Submitted:
17 September 2025
Posted:
19 September 2025
You are already at the latest version
Abstract
Keywords:
MSC: 12D05; 12F10; 15A18; 11R32; 11C08
1. Introduction
2. Related Work
2.1. Solvability and Galois Theory
2.2. Results for Degrees 5 and 6
2.3. Works on Degrees 7, 8, 9 and Higher
3. Methodology
3.1. General Case
3.2. Quintic and Sextic Case
4. Main Results
4.1. Proof of Lemma 2, Condition One
4.2. Proof of Lemma 2, Condition Two
4.3. Proof of Lemma 2, Condition Three
4.4. Proof of Lemma 2, Condition Four
4.5. Proof of Lemma 2, Condition Five
4.6. Proof of Lemma 2, Condition Six
4.7. Proof of Lemma 2, Condition Seven
4.8. Proof of Lemma 2, Condition Eight
4.9. Proof of Lemma 3, Condition One
4.10. Proof of Lemma 3, Condition Two
4.11. Proof of Lemma 3, Condition Three
5. Computational Examples
6. Conjecture on Higher Degrees
7. Discussion
8. Conclusion
Acknowledgments
Abbreviations
| MDPI | Multidisciplinary Digital Publishing Institute |
| DOAJ | Directory of open access journals |
| TLA | Three letter acronym |
| LD | Linear dichroism |
Appendix A Closed Form Equations for Lemma 2 Condition One
Appendix B Closed Form Equations for Lemma 2 Condition Two
Appendix C Closed Form Equations for Lemma 2 Condition Three
Appendix D Closed Form Equations for Lemma 2 Condition Four
Appendix E Closed Form Equations for Lemma 2 Condition Five
Appendix F Closed Form Equations for Lemma 2 Condition Six
Appendix G Closed Form Equations for Lemma 2 Condition Seven
Appendix H Closed Form Equations for Lemma 2 Condition Eight
Appendix I Closed Form Equations for Lemma 3 Condition One
Appendix J Closed Form Equations for Lemma 3 Condition Two
Appendix K Closed Form Equations for Lemma 3 Condition Three
References
- Pan, V.Y. Solving a polynomial equation: some history and recent progress. SIAM review 1997, 39, 187–220. [Google Scholar] [CrossRef]
- Stillwell, J.; Stillwell, J. Mathematics and its History; Vol. 3, Springer, 1989.
- Ayoub, R.G. Paolo Ruffini’s contributions to the quintic. Archive for history of exact sciences 1980, 253–277. [Google Scholar] [CrossRef]
- Abel, N.H. Mémoire sur les équations algébriques, où on demontre l’impossibilité de la résolution de l’équation générale du cinquième dégré; 1824.
- Abel, N.H. Démonstration de l’impossibilité de la résolution algébrique des équations générales qui passent le quatrieme degré. Journal für die reine und angewandte Mathematik 1826, 1, 65–96. [Google Scholar]
- Galois, É. Oeuvres mathématiques. Journal de mathématiques pures et appliquées 1846, 11, 381–444. [Google Scholar]
- Artin, E. Galois Theory. Notre Dame Mathematical Lectures, Number 2, 1942.
- Stewart, I. Galois theory; Chapman and Hall/CRC, 2022.
- Klein, F. Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree; Courier Corporation, 2003.
- Rotman, J.J. An introduction to the theory of groups; Vol. 148, Springer Science & Business Media, 2012.
- Cohn, H. Advanced number theory; Courier Corporation, 1980.
- Jacobson, N. Basic algebra I; Courier Corporation, 2012.
- Lang, S. Algebra: Revised Third Edition; Shi jie tu shu chu ban gong si, 2019.
- Cox, D.A. Galois theory; John Wiley & Sons, 2012.
- Bates, D.J.; Sommese, A.J.; Hauenstein, J.D.; Wampler, C.W. Numerically solving polynomial systems with Bertini; SIAM, 2013.
- Morgan, A. Solving polynomial systems using continuation for engineering and scientific problems; SIAM, 2009.
- Bini, D.A.; Gemignani, L.; Pan, V.Y. Fast and stable QR eigenvalue algorithms for generalized companion matrices and secular equations. Numerische Mathematik 2005, 100, 373–408. [Google Scholar] [CrossRef]
- Fortune, S. An iterated eigenvalue algorithm for approximating roots of univariate polynomials. Journal of Symbolic Computation 2002, 33, 627–646. [Google Scholar] [CrossRef]
- Golub, G.H. Some modified matrix eigenvalue problems. SIAM review 1973, 15, 318–334. [Google Scholar] [CrossRef]
- Malek, F.; Vaillancourt, R. Polynomial zerofinding iterative matrix algorithms. Computers & Mathematics with Applications 1995, 29, 1–13. [Google Scholar] [CrossRef]
- Melman, A. A unifying convergence analysis of second-order methods for secular equations. Mathematics of Computation 1997, 66, 333–344. [Google Scholar] [CrossRef]
- Pan, V.Y.; Murphy, B.; Rosholt, R.E.; Ivolgin, D.; Tang, Y.; Yan, X.; Wang, X. Root-finding with Eigen-solving. In Proceedings of the Symbolic-Numeric Computation. Springer; 2007; pp. 185–210. [Google Scholar]
- King, R.B.; Canfield, E.R. An algorithm for calculating the roots of a general quintic equation from its coefficients. Journal of mathematical physics 1991, 32, 823–825. [Google Scholar] [CrossRef]
- King, R.B. The Kiepert Algorithm for Roots of the General Quintic, 1996; pp. 1–33.Equation. In Beyond the Quartic Equation; Birkhäuser Boston: Boston, 1996; pp. 1–33. [Google Scholar]
- Buhler, J.; Reichstein, Z. On Tschirnhaus transformations. In Topics in number theory: in honor of B. Gordon and S. Chowla; Springer, 1999; pp. 127–142.
- Bring, E.S.; Sommelius, S.G. Meletemata quædam mathematica circa transformationem æquationem algebraicarum; Typis Berlingianis, 1786.
- Jerrard, G. LXIV. On the possibility of solving equations of any degree however elevated. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 1852, 3, 457–460. [Google Scholar] [CrossRef]
- Jerrard, G.B. An essay on the resolution of equations; Taylor & Francis, 1859.
- Crass, S. Solving the sextic by iteration: a study in complex geometry and dynamics. Experimental Mathematics 1999, 8, 209–240. [Google Scholar] [CrossRef]
- Coble, A.B. The reduction of the sextic equation to the Valentiner form-problem. Mathematische Annalen 1911, 70, 337–350. [Google Scholar] [CrossRef]
- Cole, F.N. A contribution to the theory of the general equation of the sixth degree. American Journal of Mathematics 1886, 265–286. [Google Scholar] [CrossRef]
- Kulkarni, R.G. Solving septics in radicals. Matemáticas: Enseñanza Universitaria 2008, 16, 9–19. [Google Scholar]
- Faggal, M.A.; Lazard, D. Solving quintics and septics by radicals. International Journal of Scientific and Research Publications 2014, 4, 1–10. [Google Scholar]
- Calogero, F.; Payandeh, F. Explicitly solvable algebraic equations of degree 8 and 9. arXiv 2021, arXiv:2111.12057. [Google Scholar] [CrossRef]
- Kulkarni, R.G. On the solution to octic equations. The Mathematics Enthusiast 2007, 4, 193–209. [Google Scholar] [CrossRef]
- Crass, S. Solving the octic by iteration in six dimensions. Dynamical Systems: An International Journal 2002, 17, 151–186. [Google Scholar] [CrossRef]
- Belhaouari, S.B.; Hijab, M.H.F.; Oflaz, Z. Matrix approach to solve polynomial equations. Results in Applied Mathematics 2023, 18, 100368. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
