Submitted:
10 August 2025
Posted:
13 August 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Emerging Infectious Diseases (EIDs):
2.1. Emerging Infectious Diseases (EIDs): A Chronological and Multispecies Perspective:
3. Re-Emerging Infectious Diseases (REIDs):
4. Zoonotic Emerging and Re-Remerging Infectious Diseases:
5. Important EIDs and REIDs in India:
6. Public Health and Socioeconomic Considerations of Emerging Diseases:
6.1. Populations Affected:
6.2. Economic Losses:
6.3. Buffer Zones:
7. Factors Contributing to Emergence and Reemergence of Infectious Diseases:
7.1. Agent:
7.1.1. Antimicrobial Drug Resistance (AMDR):
7.1.2. Introduction of New Disease Agents:
7.1.3. Genetic Changes in Pathogens:
7.1.4. Advanced Diagnostics Tools and Techniques:
7.1.5. Bioterrorism:
7.2. Host:
7.2.1. Wildlife, Livestock, Human and Zoonotic Diseases:
7.3. Others Driving Factors:
7.3.1. Deforestation:
7.3.2. Climate Change:
7.3.3. Agricultural Practices:
7.3.4. Human and Wildlife Coexistence and Conflict:
7.3.5. Changes in Land Use:
7.3.6. Prey and Predator Dynamics:
7.3.7. Wildlife Farming:
8. Prevention and Control of EIDs and REIDs: A One Health-Based Strategy
8.1. Surveillance and Response
8.2. Applied Research
8.3. Infrastructure and Training
9. Reducing the Risk of Future Outbreaks
10. Conclusion
References
- Maher, S.M.L.; Barker, K.J.; Kroetz, K.; Butsic, V.; Leonard, B.; Middleton, A.D. Assessing the ecosystem services and disservices provided by migratory wildlife across the Greater Yellowstone Ecosystem. Biological Conservation 2023, 283, 110090. [Google Scholar] [CrossRef]
- Bengis, R.G.; Leighton, F.A.; Fischer, J.R.; Artois, M.; Mörner, T.; Tate, C.M. The role of wildlife in emerging and re-emerging zoonoses. Rev Sci Tech 2004, 23, 497–511. [Google Scholar] [PubMed]
- Biswas, J.K.; Mukherjee, P.; Vithanage, M.; Prasad, M.N.V. Emergence and Re-emergence of Emerging Infectious Diseases (EIDs). Looking at “One Health” Through the Lens of Ecology. 2023, One Health. Looking at “One Health” Through the Lens of Ecology:19-37.
- Feldmann, H.; Geisbert, T.W. Ebola haemorrhagic fever. Lancet 2011, 377, 849–862. [Google Scholar] [CrossRef] [PubMed]
- Sharp, P.M.; Hahn, B.H. Origins of HIV and the AIDS pandemic. Cold Spring Harb Perspect Med 2011, 1, a006841. [Google Scholar] [CrossRef] [PubMed]
- Nichol, S.T.; Spiropoulou, C.F.; Morzunov, S.; Rollin, P.E.; Ksiazek, T.G.; Feldmann, H.; Sanchez, A.; Childs, J.; Zaki, S.; Peters, C.J. Genetic identification of a hantavirus associated with an outbreak of acute respiratory illness. Science 1993, 262, 914–917. [Google Scholar] [CrossRef]
- Claas, E.C.; Osterhaus, A.D.; van Beek, R.; De Jong, J.C.; Rimmelzwaan, G.F.; Senne, D.A.; Krauss, S.; Shortridge, K.F.; Webster, R.G. Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet 1998, 351, 472–477. [Google Scholar] [CrossRef]
- Drosten, C.; Günther, S.; Preiser, W.; van der Werf, S.; Brodt, H.-R.; Becker, S.; Rabenau, H.; Panning, M.; Kolesnikova, L.; Fouchier, R.A.M.; Berger, A.; Burguière, A.-M.; Cinatl, J.; Eickmann, M.; Escriou, N.; Grywna, K.; Kramme, S.; Manuguerra, J.-C.; Müller, S.; Rickerts, V.; Stürmer, M.; Vieth, S.; Klenk, H.-D.; Osterhaus, A.D.M.E.; Schmitz, H.; Doerr, H.W. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 2003, 348, 1967–1976. [Google Scholar] [CrossRef]
- Smith, G.J.D.; Vijaykrishna, D.; Bahl, J.; Lycett, S.J.; Worobey, M.; Pybus, O.G.; Ma, S.K.; Cheung, C.L.; Raghwani, J.; Bhatt, S.; Peiris, J.S.M.; Guan, Y.; Rambaut, A. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 2009, 459, 1122–1125. [Google Scholar] [CrossRef]
- Zaki, A.M.; van Boheemen, S.; Bestebroer, T.M.; Osterhaus, A.D.M.E.; Fouchier, R.A.M. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 2012, 367, 1814–1820. [Google Scholar] [CrossRef]
- Baize, S.; Pannetier, D.; Oestereich, L.; Rieger, T.; Koivogui, L.; Magassouba, N.; Soropogui, B.; Sow, M.S.; Keïta, S.; De Clerck, H.; Tiffany, A.; Dominguez, G.; Loua, M.; Traoré, A.; Kolié, M.; Malano, E.R.; Heleze, E.; Bocquin, A.; Mély, S.; Raoul, H.; Caro, V.; Cadar, D.; Gabriel, M.; Pahlmann, M.; Tappe, D.; Schmidt-Chanasit, J.; Impouma, B.; Diallo, A.K.; Formenty, P.; Van Herp, M.; Günther, S. Emergence of Zaire Ebola virus disease in Guinea. N Engl J Med 2014, 371, 1418–1425. [Google Scholar] [CrossRef]
- Mlakar, J.; Korva, M.; Tul, N.; Popović, M.; Poljšak-Prijatelj, M.; Mraz, J.; Kolenc, M.; Resman Rus, K.; Vesnaver Vipotnik, T.; Fabjan Vodušek, V.; Vizjak, A.; Pižem, J.; Petrovec, M.; Avšič Županc, T. Zika Virus Associated with Microcephaly. N Engl J Med 2016, 374, 951–958. [Google Scholar] [CrossRef] [PubMed]
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W. China Novel Coronavirus Investigating and Research Team: A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 2020, 382, 727–733. [Google Scholar] [CrossRef]
- Cleaveland, S.; Haydon, D.T.; Taylor, L. Overviews of pathogen emergence: which pathogens emerge, when and why? Curr Top Microbiol Immunol 2007, 315, 85–111. [Google Scholar]
- Burger, J.; Gochfeld, M.; Kosson, D.S.; Brown, K.G.; Salisbury, J.; Greenberg, M.; Jeitner, C. Combining ecological, eco-cultural, and environmental justice parameters to create Eco-EJ indicators to monitor cultural and environmental justices for diverse communities around contaminated sites. Environ Monit Assess 2022, 194, 177. [Google Scholar] [CrossRef]
- Jones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global trends in emerging infectious diseases. Nature 2008, 451, 990–993. [Google Scholar] [CrossRef]
- Rahman, M.T.; Sobur, M.A.; Islam, M.S.; Ievy, S.; Hossain, M.J.; El Zowalaty, M.E.; Rahman, A.T.; Ashour, H.M. Zoonotic Diseases: Etiology, Impact, and Control. Microorganisms 2020, 8, 1405. [Google Scholar] [CrossRef]
- Wang, L.-F.; Crameri, G. Emerging zoonotic viral diseases. Rev Sci Tech 2014, 33, 569–581. [Google Scholar] [CrossRef] [PubMed]
- Kularatne, S.A.M. Dengue fever. BMJ 2015, 351, h4661. [Google Scholar] [CrossRef] [PubMed]
- Van Kerkhove, M.D.; Mumford, E.; Mounts, A.W.; Bresee, J.; Ly, S.; Bridges, C.B.; Otte, J. Highly pathogenic avian influenza (H5N1): pathways of exposure at the animal-human interface, a systematic review. PLoS One 2011, 6, e14582. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, P.; An, J. Zika virus and Zika fever. Virol Sin 2016, 31, 103–109. [Google Scholar] [CrossRef]
- Gerdes, G.H. Rift Valley fever. Rev Sci Tech 2004, 23, 613–623. [Google Scholar] [CrossRef]
- Higgins, R. Emerging or re-emerging bacterial zoonotic diseases: bartonellosis, leptospirosis, Lyme borreliosis, plague. Rev Sci Tech 2004, 23, 569–581. [Google Scholar] [CrossRef] [PubMed]
- Doron, S.; Gorbach, S.L. Bacterial Infections: Overview. 2008, International Encyclopedia of Public Health:273-282.
- Basu, A.; Garg, P.; Datta, S.; Chakraborty, S.; Bhattacharya, T.; Khan, A.; Ramamurthy, S.; Bhattacharya, S.K.; Yamasaki, S.; Takeda, Y.; Nair, G.B. Vibrio cholerae O139 in Calcutta, 1992-1998: incidence, antibiograms, and genotypes. Emerg Infect Dis 2000, 6, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Murhekar, M.V.; Bitragunta, S. Persistence of diphtheria in India. Indian J Community Med 2011, 36, 164–165. [Google Scholar] [CrossRef]
- Maramraj, K.K.; Latha, M.L.K.; Reddy, R.; Sodha, S.V.; Kaur, S.; Dikid, T.; Reddy, S.; Jain, S.K.; Singh, S.K. Addressing Reemergence of Diphtheria among Adolescents through Program Integration in India. Emerg Infect Dis 2021, 27, 953–956. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Update: human plague--India, 1994. MMWR Morb Mortal Wkly Rep 1994, 43, 761–762.
- Jayaraman, K.S. Indian plague poses enigma to investigators. Nature 1994, 371, 547. [Google Scholar] [CrossRef] [PubMed]
- W.H.O. WHO South-East Asia Regional Strategy for the prevention and control of Nipah virus infection 2023–2030. 2023.
- ICAR-National Institute of High Security Animal Diseases: Annual Report 2023. 2024.
- Jha, P.; Deshmukh, Y.; Tumbe, C.; Suraweera, W.; Bhowmick, A.; Sharma, S.; Novosad, P.; Fu, S.H.; Newcombe, L.; Gelband, H.; Brown, P. COVID mortality in India: National survey data and health facility deaths. Science 2022, 375, 667–671. [Google Scholar] [CrossRef]
- Department of Animal Husbandry and Dairying: LSD outbreak and impact report. 2023.
- Gajbhiye, R.K.; Mahajan, N.N.; Sachdeva, G. Preparedness and strategies for addressing monkeypox infection in pregnant women in India. Lancet Reg Health Southeast Asia 2022, 5, 100066. [Google Scholar] [CrossRef]
- Mourya, D.T.; Yadav, P.D.; Patil, D.Y.; Sahay, R.R.; Rahi, M. Experiences of Indian Council of Medical Research with tick-borne zoonotic infections: Kyasanur Forest disease & Crimean-Congo haemorrhagic fever in India with One Health focus. Indian J Med Res 2021, 153, 339–347. [Google Scholar]
- Durrance-Bagale, A.; Rudge, J.W.; Singh, N.B.; Belmain, S.R.; Howard, N. Drivers of zoonotic disease risk in the Indian subcontinent: A scoping review. One Health 2021, 13, 100310. [Google Scholar] [CrossRef]
- W.H.O. Cholera [Internet]. 2024.
- National Centre for Disease Control: NCDC newsletter, Volume 13, Issue 2 (April–24). 20 June 2025.
- W.H.O. Plague = Peste. Weekly Epidemiological Record = Relevé épidémiologique hebdomadaire 1995, 70, 309–310. [Google Scholar]
- Indian Council of Medical Research: Annual report 2023-24. 2024.
- National Center for Vector Borne Diseases Control: National guidelines for clinical management of chikungunya fever 2023. 2023.
- Centers for Disease Control and Prevention: About Crimean-Congo Hemorrhagic Fever [, 2025, Internet]. 1 July 2025.
- National Vector Borne Disease Control Programme (NVBDCP): Acute Encephalitis Syndrome surveillance data. 2023.
- W.H.O. WHO Coronavirus (COVID-19) dashboard [Internet]. 2023.
- W.H.O. One Health [Internet]. Geneva: WHO; 2023. 2023.
- Srivastava, N.; Deval, H.; Mittal, M.; Kant, R.; Bondre, V.P. The Outbreaks of Acute Encephalitis Syndrome in Uttar Pradesh, India (1978-2020) and Its Effective Management: A Remarkable Public Health Success Story. Front Public Health 2021, 9, 793268. [Google Scholar] [CrossRef]
- Naidu, G.G.; Shivappa, R.R.; Rajanna, P.R.; Gondali, H.; Devaraju, M.H.; Nagesh, P.K.S.; Gajendiran, N.; Kanani, A.; Bhatt, L.; Tapase, J.; Arumugam, S.; Biswal, J.R.; Shivamurthy, S.G.C.; Manjunathareddy, G.B.; Bora, D.P.; Chhetri, B.; Revanaiah, Y.; Pujar, S.S.; Gulati, B.R. Assessment of economic burden of lumpy skin disease in India using stochastic modeling. Sci Rep 2025, 15, 10160. [Google Scholar] [CrossRef] [PubMed]
- The World Bank: South Asia Economic Focus, Spring 2021: South Asia vaccinates. Washington, DC: World Bank. 2021.
- Jacob John, T.; Gupta, N.; Vasant Murhekar, M. Nipah virus infection in humans in Kerala, India: Hypothesis of air-borne transmission. The Indian Journal of Medical Research 2025, 161, 567–571. [Google Scholar] [CrossRef]
- Kruidbos, F. Ecology of Zoonotic Pathways Indicating Conflict and Mass Migration. 2022, The Climate-Conflict-Displacement Nexus from a Human Security Perspective:251-291.
- Rulli, M.C.; D’Odorico, P.; Galli, N.; John, R.S.; Muylaert, R.L.; Santini, M.; Hayman, D.T.S. Land Use Change and Infectious Disease Emergence. Reviews of Geophysics 2025, 63, 0. [Google Scholar] [CrossRef]
- Caron, A.; Angel Barasona, J.; Miguel, E.; Michaux, J.; De Garine-Wichatitsky, M. Characterisation of Wildlife-Livestock Interfaces: The Need for Interdisciplinary Approaches and a Dedicated Thematic Field. Wildlife Research Monographs: Diseases at the Wildlife - Livestock Interface 2021, 339-367.
- W.H.O. Antimicrobial resistance: Fact sheet [Internet]. Geneva: WHO; 2020. 2023.
- Cutler, S.J.; Fooks, A.R.; van der Poel, W.H.M. Public health threat of new, reemerging, and neglected zoonoses in the industrialized world. Emerg Infect Dis 2010, 16, 1–7. [Google Scholar] [CrossRef]
- Liu, Y.-Y.; Wang, Y.; Walsh, T.R.; Yi, L.-X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; Yu, L.-F.; Gu, D.; Ren, H.; Chen, X.; Lv, L.; He, D.; Zhou, H.; Liang, Z.; Liu, J.-H.; Shen, J. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention: One Health. 2023.
- Morse, S.S.; Mazet, J.A.K.; Woolhouse, M.; Parrish, C.R.; Carroll, D.; Karesh, W.B.; Zambrana-Torrelio, C.; Lipkin, W.I.; Daszak, P. Prediction and prevention of the next pandemic zoonosis. Lancet 2012, 380, 1956–1965. [Google Scholar] [CrossRef]
- Jernigan, J.A.; Stephens, D.S.; Ashford, D.A.; Omenaca, C.; Topiel, M.S.; Galbraith, M.; Tapper, M.; Fisk, T.L.; Zaki, S.; Popovic, T.; Meyer, R.F.; Quinn, C.P.; Harper, S.A.; Fridkin, S.K.; Sejvar, J.J.; Shepard, C.W.; McConnell, M.; Guarner, J.; Shieh, W.J.; Malecki, J.M.; Gerberding, J.L.; Hughes, J.M.; Perkins, B.A. Anthrax Bioterrorism Investigation Team: Bioterrorism-related inhalational anthrax: the first 10 cases reported in the United States. Emerg Infect Dis 2001, 7, 933–944. [Google Scholar] [CrossRef]
- Török, T.J.; Tauxe, R.V.; Wise, R.P.; Livengood, J.R.; Sokolow, R.; Mauvais, S.; Birkness, K.A.; Skeels, M.R.; Horan, J.M.; Foster, L.R. A large community outbreak of salmonellosis caused by intentional contamination of restaurant salad bars. JAMA 1997, 278, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Wheelis, M. First shots fired in biological warfare. Nature 1998, 395, 213. [Google Scholar] [CrossRef]
- Dennis, D.T.; Inglesby, T.V.; Henderson, D.A.; Bartlett, J.G.; Ascher, M.S.; Eitzen, E.; Fine, A.D.; Friedlander, A.M.; Hauer, J.; Layton, M.; Lillibridge, S.R.; McDade, J.E.; Osterholm, M.T.; O’Toole, T.; Parker, G.; Perl, T.M.; Russell, P.K.; Tonat, K. Working Group on Civilian Biodefense: Tularemia as a biological weapon: medical and public health management. JAMA 2001, 285, 2763–2773. [Google Scholar] [CrossRef]
- Cheng, A.C.; Currie, B.J. Melioidosis: epidemiology, pathophysiology, and management. Clin Microbiol Rev 2005, 18, 383–416. [Google Scholar] [CrossRef]
- Aguirre, A.A. Changing Patterns of Emerging Zoonotic Diseases in Wildlife, Domestic Animals, and Humans Linked to Biodiversity Loss and Globalization. ILAR J 2017, 58, 315–318. [Google Scholar] [CrossRef]
- Thompson, R.C.A. Parasite zoonoses and wildlife: One Health, spillover and human activity. Int J Parasitol 2013, 43, 1079–1088. [Google Scholar] [CrossRef]
- Chua, K.B.; Bellini, W.J.; Rota, P.A.; Harcourt, B.H.; Tamin, A.; Lam, S.K.; Ksiazek, T.G.; Rollin, P.E.; Zaki, S.R.; Shieh, W.; Goldsmith, C.S.; Gubler, D.J.; Roehrig, J.T.; Eaton, B.; Gould, A.R.; Olson, J.; Field, H.; Daniels, P.; Ling, A.E.; Peters, C.J.; Anderson, L.J.; Mahy, B.W. Nipah virus: a recently emergent deadly paramyxovirus. Science 2000, 288, 1432–1435. [Google Scholar] [CrossRef]
- W.H.O. Ebola situation reports. 2016.
- Plowright, R.K.; Reaser, J.K.; Locke, H.; Woodley, S.J.; Patz, J.A.; Becker, D.J.; Oppler, G.; Hudson, P.J.; Tabor, G.M. Land use-induced spillover: a call to action to safeguard environmental, animal, and human health. Lancet Planet Health 2021, 5, e237–e245. [Google Scholar] [CrossRef] [PubMed]
- Blache, N.; Chalvet-Monfray, K.; Déprés, C.; Morand, S. A scoping review of the impacts of forest cover dynamics on acari-borne diseases: Beyond forest fragmentation. Heliyon 2025, 11, e41893. [Google Scholar] [CrossRef]
- Yi, B.; Fan, M.; Chen, J.; Yao, J.; Chen, X.; Liu, H. An Alarming Public Health Problem: Ticks and Tick-Borne Pathogens in Urban Recreational Parks. China CDC Wkly 2025, 7, 553–560. [Google Scholar]
- Mertens, J.E. The Influence of Climate Change on Vector-Borne Diseases in a Wilderness Medicine Context. Wilderness Environ Med 2025, 36, 44–60. [Google Scholar] [CrossRef] [PubMed]
- Carbone, G.; De Bona, A.; Septelici, D.; Cipri, A.; Nobilio, A.; Esposito, S. Beyond Mosquitoes: A Review of Pediatric Vector-Borne Diseases Excluding Malaria and Arboviral Infections. Pathogens 2025, 14, 553. [Google Scholar] [CrossRef] [PubMed]
- Ferro, I.; Lopez, W.; Cassinelli, F.; Aguirre, S.; Cuyckens, G.A.E.; Kehl, S.; Abán-Moreyra, D.; Castillo, P.; Bellomo, C.; Gil, J.; Martinez, V.P. Hantavirus Pulmonary Syndrome Outbreak Anticipation by a Rapid Synchronous Increase in Rodent Abundance in the Northwestern Argentina Endemic Region: Towards an Early Warning System for Disease Based on Climate and Rodent Surveillance Data. Pathogens 2024, 13, 753. [Google Scholar] [CrossRef] [PubMed]
- Ferro, I.; Bellomo, C.M.; López, W.; Coelho, R.; Alonso, D.; Bruno, A.; Córdoba, F.E.; Martinez, V.P. Hantavirus pulmonary syndrome outbreaks associated with climate variability in Northwestern Argentina, 1997-2017. PLoS Negl Trop Dis 2020, 14, e0008786. [Google Scholar] [CrossRef]
- Clemmons, E.A.; Alfson, K.J.; Dutton, J.W. Transboundary Animal Diseases, an Overview of 17 Diseases with Potential for Global Spread and Serious Consequences. Animals (Basel) 2021, 11, 2039. [Google Scholar] [CrossRef]
- Greger, M. The human/animal interface: emergence and resurgence of zoonotic infectious diseases. Crit Rev Microbiol 2007, 33, 243–299. [Google Scholar] [CrossRef]
- Alvarez, J.; Boklund, A.; Dippel, S.; Dórea, F.; Figuerola, J.; Herskin, M.S.; Michel, V.; Miranda Chueca, M.Á.; Nannoni, E.; Nielsen, S.S.; Nonno, R.; Riber, A.B.; Stegeman, J.A.; Ståhl, K.; Thulke, H.-H.; Tuyttens, F.; Winckler, C.; Brugerolles, C.; Wolff, T.; Parys, A.; Lindh, E.; Latorre-Margalef, N.; Rameix Welti, M.-A.; Dürrwald, R.; Trebbien, R.; Van der Werf, S.; Gisslén, M.; Monne, I.; Fusaro, A.; Guinat, C.; Bortolami, A.; Alexakis, L.; Enkirch, T.; Svartstrom, O.; Willgert, K.; Baldinelli, F.; Preite, L.; Grant, M.; Broglia, A.; Melidou, A.; EFSA Panel on Animal Health and Animal Welfare (AHAW); ECDC. Preparedness, prevention and control related to zoonotic avian influenza. EFSA J 2025, 23, e9191. [Google Scholar] [PubMed]
- Derner, J.D.; Hunt, L.; Filho, K.E.; Ritten, J.; Capper, J.; Han, G. Livestock Production Systems. Springer Series on Environmental Management: Rangeland Systems 2017, 347-372. 2017. [Google Scholar]
- Bruno, L.; Nappo, M.A.; Ferrari, L.; Di Lecce, R.; Guarnieri, C.; Cantoni, A.M.; Corradi, A. Nipah Virus Disease: Epidemiological, Clinical, Diagnostic and Legislative Aspects of This Unpredictable Emerging Zoonosis. Animals (Basel) 2022, 13, 159. [Google Scholar] [CrossRef]
- Pulliam, J.R.C.; Epstein, J.H.; Dushoff, J.; Rahman, S.A.; Bunning, M.; Jamaluddin, A.A.; Hyatt, A.D.; Field, H.E.; Dobson, A.P.; Daszak, P. Henipavirus Ecology Research Group (HERG): Agricultural intensification, priming for persistence and the emergence of Nipah virus: a lethal bat-borne zoonosis. J R Soc Interface 2012, 9, 89–101. [Google Scholar] [CrossRef]
- Pozo, R.A.; Cusack, J.J.; Acebes, P.; Malo, J.E.; Traba, J.; Iranzo, E.C.; Morris-Trainor, Z.; Minderman, J.; Bunnefeld, N.; Radic-Schilling, S.; Moraga, C.A.; Arriagada, R.; Corti, P. Reconciling livestock production and wild herbivore conservation: challenges and opportunities. Trends Ecol Evol 2021, 36, 750–761. [Google Scholar] [CrossRef]
- Cupertino, M.; Resende, M.; Mayer, N.; Carvalho, L.; Siqueira-Batista, R. Emerging and re-emerging human infectious diseases: A systematic review of the role of wild animals with a focus on public health impact. Asian Pacific Journal of Tropical Medicine 2020, 13, 99. [Google Scholar] [CrossRef]
- van Vliet, N.; Muhindo, J.; Nyumu, J.; Enns, C.; Massé, F.; Bersaglio, B.; Cerutti, P.; Nasi, R. Understanding Factors that Shape Exposure to Zoonotic and Food-Borne Diseases Across Wild Meat Trade Chains. Hum Ecol Interdiscip J 2022, 50, 983–995. [Google Scholar] [CrossRef] [PubMed]
- Hughes, A.C. Wildlife trade. Curr Biol 2021, 31, R1218–R1224. [Google Scholar] [CrossRef]
- Travis, D.A.; Watson, R.P.; Tauer, A. The spread of pathogens through trade in wildlife. Rev Sci Tech 2011, 30, 219–239. [Google Scholar] [CrossRef]
- Massé, F.; Gladkova, E. Spatializing zoonotic disease dynamics from a political ecology perspective: Reconceptualizing spillover as structure. Journal of Political Ecology 2025, 32, 0. [Google Scholar] [CrossRef]
- Wolfe, N.D.; Daszak, P.; Kilpatrick, A.M.; Burke, D.S. Bushmeat hunting, deforestation, and prediction of zoonoses emergence. Emerg Infect Dis 2005, 11, 1822–1827. [Google Scholar] [CrossRef] [PubMed]
- Holmes, E.C.; Dudas, G.; Rambaut, A.; Andersen, K.G. The evolution of Ebola virus: Insights from the 2013-2016 epidemic. Nature 2016, 538, 193–200. [Google Scholar] [CrossRef]
- Nguyen, H.T.T.; Lindahl, J.F.; Bett, B.; Nguyen-Viet, H.; Lâm, S.; Nguyen-Tien, T.; Unger, F.; Dang-Xuan, S.; Bui, T.X.; Le, H.T.; Lundkvist, Å.; Ling, J.; Lee, H.S. Understanding zoonotic pathogens and risk factors from wildlife in Southeast Asia: a systematic literature review. Vet Q 2025, 45, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Farag, E.A.; Islam, M.M.; Enan, K.; El-Hussein, A.-R.M.; Bansal, D.; Haroun, M. SARS-CoV-2 at the human-animal interphase: A review. Heliyon 2021, 7, e08496. [Google Scholar] [CrossRef]
- Sun, X.; Tian, W.; Zhang, Y.; Yang, L.; Jin, Y.; Li, S.; Wang, X. Pathogens infected or carried by exotic pets pose emerging threat to human health. Animals and Zoonoses 2025, 1, 170–177. [Google Scholar] [CrossRef]
- Marrana, M. Epidemiology of disease through the interactions between humans, domestic animals, and wildlife. 2022, One Health:73-111.
- Gao, F.; Bailes, E.; Robertson, D.L.; Chen, Y.; Rodenburg, C.M.; Michael, S.F.; Cummins, L.B.; Arthur, L.O.; Peeters, M.; Shaw, G.M.; Sharp, P.M.; Hahn, B.H. Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature 1999, 397, 436–441. [Google Scholar] [CrossRef]
- Wobeser, G. New and emerging diseases--the wildlife interface. Can Vet J 2002, 43, 798. [Google Scholar]
- Jori, F.; Godfroid, J.; Michel, A.L.; Potts, A.D.; Jaumally, M.R.; Sauzier, J.; Roger, M. An assessment of zoonotic and production limiting pathogens in rusa deer (Cervus timorensis rusa) from Mauritius. Transbound Emerg Dis 2014, 61 Suppl 1:31-42.
- Wang, W.; Yang, L.; Wronski, T.; Chen, S.; Hu, Y.; Huang, S. Captive breeding of wildlife resources-China’s revised supply-side approach to conservation. Wildl Soc Bull 2019, 43, 425–435. [Google Scholar] [CrossRef]
- Carder, G.; Proctor, H.; Schmidt-Burbach, J.; D’Cruze, N. The animal welfare implications of civet coffee tourism in Bali. Animal Welfare 2016, 25, 199–205. [Google Scholar] [CrossRef]
- Patou, M.-L.; Chen, J.; Cosson, L.; Andersen, D.H.; Cruaud, C.; Couloux, A.; Randi, E.; Zhang, S.; Veron, G. Low genetic diversity in the masked palm civet Paguma larvata (Viverridae). J Zool (1987) 2009, 278, 218–230. [Google Scholar] [CrossRef]
- Abolnik, C.; Olivier, A.; Reynolds, C.; Henry, D.; Cumming, G.; Rauff, D.; Romito, M.; Petty, D.; Falch, C. Susceptibility and Status of Avian Influenza in Ostriches. Avian Dis 2016, 60, 286–295. [Google Scholar] [CrossRef] [PubMed]
- Scott, T.P.; Fischer, M.; Khaiseb, S.; Freuling, C.; Höper, D.; Hoffmann, B.; Markotter, W.; Müller, T.; Nel, L.H. Complete genome and molecular epidemiological data infer the maintenance of rabies among kudu (Tragelaphus strepsiceros) in Namibia. PLoS One 2013, 8, e58739. [Google Scholar] [CrossRef]
- Oreshkova, N.; Molenaar, R.J.; Vreman, S.; Harders, F.; Oude Munnink, B.B.; Hakze-van der Honing, R.W.; Gerhards, N.; Tolsma, P.; Bouwstra, R.; Sikkema, R.S.; Tacken, M.G.; de Rooij, M.M.; Weesendorp, E.; Engelsma, M.Y.; Bruschke, C.J.; Smit, L.A.; Koopmans, M.; van der Poel, W.H.; Stegeman, A. SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020. Euro Surveill 2020, 25, 2001005. [Google Scholar] [CrossRef] [PubMed]
- Baker, R.E.; Mahmud, A.S.; Miller, I.F.; Rajeev, M.; Rasambainarivo, F.; Rice, B.L.; Takahashi, S.; Tatem, A.J.; Wagner, C.E.; Wang, L.-F.; Wesolowski, A.; Metcalf, C.J.E. Infectious disease in an era of global change. Nat Rev Microbiol 2022, 20, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Bala K, K.N., Dogra A, Verma S, Jaiswal S: reatment Strategies for MERS, SARS, and COVID-19. 2025, Emerging and Re-Emerging Viral Diseases: Integrating Conventional and Complementary Treatment Strategies:11.
- Singh, S.; Tyagi, T. Infectious viral diseases. 2024, The Role of Vitamins in Combating Infectious Viral Diseases:1-14. 2024. [Google Scholar]
- Barrett, R.; Zuckerman, M.; Dudgeon, M.R.; Armelagos, G.J. Emerging Infections: Three Epidemiological Transitions from Prehistory to the Present. Oxford University Press, 2024.
- Gutierrez, B.; da Silva Candido, D.; Bajaj, S.; Rodriguez Maldonado, A.P.; Ayala, F.G.; Rodriguez, M.D.L.L.T.; Rodriguez, A.A.; Arámbula, C.W.; González, E.R.; Martínez, I.L.; Díaz-Quiñónez, J.A.; Pichardo, M.V.; Hill, S.C.; Thézé, J.; Faria, N.R.; Pybus, O.G.; Preciado-Llanes, L.; Reyes-Sandoval, A.; Kraemer, M.U.G.; Escalera-Zamudio, M. Convergent trends and spatiotemporal patterns of Aedes-borne arboviruses in Mexico and Central America. PLoS Negl Trop Dis 2023, 17, e0011169. [Google Scholar] [CrossRef]
- de Thoisy, B.; Gräf, T.; Mansur, D.S.; Delfraro, A.; Dos Santos, C.N.D. The Risk of Virus Emergence in South America: A Subtle Balance Between Increasingly Favorable Conditions and a Protective Environment. Annu Rev Virol 2024, 11, 43–65. [Google Scholar] [CrossRef] [PubMed]
- Fichet-Calvet, E.; Rogers, D.J. Risk maps of Lassa fever in West Africa. PLoS Negl Trop Dis 2009, 3, e388. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); Bampidis, V. ; Azimonti, G.; Bastos, M.D.L.; Christensen, H.; Dusemund, B.; Fašmon Durjava, M.; Kouba, M.; López-Alonso, M.; López Puente, S.; Marcon, F.; Mayo, B.; Pechová, A.; Petkova, M.; Ramos, F.; Sanz, Y.; Villa, R.E.; Woutersen, R.; Cocconcelli, P.S.; Glandorf, B.; Herman, L.; Maradona, M.P.; Saarela, M.; Anguita, M.; Galobart, J.; Holczknecht, O.; Manini, P.; Pettenati, E.; Pizzo, F.; Revez, J.; Tarrés-Call, J. Safety and efficacy of l-threonine produced using Escherichia coliCGMCC 13325 as a feed additive for all animal species. EFSA J 2020, 18, e06332.
| Year | Disease | Pathogen | Host(s) | First Reported Location | Transmission | References |
|---|---|---|---|---|---|---|
| 1976 | Ebola Virus Disease | Ebolavirus | Bats (reservoir), non-human primates, humans | Yambuku, Zaire (now DRC) | Direct contact with blood or body fluids | [4] |
| 1981 | HIV/AIDS | HIV-1, HIV-2 | Humans; zoonotic origin from non-human primates | USA (recognized), Central Africa (origin) | Sexual, blood, vertical | [5] |
| 1993 | Hantavirus Pulmonary Syndrome (HPS) | Sin Nombre virus | Deer mouse (Peromyscus maniculatus), humans | Four Corners region, USA | Inhalation of aerosolized rodent excreta | [6] |
| 1997 | Avian Influenza (H5N1) | Influenza A H5N1 | Birds (primary), humans | Hong Kong | Contact with infected poultry | [7] |
| 2002 | SARS | SARS-CoV | Bats, civets, humans | Guangdong, China | Respiratory droplets | [8] |
| 2009 | H1N1 Pandemic (Swine Flu) | Influenza A H1N1pdm09 | Pigs, humans | Mexico, USA | Respiratory secretions | [9] |
| 2012 | MERS | MERS-CoV | Bats, camels, humans | Saudi Arabia | Respiratory droplets, zoonotic | [10] |
| 2014 | Ebola Virus (Resurgence) | Zaire ebolavirus | Bats, humans | Guinea, Liberia, Sierra Leone | Direct contact, nosocomial | [11] |
| 2015 | Zika Virus Outbreak | Zika virus | Humans, mosquitoes (Aedes spp.) | Brazil | Mosquito-borne, sexual, vertical | [12] |
| 2019 | COVID-19 | SARS-CoV-2 | Bats, humans (possible pangolin link) | Wuhan, China | Respiratory droplets, aerosols | [13] |
| Types of infectious disease | Etiology | Emerging/re-emerging |
|---|---|---|
| Lyme disease | Borrelia spp. | Emerging |
| Cholera | Vibrio cholerae | Re-emerging |
| Plague | Yersinia pestis | Re-emerging |
| Vancomycin resistant Staphylococcus aureus infections | Staphylococcus aureus | Re-emerging |
| Pathogenic Escherichia coli infections (food poisoning) | Pathogenic E. coli strains (O157:H7 & O104:H4) | Emerging |
| Multidrug-resistant tuberculosis infections | Mycobacterium tuberculosis | Re-emerging |
| Cryptococcus gattii infections | Cryptococcus gattii | Emerging |
| Cyclosporiasis infections | Cyclospora cayetanensis | Emerging |
| Drug-resistant malaria | Plasmodium spp. | Re-emerging |
| Variant Creutzfeldt–Jakob disease | Prion | Emerging |
| West Nile fever | West Nile virus | Re-emerging |
| Hantavirus pulmonary syndrome | Hantavirus | Emerging |
| Dengue fever | Dengue virus | Re-emerging |
| Japanese encephalitis | Japanese encephalitis virus | Re-emerging |
| Ebola hemorrhagic fever | Ebola virus | Re-emerging |
| Hendra virus infection | Hendra virus | Emerging |
| Nipah virus infection | Nipah virus | Emerging |
| Highly pathogenic avian influenza | H5N1, H7N9 influenza virus | Emerging |
| Severe acute respiratory syndrome | SARS-CoV-1 | Emerging |
| 2009 Pandemic influenza | Swine-origin H1N1 influenza | Emerging |
| COVID-19 | SARS-CoV-2 | Emerging |
| Disease | Etiological agent | Reservoir | Route of transmission | Occurrence | References |
|---|---|---|---|---|---|
| SARS-CoV-2 | SARS coronavirus | Bats | Aerosol | Worldwide | [18] |
| MERS | MERS coronavirus | Camel | Aerosol | Worldwide | [18] |
| Dengue | Dengue virus | Monkey | Vector (Aedes aegypti) | Africa, Southeast Asia, America, Caribbean, Pacific | [19] |
| Highly Pathogenic Avian Influenza (H5N1) | Influenza viruses | Birds | Direct contact with feces, saliva, or mucosa of infected bird | China, Hong Kong Europe, Africa, China, Russia, Kazakhstan |
[20] |
| Ebola Hemorrhagic Fever | Ebola virus | Bats/Apes and Monkey | Multiple organ systems of the body are affected+ extensive internal breeding | Democratic Republic of Congo, Sudan, Uganda, Gabon | [18] |
| Hantavirus p Pulmonary Syndrome |
Hanta virus | Rodents | Contact with rodent’s feces | America, Asia, Europe | [18] |
| Nipah Virus Diseases | Paramyxovirus | Pigs, Bats | Direct contact or consuming contaminated food products | Malaysia, Singapore, India, Bangladesh | [18] |
| Rabies | Lyssa viruses | Raccoons, Skunks, Bat, Foxes | Direct contact (skin, mucous, tissues)/bite of rabid animal | All Continents Except Antarctica | [21] |
| Rift Vally Fever | Rift Valley Fever Virus | Cattle, Buffalo, Sheep Goat, Camel | Direct contact or bite of infected mosquitos | African Madagascar, Saudi Arabia, Yemen | [22] |
| Septicaemic Plague | Yersinia pestis | Rodents | Flea Bites or via skin lesion | Hong Kong, Africa, Asia, South America | [23] |
| Pneumonic Plague | Yersinia pestis | Rodents, Rabbits, and large animals | Aerosol | Manchuria, Congo, Madagascar, Peru | [23] |
| Bubonic Plague | Yersinia pestis | Rodents | Flea bites | Europe Africa, Asia, South America | [23] |
| Anthrax | Bacillus anthracis | Cattle, Sheep, Goats, Horses and Swine. | Inhaling /ingesting food contaminated with spores | Asia, Europe, Africa, Australia. | [24] |
| Disease/ Pathogen |
First Known Outbreak | Affected Species | Transmission Route | Vaccine/ Therapeutics Available |
Economic Impact | Source/ Reference |
|---|---|---|---|---|---|---|
| Vibrio cholerae O139 | 1992 | Humans | Contaminated water | Yes (OCVs) | Seasonal burden in East India | [37] |
| Diphtheria resurgence | 1980s | Humans | Respiratory droplets | Yes (DPT) | Rural child mortality | [38] |
| Plague | 1994 (Surat) | Humans | Rodents, fleas | No | Trade panic, emergency measures | [39] |
| Nipah Virus | 2001, 2018, 2023 | Humans, bats | Bats, Humans | No | Local trade, tourism affected | [40] |
| Dengue & Chikungunya | Recurrent | Humans | Aedes mosquito | No | Outbreak cycles in metros | [41] |
| Avian Influenza (H5N1, H1N1) | 2006–ongoing | Poultry, Humans | Contact with infected birds | Yes (Flu vaccine) | Poultry trade loss | [31] |
| CCHF | 2011 onward | Humans, livestock | Ticks, blood contact | No | Occupational risk | [42] |
| Acute Encephalitis Syndrome | Seasonal outbreaks | Humans (children) | Viruses, toxins | No | Pediatric deaths in Bihar, Assam | [43] |
| SARS-CoV-2 (COVID-19) | 2020–2022 | Humans | Respiratory transmission | Yes (Covaxin, Covishield) | National GDP loss, >500K deaths | [44] |
| Lumpy Skin Disease (LSD) | 2022–ongoing | Cattle | Insects, contact | Yes (Goatpox-based) | Dairy sector losses (INR crores) | [33] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
