1324446. [CrossRef] [PubMed] [PubMed Central]
- Tkemaladze, J. (2025). Through In Vitro Gametogenesis—Young Stem Cells. Longevity Horizon, 1(3). [CrossRef]
- Turrigiano, G. G. (2008). The self-tuning neuron: synaptic scaling of excitatory synapses. Cell, 135(3), 422–435. [CrossRef]
- Turrigiano, G. G., & Nelson, S. B. (2004). Homeostatic plasticity in the developing nervous system. Nature Reviews Neuroscience, 5(2), 97–107. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
