Submitted:
31 July 2025
Posted:
01 August 2025
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Animal Study and Tissues
2.3. Genomic DNA Extraction and Quantitation
2.4. Neutral Thermal Hydrolisis and HPLC Offline Enrichment and Nano-LC-HRMS Analysis of EBGII and bis-N7G-BD DNA Adducts
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BD | 1,3-butadiene |
| EB | 3,4-epoxy-1-butene |
| DEB | 1,2,3,4 |
| EB-GII | N7-(1-hydroxyl-3-buten-1-yl)guanine |
| bis-N7G-BD | 1,4-bis-(guan-7-yl)-2,3-butanediol |
| CC | Collaborative Cross |
| HPLC-ESI-MS/MS | high Performance Liquid chromatography-electrospray ionization-mass spectrometry/mass spectrometry |
| dG | deoxyguanosine |
| FAPy | formamidopyrimidine |
References
- Brunnemann, K.D.; Kagan, M.R.; Cox, J.E.; Hoffmann, D. Analysis of 1,3-butadiene and other selected gas-phase components in cigarette mainstream and sidestream smoke by gas chromatography-mass selective detection. Carcinogenesis 1990, 11, 1863–1868. [Google Scholar] [CrossRef]
- Gustafson, P.; Barregard, L.; Strandberg, B.; Sallsten, G. The impact of domestic wood burning on personal, indoor and outdoor levels of 1,3-butadiene, benzene, formaldehyde and acetaldehyde. J Environ Monit 2007, 9, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Thiebaud, H.P.; Knize, M.G.; Kuzmicky, P.A.; Hsieh, D.P.; Felton, J.S. Airborne mutagens produced by frying beef, pork and a soy-based food. Food Chem Toxicol 1995, 33, 821–828. [Google Scholar] [CrossRef] [PubMed]
- Pellizzari, E.D.; Michael, L.C.; Thomas, K.W.; Shields, P.G.; Harris, C. Identification of 1,3-butadiene, benzene, and other volatile organics from wok oil emissions. J Expo Anal Environ Epidemiol 1995, 5, 77–87. [Google Scholar] [PubMed]
- Mueller, S.; Dennison, G.; Liu, S. An assessment on ethanol-blended gasoline/diesel fuels on cancer risk and mortality. Int J Environ Res Public Health 2021, 18, 6930. [Google Scholar] [CrossRef]
- Loh, M.M.; Levy, J.I.; Spengler, J.D.; Houseman, E.A.; Bennett, D.H. Ranking cancer risks of organic hazardous air pollutants in the united states. Environmental Health Perspectives 2007, 115, 1160–1168. [Google Scholar] [CrossRef]
- Melnick, R.L.; Huff, J.; Chou, B.J.; Miller, R.A. Carcinogenicity of 1,3-butadiene in c57bl/6 × c3h f1 mice at low exposure concentrations. Cancer Res 1990, 50, 6592–6599. [Google Scholar]
- Owen, P.E.; Glaister, J.R. Inhalation toxicity and carcinogenicity of 1,3-butadiene in sprague-dawley rats. Environ Health Perspect 1990, 86, 19–25. [Google Scholar] [CrossRef]
- Koc, H.; Tretyakova, N.Y.; Walker, V.E.; Henderson, R.F.; Swenberg, J.A. Molecular dosimetry of n-7 guanine adduct formation in mice and rats exposed to 1,3-butadiene. Chem Res Toxicol 1999, 12, 566–574. [Google Scholar] [CrossRef]
- Tretyakova, N.Y.; Chiang, S.Y.; Walker, V.E.; Swenberg, J.A. Quantitative analysis of 1,3-butadiene-induced DNA adducts and using liquid chromatography electrospray ionization tandem mass spectrometry. J Mass Spectrom 1998, 33, 363–376. [Google Scholar] [CrossRef]
- IARC, Iarc monographs on the evaluation of carcinogenic risks to humans. Volume 97. 1,3-butadiene, ethylene oxide and vinyl halides (vinyl fluoride, vinyl chloride and vinyl bromide). IARC Monogr Eval Carcinog Risks Hum 2008, 97, 3-471.
- US EPA, Draft risk evaluation for 10 1,3-butadiene [casrn: 106-99-0]. In Office of Chemical Safety and Pollution Prevention, Ed. US Environmental Protection Agency: Washington, DC, 2024.
- Malvoisin, E.; Roberfroid, M. Hepatic microsomal metabolism of 1,3-butadiene. Xenobiotica; the Fate of Foreign Compounds in Biological Systems 1982, 12, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Swenberg, J.A.; Bordeerat, N.K.; Boysen, G.; Carro, S.; Georgieva, N.I.; Nakamura, J.; Troutman, J.M.; Upton, P.B.; Albertini, R.J.; Vacek, P.M.; et al. 1,3-butadiene: Biomarkers and application to risk assessment. Chem Biol Interact. 2011, 24, 809–817. [Google Scholar]
- Smith, M.T.; Guyton, K.Z.; Gibbons, C.F.; Fritz, J.M.; Portier, C.J.; Rusyn, I.; DeMarini, D.M.; Caldwell, J.C.; Kavlock, R.J.; Lambert, P.F.; et al. Key characteristics of carcinogens as a basis for organizing data on mechanisms of carcinogenesis. Environ Health Perspect 2016, 124, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Lydall, D.; Whitehall, S. Chromatin and the DNA damage response. DNA Repair (Amst) 2005, 4, 1195–1207. [Google Scholar] [CrossRef]
- Sangaraju, D.; Villalta, P.; Goggin, M.; Agunsoye, M.O.; Campbell, C.; Tretyakova, N. Capillary hplc-accurate mass ms/ms quantitation of n7-(2,3,4-trihydroxybut-1-yl)-guanine adducts of 1,3-butadiene in human leukocyte DNA. Chemical Research in Toxicology 2013, 26, 1486–1497. [Google Scholar] [CrossRef]
- Erber, L.; Goodman, S.; Wright, F.A.; Chiu, W.A.; Tretyakova, N.Y.; Rusyn, I. Intra- and inter-species variability in urinary n7-(1-hydroxy-3-buten-2-yl)guanine adducts following inhalation exposure to 1,3-butadiene. Chem Res Toxicol 2021, 34, 2375–2383. [Google Scholar] [CrossRef]
- Sangaraju, D.; Goggin, M.; Walker, V.; Swenberg, J.; Tretyakova, N. Nanohplc-nanoesi+-ms/ms quantitation of bis-n7-guanine DNA–DNA cross-links in tissues of b6c3f1 mice exposed to subppm levels of 1,3-butadiene. Anal. Chem. 2012, 84, 1732–1739. [Google Scholar] [CrossRef]
- Goggin, M.; Loeber, R.; Park, S.; Walker, V.; Wickliffe, J.; Tretyakova, N. Hplc−esi+-ms/ms analysis of n7-guanine−n7-guanine DNA cross-links in tissues of mice exposed to 1,3-butadiene. Chem Res Toxicol 2007, 20, 839–847. [Google Scholar] [CrossRef]
- Lewis, L.; Chappell, G.A.; Kobets, T.; O'Brian, B.E.; Sangaraju, D.; Kosyk, O.; Bodnar, W.; Tretyakova, N.Y.; Pogribny, I.P.; Rusyn, I. Sex-specific differences in genotoxic and epigenetic effects of 1,3-butadiene among mouse tissues. Arch Toxicol 2019, 93, 791–800. [Google Scholar] [CrossRef]
- Kotapati, S.; Esades, A.; Matter, B.; Le, C.; Tretyakova, N. High throughput hplc-esi(-)-ms/ms methodology for mercapturic acid metabolites of 1,3-butadiene: Biomarkers of exposure and bioactivation. Chem Biol Interact 2015, 241, 23–31. [Google Scholar] [CrossRef]
- Kotapati, S.; Matter, B.A.; Grant, A.L.; Tretyakova, N.Y. Quantitative analysis of trihydroxybutyl mercapturic acid, a urinary metabolite of 1,3-butadiene, in humans. Chem Res Toxicol 2011, 24, 1516–1526. [Google Scholar] [CrossRef] [PubMed]
- Jokipii Krueger, C.C.; Park, S.L.; Patel, Y.; Stram, D.O.; Aldrich, M.; Cai, Q.; Tretyakova, N.Y. Association of urinary n7-(1-hydroxyl-3-buten-1-yl) guanine (eb-gii) adducts and butadiene-mercapturic acids with lung cancer development in cigarette smokers. Chem Res Toxicol 2024, 37, 374–384. [Google Scholar] [CrossRef] [PubMed]
- Jokipii Krueger, C.C.; Park, S.L.; Madugundu, G.; Patel, Y.; Le Marchand, L.; Stram, D.O.; Tretyakova, N. Ethnic differences in excretion of butadiene-DNA adducts by current smokers. Carcinogenesis 2021, 42, 694–704. [Google Scholar] [CrossRef] [PubMed]
- Boysen, G.; Arora, R.; Degner, A.; Vevang, K.R.; Chao, C.; Rodriguez, F.; Walmsley, S.J.; Erber, L.; Tretyakova, N.Y.; Peterson, L.A. Effects of gstt1 genotype on the detoxification of 1,3-butadiene derived diepoxide and formation of promutagenic DNA-DNA cross-links in human hapmap cell lines. Chemical Research in Toxicology 2021, 34, 119–131. [Google Scholar] [CrossRef]
- Boldry, E.J.; Patel, Y.M.; Kotapati, S.; Esades, A.; Park, S.L.; Tiirikainen, M.; Stram, D.O.; Le Marchand, L.; Tretyakova, N. Genetic determinants of 1,3-butadiene metabolism and detoxification in three populations of smokers with different risks of lung cancer. Cancer Epidemiol Biomarkers Prev 2017, 26, 1034–1042. [Google Scholar] [CrossRef]
- Stram, D.O.; Park, S.L.; Haiman, C.A.; Murphy, S.E.; Patel, Y.; Hecht, S.S.; Le Marchand, L. Racial/ethnic differences in lung cancer incidence in the multiethnic cohort study: An update. J Natl Cancer Inst 2019, 111, 811–819. [Google Scholar] [CrossRef]
- Rusyn, I.; Chiu, W.A.; Wright, F.A. Model systems and organisms for addressing inter- and intra-species variability in risk assessment. Regul Toxicol Pharmacol 2022, 132, 105197. [Google Scholar] [CrossRef]
- McClurg, P.; Janes, J.; Wu, C.; Delano, D.L.; Walker, J.R.; Batalov, S.; Takahashi, J.S.; Shimomura, K.; Kohsaka, A.; Bass, J.; et al. Genomewide association analysis in diverse inbred mice: Power and population structure. Genetics 2007, 176, 675–683. [Google Scholar] [CrossRef]
- Peirce, J.L.; Lu, L.; Gu, J.; Silver, L.M.; Williams, R.W. A new set of bxd recombinant inbred lines from advanced intercross populations in mice. BMC Genet 2004, 5, 7. [Google Scholar] [CrossRef]
- Williams, R.W.; Bennett, B.; Lu, L.; Gu, J.; DeFries, J.C.; Carosone-Link, P.J.; Rikke, B.A.; Belknap, J.K.; Johnson, T.E. Genetic structure of the lxs panel of recombinant inbred mouse strains: A powerful resource for complex trait analysis. Mamm Genome 2004, 15, 637–647. [Google Scholar] [CrossRef]
- Threadgill, D.W.; Miller, D.R.; Churchill, G.A.; de Villena, F.P.-M. The collaborative cross: A recombinant inbred mouse population for the systems genetic era. ILAR Journal 2011, 52, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Lewis, L.; Borowa-Mazgaj, B.; de Conti, A.; Chappell, G.A.; Luo, Y.S.; Bodnar, W.; Konganti, K.; Wright, F.A.; Threadgill, D.W.; Chiu, W.A.; et al. Population-based analysis of DNA damage and epigenetic effects of 1,3-butadiene in the mouse. Chem Res Toxicol 2019, 32, 887–898. [Google Scholar] [CrossRef] [PubMed]
- Koturbash, I.; Scherhag, A.; Sorrentino, J.; Sexton, K.; Bodnar, W.; Tryndyak, V.; Latendresse, J.R.; Swenberg, J.A.; Beland, F.A.; Pogribny, I.P.; et al. Epigenetic alterations in liver of c57bl/6j mice after short-term inhalational exposure to 1,3-butadiene. Environmental Health Perspectives 2011, 119, 635–640. [Google Scholar] [CrossRef] [PubMed]
- Koturbash, I.; Scherhag, A.; Sorrentino, J.; Sexton, K.; Bodnar, W.; Swenberg, J.A.; Beland, F.A.; Pardo-Manuel Devillena, F.; Rusyn, I.; Pogribny, I.P. Epigenetic mechanisms of mouse interstrain variability in genotoxicity of the environmental toxicant 1,3-butadiene. Toxicol Sci 2011, 122, 448–456. [Google Scholar] [CrossRef]
- Chappell, G.A.; Israel, J.W.; Simon, J.M.; Pott, S.; Safi, A.; Eklund, K.; Sexton, K.G.; Bodnar, W.; Lieb, J.D.; Crawford, G.E.; et al. Variation in DNA-damage responses to an inhalational carcinogen (1,3-butadiene) in relation to strain-specific differences in chromatin accessibility and gene transcription profiles in c57bl/6j and cast/eij mice. Environ Health Perspect 2017, 125, 107006. [Google Scholar] [CrossRef]
- Chappell, G.; Kobets, T.; O'Brien, B.; Tretyakova, N.; Sangaraju, D.; Kosyk, O.; Sexton, K.G.; Bodnar, W.; Pogribny, I.P.; Rusyn, I. Epigenetic events determine tissue-specific toxicity of inhalational exposure to the genotoxic chemical 1,3-butadiene in male c57bl/6j mice. Toxicological sciences : an official journal of the Society of Toxicology 2014, 142, 375–384. [Google Scholar] [CrossRef]
- Tretyakova, N.; Sangaiah, R.; Yen, T.Y.; Swenberg, J.A. Synthesis, characterization, and in vitro quantitation of n-7-guanine adducts of diepoxybutane. Chem Res Toxicol 1997, 10, 779–785. [Google Scholar] [CrossRef]
- Citti, L.; Gervasi, P.G.; Turchi, G.; Bellucci, G.; Bianchini, R. The reaction of 3,4-epoxy-1-butene with deoxyguanosine and DNA in vitro: Synthesis and characterization of the main adducts. Carcinogenesis 1984, 5, 47–52. [Google Scholar] [CrossRef]
- Park, S.; Tretyakova, N. Structural characterization of the major DNA−DNA cross-link of 1,2,3,4-diepoxybutane. Chem Res Toxicol 2004, 17, 129–136. [Google Scholar] [CrossRef]
- Park, S.; Anderson, C.; Loeber, R.; Seetharaman, M.; Jones, R.; Tretyakova, N. Interstrand and intrastrand DNA−DNA cross-linking by 1,2,3,4-diepoxybutane: role of stereochemistry. J. Am. Chem. Soc. 2005, 127, 14355–14365. [Google Scholar] [CrossRef]
- Erber, L.; Goodman, S.; Jokipii Krueger, C.C.; Rusyn, I.; Tretyakova, N. Quantitative nanolc/nsi(+)-hrms method for 1,3-butadiene induced bis-n7-guanine DNA-DNA cross-links in urine. Toxics 2021, 9, 247. [Google Scholar] [CrossRef]
- Jokipii Krueger, C.C.; Moran, E.; Tessier, K.M.; Tretyakova, N.Y. Isotope labeling mass spectrometry to quantify endogenous and exogenous DNA adducts and metabolites of 1,3-butadiene in vivo. Chem Res Toxicol 2023, 36, 1409–1418. [Google Scholar] [CrossRef]
- Boysen, G.; Rusyn, I.; Chiu, W.A.; Wright, F.A. Characterization of population variability of 1,3-butadiene derived protein adducts in humans and mice. Regul Toxicol Pharmacol 2022, 132, 105171. [Google Scholar] [CrossRef]
- Goggin, M.; Swenberg, J.A.; Walker, V.E.; Tretyakova, N. Molecular dosimetry of 1,2,3,4-diepoxybutane-induced DNA-DNA cross-links in b6c3f1 mice and f344 rats exposed to 1,3-butadiene by inhalation. Cancer Res 2009, 69, 2479–2486. [Google Scholar] [CrossRef] [PubMed]
- Tretyakova, N.; Lin, Y.; Sangaiah, R.; Upton, P.B.; Swenberg, J.A. Identification and quantitation of DNA adducts from calf thymus DNA exposed to 3,4-epoxy-1-butene. Carcinogenesis 1997, 18, 137–147. [Google Scholar] [CrossRef]
- Filser, J.G.; Hutzler, C.; Meischner, V.; Veereshwarayya, V.; Csanady, G.A. Metabolism of 1,3-butadiene to toxicologically relevant metabolites in single-exposed mice and rats. Chem Biol Interact 2007, 166, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Goggin, M.; Sangaraju, D.; Walker, V.E.; Wickliffe, J.; Swenberg, J.A.; Tretyakova, N. Persistence and repair of bifunctional DNA adducts in tissues of laboratory animals exposed to 1,3-butadiene by inhalation. Chem Res Toxicol 2011, 24, 809–817. [Google Scholar] [CrossRef] [PubMed]
- Lewis, L.; Crawford, G.E.; Furey, T.S.; Rusyn, I. Genetic and epigenetic determinants of inter-individual variability in responses to toxicants. Curr Opin Toxicol 2017, 6, 50–59. [Google Scholar] [CrossRef]
- Boysen, G.; Pachkowski, B.F.; Nakamura, J.; Swenberg, J.A. The formation and biological significance of n7-guanine adducts. Mutat Res 2009, 678, 76–94. [Google Scholar] [CrossRef]
- Pujari, S.S.; Jokipii Krueger, C.C.; Chao, C.; Hutchins, S.; Hurben, A.K.; Boysen, G.; Tretyakova, N. Deb-fapy-dg adducts of 1,3-butadiene: Synthesis, structural characterization, and formation in 1,2,3,4-diepoxybutane treated DNA. Chemistry 2022, 28, e202103245. [Google Scholar] [CrossRef]
- Adler, I.D.; Cochrane, J.; Osterman-Golkar, S.; Skopek, T.R.; Sorsa, M.; Vogel, E. 1,3-butadiene working group report. Mutat Res 1995, 330, 101–114. [Google Scholar] [CrossRef]
- Carmical, J.R.; Kowalczyk, A.; Zou, Y.; Van Houten, B.; Nechev, L.V.; Harris, C.M.; Harris, T.M.; Lloyd, R.S. Butadiene-induced intrastrand DNA cross-links: A possible role in deletion mutagenesis. Journal of Biological Chemistry 2000, 275, 19482–19489. [Google Scholar] [CrossRef]
- Wickramaratne, S.; Ji, S.; Mukherjee, S.; Su, Y.; Pence, M.G.; Lior-Hoffmann, L.; Fu, I.; Broyde, S.; Guengerich, F.P.; Distefano, M.; et al. Bypass of DNA-protein cross-links conjugated to the 7-deazaguanine position of DNA by translesion synthesis polymerases. J Biol Chem 2016, 291, 23589–23603. [Google Scholar] [CrossRef] [PubMed]








| Exposure | Washout | ||
|---|---|---|---|
| Liver EB-GII (per 106 nucleotides) |
GM uncorrected (95% CI) | 2.0 (0.46-8.77) | 0.35 (0.14-0.86) |
| GSD uncorrected (95% CI) | 2.08 (1.83-2.52) | 1.56 (1.44-1.78) | |
| σ2 (total) | 0.54 | 0.2 | |
| σ2 (within) | 0.42 | 0.19 | |
| σ2 (across) | 0.12 | 0.01 | |
| UFH (95% CI) | 1.77 (1.09-3.47) | 1.18 (1-1.7) | |
| UFH (99% CI) | 2.24 (1.13-5.8) | 1.27 (1-2.12) | |
| Liver bis-N7G-BD (per 107 nucleotides) |
GM uncorrected (95% CI) | 0.45 (0.04-4.54) | 0.09 (0.01-1.13) |
| GSD uncorrected (95% CI) | 3.14 (2.58-4.25) | 3.54 (2.81-5.1) | |
| σ2 (total) | 1.31 | 1.6 | |
| σ2 (within) | 0.74 | 1.46 | |
| σ2 (across) | 0.58 | 0.14 | |
| UFH (95% CI) | 3.49 (1.74-12.74) | 1.86 (1-5.4) | |
| UFH (99% CI) | 5.85 (2.19-36.57) | 2.4 (1-10.86) | |
| Lung EB-GII (per 106 nucleotides) |
GM uncorrected (95% CI) | 2.16 (0.72-6.46) | 0.35 (0.03-4.46) |
| GSD uncorrected (95% CI) | 1.72 (1.57-1.99) | 3.54 (2.81-5.1) | |
| σ2 (total) | 0.3 | 1.6 | |
| σ2 (within) | 0.27 | 1.6 | |
| σ2 (across) | 0.02 | 0 | |
| UFH (95% CI) | 1.27 (1-1.81) | 1.0 (1.0-2.34) | |
| UFH (99% CI) | 1.41 (1-2.31) | 1.0 (1.0-3.33) | |
| Kidney EB-GII (per 106 nucleotides) |
GM uncorrected (95% CI) | 0.97 (0.35-2.68) | 0.27 (0.06-1.11) |
| GSD uncorrected (95% CI) | 1.65 (1.52-1.89) | 2.02 (1.78-2.48) | |
| σ2 (total) | 0.25 | 0.5 | |
| σ2 (within) | 0.14 | 0.46 | |
| σ2 (across) | 0.11 | 0.04 | |
| UFH (95% CI) | 1.74 (1.27-3.11) | 1.37 (1-2.45) | |
| UFH (99% CI) | 2.19 (1.4-4.98) | 1.56 (1-3.55) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
