Submitted:
26 September 2025
Posted:
26 September 2025
You are already at the latest version
Abstract
Keywords:
Introduction
“It is essential to keep pushing questions (…) from the abstract ‘What?’ to the socially concrete ‘Says who’?”[1]
Market Imperatives
Shaping AI Research in Healthcare
Shaping the Sociotechnical Imaginaries Around AI
Algorithmic Rationality
Entrenched Marginalisation of Certain Populations
Conclusions
Declaration of conflicting interests
Ethics approval and consent to participate
Guarantor
Declaration of generative AI and AI-assisted technologies in the writing process
Author Contributions
Funding
Data Availability Statement
Acknowledgments
References
- Berger, P.; Luckmann, T. The social construction of reality. In Social theory re-wired; Routledge, 2016; pp. 110–122. [Google Scholar]
- Topol, E. J. High-performance medicine: the convergence of human and artificial intelligence. Nature Medicine 2019, 25(1), 44–56. [Google Scholar] [CrossRef]
- Dicuonzo, G.; Donofrio, F.; Fusco, A.; Shini, M. Healthcare system: Moving forward with artificial intelligence. Technovation 2022, 2022, 102510. [Google Scholar] [CrossRef]
- Petersson, L.; Larsson, I.; Nygren, J. M.; Nilsen, P.; Neher, M.; Reed, J. E.; et al. Challenges to implementing artificial intelligence in healthcare: a qualitative interview study with healthcare leaders in Sweden. BMC Health Services Research 2022, 22(1), 1–16. [Google Scholar] [CrossRef]
- Alami, H.; Lehoux, P.; Auclair, Y.; de Guise, M.; Gagnon, M.; Shaw, J.; et al. Artificial Intelligence and Health Technology Assessment: Anticipating a New Level of Complexity. Journal of Medical Internet Research 2020, 22(7), e17707. [Google Scholar] [CrossRef]
- Alami, H.; Lehoux, P.; Papoutsi, C.; Shaw, S. E.; Fleet, R.; Fortin, J.-P. Understanding the integration of artificial intelligence in healthcare organisations and systems through the NASSS framework: a qualitative study in a leading Canadian academic centre. BMC Health Services Research 2024, 24(1), 701. [Google Scholar] [CrossRef]
- Roppelt, J. S.; Kanbach, D. K.; Kraus, S. Artificial intelligence in healthcare institutions: A systematic literature review on influencing factors. Technology in Society 2024, 76, 102443. [Google Scholar] [CrossRef]
- Esmaeilzadeh, P. Challenges and strategies for wide-scale artificial intelligence (AI) deployment in healthcare practices: A perspective for healthcare organizations. Artificial Intelligence in Medicine 2024, 151, 102861. [Google Scholar] [CrossRef] [PubMed]
- Krittanawong, C. The rise of artificial intelligence and the uncertain future for physicians. European Journal of Internal Medicine 2018, 48, e13–e14. [Google Scholar] [CrossRef] [PubMed]
- Lehoux, P.; Rocha de Oliveira, R.; Rivard, L.; Silva, H. P.; Alami, H.; Mörch, C. M.; et al. A Comprehensive, Valid, and Reliable Tool to Assess the Degree of Responsibility of Digital Health Solutions That Operate With or Without Artificial Intelligence: 3-Phase Mixed Methods Study. Journal of Medical Internet Research 2023, 25, e48496. [Google Scholar] [CrossRef]
- Matheny, M.; Israni, S. T.; Ahmed, M.; Whicher, D. Artificial intelligence in health care: The hope, the hype, the promise, the peril;National Academy of Medicine prepublication. 2020, pp. 94–97. Available online: https://nam.edu/wp-content/uploads/2021/07/4.3-AI-in-Health-Care-title-authors-summary.pdf.
- Alami, H.; Lehoux, P.; Denis, J.-L.; Motulsky, A.; Petitgand, C.; Savoldelli, M.; et al. Organizational readiness for artificial intelligence in health care: insights for decision-making and practice. Journal of Health Organization and Management 2021, 35(1), 106–114. [Google Scholar] [CrossRef]
- Alami, H.; Lehoux, P.; Shaw, S. E.; Niang, M.; Malas, K.; Fortin, J.-P. To what extent can digital health technologies comply with the principles of responsible innovation? Practice- and policy-oriented research insights regarding an organisational and systemic issue. International Journal of Health Policy and Management 2024, 13, 8061. [Google Scholar] [CrossRef]
- Alami, H.; Rivard, L.; Lehoux, P.; Hoffman, S. J.; Cadeddu, S. B. M.; Savoldelli, M.; et al. Artificial intelligence in health care: laying the foundation for responsible, sustainable, and inclusive innovation in low- and middle-income countries. Globalization and Health 2020, 16(1), 52. [Google Scholar] [CrossRef] [PubMed]
- Sharon, T. When digital health meets digital capitalism, how many common goods are at stake? Big Data & Society 2018, 5(2), 2053951718819032. [Google Scholar] [CrossRef]
- Matheny, M. E.; Whicher, D.; Israni, S. T. Artificial intelligence in health care: a report from the National Academy of Medicine. JAMA 2020, 323(6), 509–510. [Google Scholar] [CrossRef] [PubMed]
- Alami, H.; Gagnon, M.-P.; Fortin, J.-P. Some multidimensional unintended consequences of telehealth utilization: a multi-project evaluation synthesis. International Journal of Health Policy and Management 2019, 8(6), 337. [Google Scholar] [CrossRef] [PubMed]
- Alami, H.; Fortin, J.-P.; Gagnon, M.-P.; Pollender, H.; Têtu, B.; Tanguay, F. The challenges of a complex and innovative telehealth project: a qualitative evaluation of the eastern Quebec Telepathology network. International Journal of Health Policy and Management 2018, 7(5), 421. [Google Scholar] [CrossRef]
- Alami, H.; Fortin, J.-P.; Gagnon, M.-P.; Lamothe, L.; Ahmed, M. A. A.; Roy, D. Cadre stratégique pour soutenir l’évaluation des projets complexes et innovants en santé numérique. Santé Publique 2020, 32(2), 221–228. [Google Scholar] [CrossRef]
- Greenhalgh, T.; Procter, R.; Wherton, J.; Sugarhood, P.; Shaw, S. The organising vision for telehealth and telecare: discourse analysis. BMJ Open 2012, 2(4). [Google Scholar] [CrossRef]
- Orlikowski, W. J.; Gash, D. C. Technological frames: making sense of information technology in organizations. ACM Transactions on Information Systems (TOIS) 1994, 12(2), 174–207. [Google Scholar] [CrossRef]
- Cugurullo, F. The obscure politics of artificial intelligence: a Marxian socio-technical critique of the AI alignment problem thesis; AI and Ethics, 2024; pp. 1–13. [Google Scholar] [CrossRef]
- Winner, L. Autonomous technology: Technics-out-of-control as a theme in political thought; MIT Press, 1978. [Google Scholar]
- Nye, D. E. Technology matters: Questions to live with; MIT Press, 2007. [Google Scholar]
- Lindgren, S. Handbook of critical studies of artificial intelligence; Edward Elgar Publishing, 2023. [Google Scholar]
- Abdalla, M.; Abdalla, M. The grey hoodie project: Big tobacco, big tech, and the threat on academic integrity. In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society; 2021; pp. 287–297. [Google Scholar] [CrossRef]
- Bak, M. A.; Horbach, D.; Buyx, A.; McLennan, S. A scoping review of ethical aspects of public-private partnerships in digital health. npj Digital Medicine 2025, 8(1), 129. [Google Scholar] [CrossRef]
- Sharon, T. Blind-sided by privacy? Digital contact tracing, the Apple/Google API and big tech’s newfound role as global health policy makers. Ethics and Information Technology 2021, 23 Suppl 1, 45–57. [Google Scholar] [CrossRef]
- Dambrin, C.; Lambert, C.; Sponem, S. Control and change—Analysing the process of institutionalisation. Management Accounting Research 2007, 18(2), 172–208. [Google Scholar] [CrossRef]
- Lehoux, P.; Pacifico Silva, H.; Pozelli Sabio, R.; Roncarolo, F. The unexplored contribution of responsible innovation in health to sustainable development goals. Sustainability 2018, 10(11), 4015. [Google Scholar] [CrossRef]
- Moynihan, R.; Bero, L.; Hill, S.; Johansson, M.; Lexchin, J.; Macdonald, H.; et al. Pathways to independence: towards producing and using trustworthy evidence. BMJ 2019, 367, l6576. [Google Scholar] [CrossRef] [PubMed]
- Hilton, J.; Kokotajlo, D.; Kumar, R.; Nanda, N.; Saunders, W.; Wainwright, C.; et al. A Right to Warn about Advanced Artificial Intelligence. 2024. Available online: https://righttowarn.ai/.
- Alami, H.; Rivard, L.; Lehoux, P.; Ahmed, M. A. A.; Soubra, R.; Rouquet, R.; et al. Conflicts and complexities around intellectual property and value sharing of AI healthcare solutions in public-private partnerships: A qualitative study. SSM – Health Systems Journal 2025, 5(12), 100093. [Google Scholar] [CrossRef]
- Longpre, S.; Kapoor, S.; Klyman, K.; Ramaswami, A.; Bommasani, R.; Blili-Hamelin, B.; et al. A safe harbor for AI evaluation and red teaming. arXiv 2024, arXiv:2403.04893. [Google Scholar] [CrossRef]
- Marelli, L.; Testa, G.; Van Hoyweghen, I. Big Tech platforms in health research: Re-purposing big data governance in light of the General Data Protection Regulation’s research exemption. Big Data & Society 2021, 8(1), 20539517211018783. [Google Scholar] [CrossRef]
- Ahmed, N.; Wahed, M.; Thompson, N. C. The growing influence of industry in AI research. Science 2023, 379(6635), 884–886. [Google Scholar] [CrossRef]
- Buolamwini, J.; Gebru, T. Gender shades: Intersectional accuracy disparities in commercial gender classification. Conference on Fairness, Accountability and Transparency 2018, 81(X), 1–15. Available online: https://proceedings.mlr.press/v81/buolamwini18a/buolamwini18a.pdf.
- Kumaki, H. Reasonable exposure: Nuclear infrastructure and technopolitics of health and well-being. Center for East Asian Studies, University of Colorado. 2021. Available online: https://www.colorado.edu/cas/sites/default/files/attached-files/living_in_paradox_-_hiroko_kumaki_.pdf.
- Alami, H.; Gagnon, M.-P.; Fortin, J.-P. Telehealth in light of cloud computing: Clinical, technological, regulatory and policy issues. Journal of the International Society for Telemedicine and eHealth 4 2016, e5(1–7. Available online: https://journals.ukzn.ac.za/index.php/JISfTeH/article/view/138.
- Margetts, H.; Dorobantu, C. Rethink government with AI. Nature 2019, 568(7751), 163–165. [Google Scholar] [CrossRef]
- Kim, S.-H. Social movements and contested sociotechnical imaginaries in South Korea. In Dreamscapes of modernity: Sociotechnical imaginaries and the fabrication of power; 2015; pp. 152–173. [Google Scholar] [CrossRef]
- De Togni, G. Staging the Robot: Performing Techno-Politics of Innovation for Care Robotics in Japan. In An International Journal; East Asian Science, Technology and Society, 2024; pp. 1–18. [Google Scholar] [CrossRef]
- World Health Organization. Ethics and governance of artificial intelligence for health. 2021. Available online: https://www.who.int/publications/i/item/9789240029200.
- Mittelstadt, B. Principles alone cannot guarantee ethical AI. Nature Machine Intelligence 2019, 1(11), 501–507. [Google Scholar] [CrossRef]
- Alami, H.; Gagnon, M.-P.; Fortin, J.-P.; Kouri, R. La télémédecine au Québec: état de la situation des considérations légales, juridiques et déontologiques. European Research in Telemedicine/La Recherche Européenne en Télémédecine 2015, 4(2), 33–43. [Google Scholar] [CrossRef]
- Alami, H.; Rivard, L.; de Oliveira, R. R.; Lehoux, P.; Cadeddu, S. B. M.; Savoldelli, M.; et al. Guiding pay-as-you-live health insurance models toward responsible innovation in health. Journal of Participatory Medicine 2020, 12(3), e19586. [Google Scholar] [CrossRef] [PubMed]
- Alami, H.; Lehoux, P.; Shaw, S. E.; Papoutsi, C.; Rybczynska-Bunt, S.; Fortin, J.-P. Virtual care and the inverse care law: Implications for policy, practice, research, public and patients. International Journal of Environmental Research and Public Health 2022, 19(17), 10591. [Google Scholar] [CrossRef] [PubMed]
- Alami, H.; Rivard, L.; Lehoux, P.; Ag Ahmed, M. A.; Fortin, J.-P.; Fleet, R. Integrating environmental considerations in digital health technology assessment and procurement: Stakeholders’ perspectives. Digital Health 9 2023, 20552076231219113. [Google Scholar] [CrossRef] [PubMed]
- Hao, K. Big Tech’s guide to talking about AI ethics. MIT Technology Review. 2021. Available online: https://www.technologyreview.com/2021/04/13/1022568/big-tech-ai-ethics-guide/.
- Koniakou, V. From the “rush to ethics” to the “race for governance” in artificial intelligence. Information Systems Frontiers 2023, 25(1), 71–102. [Google Scholar] [CrossRef]
- Slee, T. Dubber, M., Pasquale, F., Das, S., Eds.; The incompatible incentives of private-sector AI. In The Oxford Handbook of Ethics of AI; Oxford University Press, 2020; pp. 106–123. [Google Scholar] [CrossRef]
- Asaro, P. M. AI ethics in predictive policing: From models of threat to an ethics of care. IEEE Technology and Society Magazine 2019, 38(2), 40–53. [Google Scholar] [CrossRef]
- Kannelønning, M. S. Navigating uncertainties of introducing artificial intelligence (AI) in healthcare: The role of a Norwegian network of professionals. Technology in Society 76 2024, 102432. [Google Scholar] [CrossRef]
- Galanos, V. Expectations and expertise in artificial intelligence: Specialist views and historical perspectives on conceptualisation, promise, and funding; University of Edinburgh, 2023. [Google Scholar] [CrossRef]
- Swanson, E. B.; Ramiller, N. C. The organizing vision in information systems innovation. Organization Science 1997, 8(5), 458–474. [Google Scholar] [CrossRef]
- Westerstrand, S.; Westerstrand, R.; Koskinen, J. Talking existential risk into being: A Habermasian critical discourse perspective to AI hype. AI and Ethics 2024, 4(3), 713–726. [Google Scholar] [CrossRef]
- Winfield, A. F.; Jirotka, M. Ethical governance is essential to building trust in robotics and artificial intelligence systems. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2018, 376(2133), 20180085. [Google Scholar] [CrossRef]
- Phan, T.; Goldenfein, J.; Mann, M.; Kuch, D. Economies of virtue: The circulation of ‘ethics’ in Big Tech. Science as Culture 2022, 31(1), 121–135. [Google Scholar] [CrossRef]
- Stamboliev, E.; Christiaens, T. How empty is trustworthy AI? A discourse analysis of the ethics guidelines of trustworthy AI; Critical Policy Studies, 2024; pp. 1–18. [Google Scholar] [CrossRef]
- van der Wel, K. J. Imagining artificial intelligence: Uncovering the culturally specific imaginations surrounding AI in the Dutch national AI strategy. Utrecht University. 2021. Available online: https://studenttheses.uu.nl/bitstream/handle/20.500.12932/39093/20210203_MasterThesis_VanderWel.pdf?sequence=1&isAllowed=y.
- Hoff, J.-L. Unavoidable futures? How governments articulate sociotechnical imaginaries of AI and healthcare services. Futures 148 2023, 103131. [Google Scholar] [CrossRef]
- Bareis, J.; Katzenbach, C. Talking AI into being: The narratives and imaginaries of national AI strategies and their performative politics. Science, Technology, & Human Values 2022, 47(5), 855–881. [Google Scholar] [CrossRef]
- Markham, A. The limits of the imaginary: Challenges to intervening in future speculations of memory, data, and algorithms. New Media & Society 2021, 23(2), 382–405. [Google Scholar] [CrossRef]
- Kannelønning, M. S. Contesting futures of artificial intelligence (AI) in healthcare: Formal expectations meet informal anticipations. Technology Analysis & Strategic Management 2024, 36(11), 3845–3856. [Google Scholar] [CrossRef]
- Konrad, K.; Van Lente, H.; Groves, C.; Selin, C. Felt, U., Fouché, R., Miller, C. A., Smith-Doerr, L., Eds.; Performing and governing the future in science and technology. In The handbook of science and technology studies; MIT Press, 2016; pp. 465–493. [Google Scholar]
- Sloane, M.; Chowdhury, R.; Havens, J. C.; Lazovich, T.; Rincon Alba, L. AI and procurement – A primer. 2021. Available online: https://archive.nyu.edu/bitstream/2451/62255/2/AI%20and%20Procurement%20Primer%20Summer%202021.pdf.
- Hart, J. T. Why are doctors so unhappy? Unhappiness will be defeated when doctors accept full social responsibility. BMJ 2001, 322(7298), 1363–1364. [Google Scholar] [PubMed]
- Germani, A. The politics of artificial intelligence in healthcare: Diagnosis and treatment. In AI and Society; Chapman and Hall/CRC, 2023; pp. 33–48. [Google Scholar] [CrossRef]
- Pellegrino, E. D. The commodification of medical and health care: The moral consequences of a paradigm shift from a professional to a market ethic. The Journal of Medicine and Philosophy 1999, 24(3), 243–266. [Google Scholar] [CrossRef]
- Paul, R. Paul, R., Carmel, E., Cobbe, J., Eds.; The politics of regulating artificial intelligence technologies: A competition state perspective. In Handbook on Public Policy and Artificial Intelligence (Forthcoming); Edward Elgar Publishing, 2023. [Google Scholar] [CrossRef]
- Padden, M.; Öjehag-Pettersson, A. Protected how? Problem representations of risk in the General Data Protection Regulation (GDPR). Critical Policy Studies 2021, 15(4), 486–503. [Google Scholar] [CrossRef]
- AI Now Institute. AI Policy as Industrial Policy, with Amy Kapczynski and Jeremias Adams-Prassl - AI Now Salons. 2023. Available online: https://ainowinstitute.org/general/ai-policy-as-industrial-policy-with-amy-kapczynski-and-jeremias-adams-prassl-ai-now-salons.
- Fricker, M. Epistemic injustice: Power and the ethics of knowing; Oxford University Press, 2007. [Google Scholar]
- Rafanelli, L. M. Justice, injustice, and artificial intelligence: Lessons from political theory and philosophy. Big Data & Society 2022, 9(1), 20539517221080676. [Google Scholar] [CrossRef]
- Winner, L. Tavani, H., Ed.; Do artifacts have politics? In Computer ethics; Routledge, 2017; pp. 177–192. [Google Scholar]
- Briggs, C. L. Communicability, racial discourse, and disease. Annual Review of Anthropology 2005, 34(1), 269–291. [Google Scholar] [CrossRef]
- Jamet, R.; Truchon, K. The pandemic, artificial intelligence, and algorithmic governmentality. In Re-Globalization; Routledge, 2022; pp. 117–126. [Google Scholar] [CrossRef]
- Lipp, B.; Maasen, S. Techno-bio-politics: On interfacing life with and through technology. NanoEthics 2022, 16(1), 133–150. [Google Scholar] [CrossRef]
- Bird, G.; Lynch, H. Introduction to the politics of life: A biopolitical mess. European Journal of Social Theory 2019, 22(3), 301–316. [Google Scholar] [CrossRef]
- Foucault, M. Security, territory, population: Lectures at the Collège de France; Springer, 2007. [Google Scholar]
- Faraj, S.; Pachidi, S.; Sayegh, K. Working and organizing in the age of the learning algorithm. Information and Organization 2018, 28(1), 62–70. [Google Scholar] [CrossRef]
- Briggs, C. L. Ecologies of evidence in a mysterious epidemic. Medicine Anthropology Theory 2016, 3(2). [Google Scholar] [CrossRef]
- Greenhalgh, T. Commentary: Without values, complexity is reduced to mathematics. Journal of Evaluation in Clinical Practice 2025, 31(1), e14263. [Google Scholar] [CrossRef]
- Cath, C. Governing artificial intelligence: Ethical, legal and technical opportunities and challenges. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2018, 376(2133), 20180080. [Google Scholar] [CrossRef]
- Lipton, Z. C.; Steinhardt, J. Troubling trends in machine learning scholarship: Some ML papers suffer from flaws that could mislead the public and stymie future research. Queue 2019, 17(1), 45–77. [Google Scholar] [CrossRef]
- Campolo, A.; Crawford, K. Enchanted determinism: Power without responsibility in artificial intelligence; Engaging Science, Technology, and Society, 2020. [Google Scholar] [CrossRef]
- Amoore, L. Cloud ethics: Algorithms and the attributes of ourselves and others; Duke University Press, 2020. [Google Scholar]
- Wester, M. Procurement circuit under machine learning political order: Governance of, through, and for AI. Doctoral dissertation, Concordia University, 2023. Available online: https://spectrum.library.concordia.ca/id/eprint/992057/1/Wester_MA_S2023.pdf.
- Roy, V.; Hamilton, D.; Chokshi, D. A. Health and political economy: Building a new common sense in the United States. Health Affairs Scholar 2024, 2(5), qxae041. [Google Scholar] [CrossRef]
- Pai, M.; Abimbola, S. Science should save all, not just some. Science 2024, 384(6690), 581. [Google Scholar] [CrossRef]
- Tat, E.; Bhatt, D. L.; Rabbat, M. G. Addressing bias: Artificial intelligence in cardiovascular medicine. The Lancet Digital Health 2020, 2(12), e635–e636. [Google Scholar] [CrossRef]
- Clerc Liaudat, C.; Vaucher, P.; De Francesco, T.; Jaunin-Stalder, N.; Herzig, L.; Verdon, F.; et al. Sex/gender bias in the management of chest pain in ambulatory care. Women's Health 14 2018, 1745506518805641. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.; Le Saux, M.; Siegel, R.; Goyal, M.; Chen, C.; Ma, Y.; et al. Racial and ethnic disparities in the management of acute pain in US emergency departments: Meta-analysis and systematic review. The American Journal of Emergency Medicine 2019, 37(9), 1770–1777. [Google Scholar] [CrossRef] [PubMed]
- Tahhan, A. S.; Vaduganathan, M.; Greene, S. J.; Alrohaibani, A.; Raad, M.; Gafeer, M.; et al. Enrollment of older patients, women, and racial/ethnic minority groups in contemporary acute coronary syndrome clinical trials: A systematic review. JAMA Cardiology 2020, 5(6), 714–722. [Google Scholar] [CrossRef] [PubMed]
- Briggs, C. L. Incommunicable: Decolonizing perspectives on language and health. American Anthropologist 2024, 126(1), 83–95. [Google Scholar] [CrossRef]
- Nelson, A. Unequal treatment: Confronting racial and ethnic disparities in health care. Journal of the National Medical Association 2002, 94(8), 666. [Google Scholar] [PubMed]
- Obermeyer, Z.; Topol, E. J. Artificial intelligence, bias, and patients' perspectives. The Lancet 2021, 397(10289), 2038. [Google Scholar] [CrossRef]
- Cau, R.; Pisu, F.; Suri, J. S.; Saba, L. Addressing hidden risks: Systematic review of artificial intelligence biases across racial and ethnic groups in cardiovascular diseases. European Journal of Radiology 2024, 111867. [Google Scholar] [CrossRef]
- Jones, O.; Matin, R.; Van der Schaar, M.; Bhayankaram, K. P.; Ranmuthu, C.; Islam, M.; et al. Artificial intelligence and machine learning algorithms for early detection of skin cancer in community and primary care settings: A systematic review. The Lancet Digital Health 2022, 4(6), e466–e476. [Google Scholar] [CrossRef]
- Obermeyer, Z.; Powers, B.; Vogeli, C.; Mullainathan, S. Dissecting racial bias in an algorithm used to manage the health of populations. Science 2019, 366(6464), 447–453. [Google Scholar] [CrossRef]
- Nordling, L. A fairer way forward for AI in health care. Nature 2019, 573(7775), S103–S105. [Google Scholar] [CrossRef]
- Lupton, D. Quantifying the body: Monitoring and measuring health in the age of mHealth technologies. Critical Public Health 2013, 23(4), 393–403. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
