Submitted:
07 August 2025
Posted:
08 August 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Regional Setting
2.1. Geologic and Geomorphic Setting
2.2. Modern Climatology
2.3. Timing of the Local LGM
3. Materials and Methods
3.1. Glacier Reconstruction
3.2. The Temperature-Index Model and Its Implementation
4. Results
4.1. Glacier Reconstruction and Equilibrium-Line Altitudes
4.2. Temperature-Index Modeling: Model Skill
4.3. Steady-State Mass Balances of Paleoglaciers and Implications for LGM Climate
4.4. Uncertainties in the Estimates of LGM Temperature Depression
5. Discussion
6. Conclusions
References
- Oster, J.L.; Ibarra, D.E.; Winnick, M.J.; Maher, K. Steering of westerly storms over western North America at the Last Glacial Maximum. Nat. Geosci. 2015, 8, 201–205. [Google Scholar] [CrossRef]
- Lora, J.M. Components and Mechanisms of Hydrologic Cycle changes over North America at the Last Glacial Maximum. J Clim. 2018, 31, 7035–7051. [Google Scholar] [CrossRef]
- Ibarra, D.E.; Oster, J.L.; Winnick, M.J.; Caves Rugenstein, J.K.; Byrne, M.; Chamberlain, C.P. Warm and cold wet states in the western United States during the Pliocene-Pleistocene. Geology 2018, 46, 355–358. [Google Scholar] [CrossRef]
- Lora, J.M.; Ibarra, D.E. The North American hydrologic cycle through the last deglaciation. Quat. Sci. Rev. 2019, 226, 1–25. [Google Scholar] [CrossRef]
- Laabs, B.J.; Plummer, M.A.; Mickelson, D.M. Climate during the last glacial maximum in the Wasatch and southern Uinta Mountains inferred from glacier modeling. Geomorph. 2006, 75, 300–317. [Google Scholar] [CrossRef]
- Refsnider, K.A.; Laabs, B.J.C.; Plummer, M.A.; Mickelson, D.M.; Singer, B.S.; Caffee, M.W. Last Glacial Maximum climate inferences from cosmogenic dating and glacier modeling of the western Uinta ice field, Uinta Mountains, Utah. Quat. Res. 2008, 69, 130–144. [Google Scholar] [CrossRef]
- Dühnforth, M.; Anderson, R.S. Reconstructing the glacial history of green lakes valley, North Boulder Creek, Colorado Front Range. Arct. Antarct. Alp. Res. 2011, 43, 527–542. [Google Scholar] [CrossRef]
- Leonard, E.M.; Laabs, B.J.C.; Plummer, M.A.; Kroner, R.K.; Brugger, K.A.; Spiess, V.M.; Refsnider, K.A.; Xia, Y.; Caffee, M.W. Late Pleistocene glaciation and deglaciation in the Crestone Peaks area, Sangre de Cristo Mountains, USA-chronology and paleoclimate. Quat. Sci. Rev. 2017, 158, 127–144. [Google Scholar] [CrossRef]
- Quirk, B.J.; Moore, J.R.; Laabs, B.J.C.; Plummer, M.A.; Caffee, M.W. Latest Pleistocene glacial and climate history of the Wasatch Range, Utah. Quat. Sci. Rev. 2020, 238. [Google Scholar] [CrossRef]
- Leonard, E.M.; Laabs, B.J.C.; Roberson, A.; Plummer, M.A.; Ibarra, D.E.; Caffee, M.W. Late Pleistocene glaciation in the southernmost Sangre de Cristo Mountains, New Mexico – chronology and paleoclimate. Quat. Sci. Adv. 2023, 9. [Google Scholar] [CrossRef]
- Quirk, B.J.; Larsen, I.J.; Hidy, A.J. Latest Pleistocene glacial chronology and paleoclimate reconstruction for the East River watershed, Colorado, USA. Quat. Res. 2024, 119, 86–98. [Google Scholar] [CrossRef]
- Brugger, K.A. Late Pleistocene climate inferred from the reconstruction of the Taylor River glacier complex, southern Sawatch Range, Colorado. Geomorph., 2006, 75, 318–329. [Google Scholar] [CrossRef]
- Brugger, K.A. Climate in the southern Sawatch Range and Elk Mountains, Colorado, USA, during the Last Glacial Maximum: Inferences using a simple degree-day model. Arct. Antarct. Alp. Res. 2010, 42, 164–178. [Google Scholar] [CrossRef]
- Brugger, K.A.; Laabs, B.; Reimers, A.; Bensen, N. Late Pleistocene glaciation in the Mosquito Range, Colorado, USA: Chronology and climate. J. Quat. Sci. 2019, 34, 187–202. [Google Scholar] [CrossRef]
- Brugger, K.A.; Ruleman, C.A.; Caffee, M.W.; Mason, C.C. Climate during the Last Glacial Maximum in the Northern Sawatch Range, Colorado, USA. Quat. 2019, 2, 22. [Google Scholar] [CrossRef]
- Brugger, K.A.; Leonard, E.M.; Refsnider, K.A.; Dolan, P. Climate on the Blanca Massif, Sangre de Cristo Mountains, Colorado, USA, during the Last Glacial Maximum. Quaternary 2021, 4, 27. [Google Scholar] [CrossRef]
- Shafer, S.L., Bartlein, P.J., Izumi, K., 2021, PMIP3/CMIP5 lgm simulated temperature data for North America downscaled to a 10-km grid: U.S. Geological Survey data release. [CrossRef]
- Lindsey, D.A.; Caine, J.S. 2024, Thick- and thin-skinned contractional styles and the tectonic evolution of the northern Sangre de Cristo Mountains, Colorado, USA: Geosphere, v. 20, no. 3, p. 678–710. [CrossRef]
- Lindsey, D.A. The Geologic Story of Colorado’s Sangre de Cristo Range; U.S. Geological Survey: Reston, VA, USA, 2010; 14p.
- Johnstone, S.A.; Hudson, A.M.; Nicovitch, S.; Ruleman, C.A.; Sare, R.M.; Thompson, R.A. Establishing chronologies for alluvial-fan sequences with analysis of high resolution topographic data: San Luis Valley, Colorado, USA. Geosphere 2018, 14, 2487–2504. [Google Scholar] [CrossRef]
- Nicovich, S.R.; Schmitt, J.G.; Gray, H.J.; Klinger, R.E.; Mahan, S.A. Construction and modification of debris-flow alluvial fans as captured in the geomorphic and sedimentary record: Example from the western Sangre Mountains, south-central Colorado. Geol. Soc. Am. Spec. Pap. 561, 2023. [CrossRef]
- Daly, C.; Halbleib, M.; Smith, J.I.; Gibson, W.P.; Doggett, M.K.; Taylor, G.H.; Curtis, J.; Pasteris, P.P. Physiographically sensitive mapping of climatological temperature and precipitation across the coterminous United States. Int. J. Climatol. 2008, 28, 2031–2064. [Google Scholar] [CrossRef]
- Refsnider, K.A.; Brugger, K.A.; Leonard, E.M.; McCalpin, J.P.; Armstrong, P.P. Last glacial maximum equilibrium-line altitude trends and precipitation patterns in the Sangre de Cristo Mountains, southern Colorado, USA. Boreas 2009, 38, 663–678. [Google Scholar] [CrossRef]
- Gutmann, E.D.; Rasmussen, R.M.; Lui, C.; Ikeda, K.; Gochis, D.J.; Clark, M.P.; Dudhia, J.; Thompson, G. A comparison of statistical and dynamical downscaling of winter precipitation over complex terrain. J. Clim. 2012, 25, 262–281. [Google Scholar] [CrossRef]
- Sheppard, P.R.; Comrie, A.C.; Packin, G.D.; Angerbach, K.; Hughes, M.K. The climate of the US Southwest. Clim. Res. 2002, 21, 219–238. [Google Scholar] [CrossRef]
- Brugger, K.A. Cosmogenic 10Be and 36Cl ages from late Pleistocene terminal moraine complexes in the Taylor River drainage basin, central Colorado, U.S.A. Quat. Sci. Rev. 2007, 26, 494–499. [Google Scholar] [CrossRef]
- Young, N.E.; Briner, J.P.; Leonard, E.M.; Licciardi, J.M.; Lee, K. Assessing climatic and non-climatic forcing of Pinedale glaciation and deglaciation in the western United States. Geol. 2011, 39, 171–174. [Google Scholar] [CrossRef]
- Schweinsberg, A.D.; Briner, J.P.; Licciardi, J.M.; Schroba, R.R.; Leonard, E.M. Cosmogenic 10Be exposure dating of Bull Lake and Pinedale moraine sequences in the upper Arkansas River valley Colorado Rocky Mountains, USA. Quat. Res. 2020, 97, 125–139. [Google Scholar] [CrossRef]
- Kirkham, R.M.; Lufkin, J.L.; Lindsay, N.R.; Dickens, K.E. Geologic map of the La Valley quadrangle. Costilla County, Colorado: Colorado Geological Survey Open-File Report. 2004:04-8.
- Kirkham, R.M.; Keller, J.W.; Price, N.R.; Lindsay, N.R. Geologic map of the south half of the Culebra Peak quadrangle. Costilla and Las Animas Counties, Colorado: Colorado Geological Survey Open-File Report. 2005:05-3.
- Fridrich, C.J.; Kirkham, R.M. Preliminary map of the Culebra Peak area, Sangre de Cristo Mountains, Las Animas and Costilla Countaines. U.S. Geol. Surv. OFR 2007-1428. [Google Scholar]
- Cuffey, K.M.; Paterson, W.S.B. The Physics of Glaciers, 4th ed.; Elsevier: Boston, MA, USA, 2010.
- Nye, J.F. The flow of a glacier in a channel of rectangular, elliptic or parabolic cross-section. J. Glaciol. 1965, 5, 661–690. [Google Scholar] [CrossRef]
- Bindschadler, R.; Harrison, W.D.; Raymond, C.F.; Crossen, R. Geometry and dynamics of a surge-type glacier. J. Glaciol. 1977, 18, 181–194. [Google Scholar] [CrossRef]
- Brocklehurst, S.H.; MacGregor, K.R. The role of wind in the evolution of glaciated mountain ranges: Field observations and insights from numerical modelling. AGU Fall Meeting Abstracts 2005, H51C-0390. [Google Scholar]
- Menking, K.M.; Anderson, R.; Shafike, N.; Syed, K.H.; Allen, B.D. Wetter or colder during the Last Glacial Maximum? Revisiting the pluvial lake question in southwestern North America. Quat. Res. 2004, 62, 280–288. [Google Scholar] [CrossRef]
- Asmerom, Y.; Polyak, V.; Burns, S. Variable winter moisture in the southwestern United States linked to rapid glacial climate shifts. Nature Geosci. 2010, 3, 114–117. [Google Scholar] [CrossRef]
- Menking, K.M.; Polyak, V.J.; Anderson, R.Y.; Asmerom, Y. Climate history of the southwestern United States base on Estancia Basin hydrologic variability from 69 to 10 ka. Quat. Sci. Rev. 2018, 200, 237–252. [Google Scholar] [CrossRef]
- Menking, K.M.; Bixby, R.J.; Cutler, S.M. Diatom evidence for a groundwater divide that limited the extent of Lake Estancia, New Mexico, USA, highstands during the Last Glacial Maximum. GSA Bull. 2022, 135, 407–419. [Google Scholar] [CrossRef]
- Hudson, A.M.; Quade, J.; Holliday, V.T.; Fenerty, B.; Bright, J.E.; Gray, H.J.; Mahan, S.A. Paleohydrologic history of pluvial lake San Agustin, New Mexico: Tracking changing effective moisture in southwest North America through the last glacial transition. Quat. Sci. Rev. 2023, 310, 108110. [Google Scholar] [CrossRef]
- Lora, J.M.; Skinner, C.B.; Rush, W.D.; Baek, S.H. The hydrologic cycle and atmospheric rivers in CESM2 simulations of the Last Glacial Maximum. Geophy. Res. Lett. 2023, 50, e2023GL104805. [Google Scholar] [CrossRef]
- Kutzbach, J.E.; Wright, H.E. Jr. Simulation of the climate of 18,000 years BP: Results for the North American/North Atlantic/European sector and comparison with the geologic record of North America. Quat. Sci. Rev. 1985, 4, 147–187. [Google Scholar] [CrossRef]
- Lyle, M.; Heusser, L.; Ravelo, C.; Yamamoto, M.; Barron, J.; Diffenbaugh, N.S.; Herbert, T.; Andreasen, D. Out of the Tropics: The Pacific, Great Basin Lakes, and the late Pleistocene water cycle in the western United States. Science 2012, 337, 1629–1633. [Google Scholar] [CrossRef]
- Lora, J.M.; Mitchell, J.L.; Risi, C.; Tripati, A.E. North Pacific atmospheric rivers and their influence on western North America at the Last Glacial Maximum. Geophys. Res. Lett. 2017, 44, 1051–1059. [Google Scholar] [CrossRef]
- Morrill, C.; Lowry, D.P.; Hoell, A. Thermodynamic and dynamic causes of pluvial conditions during the last glacial maximum. Geophys. Res. Lett. 2018, 45, 335–345. [Google Scholar] [CrossRef]
- Tabor, C.; Lofverstrom, M.; Oster, J.; Wortham, B.; de Wet, C.; Montañez, I.; Rhoades, A.; Zarzycki; He, C.; Liu, Z. A mechanistic understanding of oxygen isotope changes in the western United States at the Last Glacial Maximum. Quat. Sci. Rev. 2021, 274, 107255. [CrossRef]
- Amaya, D.J.; Seltzer, A.M.; Karnauskas, K.B.; Lora, J.M.; Zhang, X.; DiNezio, P.N. Air-sea coupling shapes North American hydroclimate response to ice sheets during the Last Glacial Maximum. Earth Planet. Sci Lett. 2022, 578, 117271. [Google Scholar] [CrossRef]
- Todd, V.L.; Shanahan, T.M.; Johnson, B.G. Hydroclimate and ecosystem changes in the Colorado Rocky Mountains since the Last Glacial Maximum. Paleocean. Paleoclim. 2025, 40, e2024PA005049. [Google Scholar] [CrossRef]
- Karger, D.N.; Nobis, M.P.; Normand, S.; Graham, C.H.; Zimmermann, N.E. CHELSA-TraCE21k-high resolution (1 km) downscaled transient temperature and precipitation data since the Last Glacial Maximum. Clim. Past 2023, 19, 439–456. [Google Scholar] [CrossRef]







![]() |
![]() |
![]() |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).



