Submitted:
10 July 2025
Posted:
11 July 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Background and Problem Formulation
3. Model Compression and Quantization Techniques
3.1. Gradient and Model Quantization
3.2. Sparsification and Top-k Compression
3.3. Low-Rank and Sketching Methods
3.4. Implications for Convergence and System Design
3.5. Summary
4. Adaptive Communication Protocols
4.1. Communication Frequency Adaptation
4.2. Event-Triggered Communication
4.3. Adaptive Client Participation
- Client reliability: Favoring clients with stable connectivity and timely responses to reduce straggler effects [37].
- Data representativeness: Selecting clients whose data distributions complement existing updates to reduce bias and improve generalization.
- Update magnitude: Prioritizing clients with larger local model changes to accelerate learning progress.
4.4. Theoretical Guarantees
4.5. Practical Considerations and Challenges
4.6. Summary
5. Client Selection and Scheduling
5.1. Problem Formulation
5.2. Importance Sampling for Variance Reduction
5.3. Straggler Mitigation via Deadline-Aware Scheduling
5.4. Fairness and Diversity Considerations
5.5. Scheduling Algorithms
- Greedy Selection: Select clients maximizing incremental utility until resource constraints are met. This approach is simple but can be myopic.
- Multi-Armed Bandits (MAB): Model client selection as an MAB problem where the server learns client utility over time, balancing exploration and exploitation [53].
- Optimization-Based Selection: Solve a constrained optimization problem using techniques such as projected gradient descent or integer programming to find selection probabilities [54].
5.6. Convergence Analysis with Partial Client Participation
5.7. Summary
6. Asynchronous Federated Learning
6.1. Modeling Asynchrony
6.2. Impact of Staleness
6.3. Algorithmic Strategies for AFL
- Staleness-weighted aggregation: Assign weights to client updates inversely proportional to their staleness, e.g.,which downweights outdated updates to reduce their negative impact.
- Adaptive learning rates: Employ time-decaying or delay-aware learning rates that reduce step sizes for stale updates, balancing convergence speed and stability [58].
- Bounded staleness protocols: Enforce a maximum allowable delay by discarding excessively stale updates, trading off system responsiveness with convergence guarantees [59].
- Asynchronous variance reduction: Integrate variance reduction techniques such as SVRG or SAGA adapted to asynchronous settings to reduce gradient noise amplified by staleness [60].
6.4. Theoretical Convergence Guarantees
6.5. Practical Challenges and System Considerations
- Client heterogeneity: Diverse computational speeds and network conditions yield variable staleness distributions, complicating system design [62].
- Model consistency: Ensuring that asynchronous updates do not cause model parameter inconsistencies or conflicts, especially when using non-convex models.
- Privacy preservation: Integrating asynchronous updates with privacy-preserving mechanisms like secure aggregation or differential privacy is non-trivial due to the dynamic and out-of-sync nature of updates [63].
- Fault tolerance: Handling client dropouts and unreliable connections without stalling the global training process.
6.6. Summary
7. Model Compression and Quantization Techniques
7.1. Problem Setup and Objectives
7.2. Quantization Methods
Uniform Quantization
Stochastic Quantization
7.3. Sparsification Techniques
7.4. Low-Rank and Structured Compression
7.5. Theoretical Trade-Offs
7.6. Integration with Federated Learning Protocols
7.7. Summary
8. Privacy and Security Challenges in Large-Scale Federated Learning
8.1. Threat Models and Privacy Risks
Inference Attacks
Membership Inference Attacks
Poisoning and Backdoor Attacks
8.2. Differential Privacy in Federated Learning
8.3. Secure Aggregation Protocols
8.4. Robust Aggregation Methods
- Median and Trimmed Mean Aggregation: Replacing the average with coordinate-wise median or trimmed mean reduces sensitivity to extreme values.
- Krum and Multi-Krum: Selecting client updates closest to the majority by minimizing the sum of distances to other updates to exclude outliers.
- Norm Bounding and Clipping: Limiting the norm of updates to control the impact of large malicious updates [93].
8.5. Trade-Offs and Open Challenges
- Privacy vs. Utility: Adding noise for DP or restricting updates reduces model accuracy.
- Security vs. Scalability: Cryptographic protocols add overhead and complexity, challenging deployment at scale.
- Robustness vs [95]. Fairness: Filtering or down-weighting suspicious updates may unintentionally marginalize honest but statistically distinct clients.
8.6. Summary
9. System Heterogeneity and Scalability Challenges
9.1. Modeling Device and Network Heterogeneity
- is the local computation speed (e.g., FLOPS),
- is the communication bandwidth available to client k,
- is the battery or power budget,
- quantifies data heterogeneity or non-IID degree in client k’s local dataset [100].
9.2. Impact on Federated Optimization
9.3. Client Sampling and Scheduling Strategies
9.4. Mitigating Stragglers and Asynchrony
Partial Participation with Deadlines
Asynchronous Federated Optimization
9.5. Energy Efficiency and Power Constraints
9.6. Scalability in Model and Data Heterogeneity
9.7. Summary
10. Communication Efficiency and Compression Techniques
10.1. Communication Cost Formulation
10.2. Quantization Techniques
10.3. Sparsification Methods
10.4. Adaptive Compression and Communication Frequency
10.5. Theoretical Trade-offs and Convergence Bounds
10.6. Practical Considerations
- Encoding and Decoding Overhead: Computational cost on resource-constrained devices.
- Robustness to Packet Loss and Asynchrony: Ensuring stability in unreliable networks [122].
- Compatibility with Privacy Mechanisms: Noise added by differential privacy can interact nontrivially with compression noise [123].
10.7. Summary
11. Personalization in Large-Scale Federated Learning
11.1. Problem Formulation
11.2. Meta-Learning Approaches
11.3. Multi-Task and Clustered Federated Learning
11.4. Personalized Model Architectures
11.5. Challenges and Open Questions
- Communication Overhead: Personalized models require additional communication and storage, especially with large vectors.
- Privacy Risks: Personalization may leak client-specific information; privacy-preserving personalization remains an active research area.
- Fairness and Robustness: Balancing performance across diverse clients to avoid disadvantaging minority groups.
- Theoretical Guarantees: Establishing convergence and generalization bounds for personalized federated algorithms under heterogeneous data.
11.6. Summary
12. Incentive Mechanisms and Client Participation
12.1. Rationale and Challenges
- Asymmetric Information: The server often lacks knowledge of individual client costs and data quality.
- Strategic Behavior: Clients may misreport resources or withhold updates to maximize personal utility.
- Fairness: Incentives must balance rewarding contribution and preventing exploitation of disadvantaged clients.
- Scalability: Mechanisms must be computationally and communication efficient for massive client populations.
12.2. Mathematical Modeling of Client Utilities
- is the reward (monetary, reputation, or other incentives) offered by the server,
- represents the client’s cost, encompassing computational, communication, and privacy expenses.
12.3. Game-Theoretic Incentive Mechanisms
- is the set of clients,
- is the action space for client k, typically participation level or quality of update,
- is the utility function as defined above.
Auction-Based Approaches
Contract Theory
12.4. Reputation and Trust Systems
12.5. Participation and Scheduling Policies
- High-quality data,
- Low latency and resource costs,
- Good reputation scores,
- Diverse data to reduce bias [139].
12.6. Privacy-Aware Incentives
12.7. Summary
13. Conclusion
References
- Sattler, F.; Marban, A.; Rischke, R.; Samek, W. Cfd: Communication-efficient federated distillation via soft-label quantization and delta coding. IEEE Transactions on Network Science and Engineering 2021. [CrossRef]
- Shi, W.; Zhou, S.; Niu, Z.; Jiang, M.; Geng, L. Joint device scheduling and resource allocation for latency constrained wireless federated learning. IEEE Transactions on Wireless Communications 2020, 20, 453–467. [CrossRef]
- Sergeev, A.; Del Balso, M. Horovod: fast and easy distributed deep learning in TensorFlow. arXiv preprint arXiv:1802.05799 2018.
- Gray, R.M.; Neuhoff, D.L. Quantization. IEEE transactions on information theory 1998, 44, 2325–2383.
- Rieke, N.; Hancox, J.; Li, W.; Milletari, F.; Roth, H.R.; Albarqouni, S.; Bakas, S.; Galtier, M.N.; Landman, B.A.; Maier-Hein, K.; et al. The future of digital health with federated learning. NPJ digital medicine 2020, 3, 1–7. [CrossRef]
- Chen, H.; Huang, S.; Zhang, D.; Xiao, M.; Skoglund, M.; Poor, H.V. Federated learning over wireless IoT networks with optimized communication and resources. IEEE Internet of Things Journal 2022. [CrossRef]
- Donoho, D.L. Compressed sensing. IEEE Transactions on information theory 2006, 52, 1289–1306.
- Dai, X.; Yan, X.; Zhou, K.; Yang, H.; Ng, K.K.; Cheng, J.; Fan, Y. Hyper-sphere quantization: Communication-efficient sgd for federated learning. arXiv preprint arXiv:1911.04655 2019.
- Chen, S.; Shen, C.; Zhang, L.; Tang, Y. Dynamic aggregation for heterogeneous quantization in federated learning. IEEE Transactions on Wireless Communications 2021, 20, 6804–6819.
- Chen, M.; Poor, H.V.; Saad, W.; Cui, S. Convergence time optimization for federated learning over wireless networks. IEEE Transactions on Wireless Communications 2020, 20, 2457–2471.
- Reisizadeh, A.; Mokhtari, A.; Hassani, H.; Jadbabaie, A.; Pedarsani, R. Fedpaq: A communication-efficient federated learning method with periodic averaging and quantization. In Proceedings of the International Conference on Artificial Intelligence and Statistics. PMLR, 2020, pp. 2021–2031.
- Sery, T.; Cohen, K. On analog gradient descent learning over multiple access fading channels. IEEE Transactions on Signal Processing 2020, 68, 2897–2911.
- Sattler, F.; Wiedemann, S.; Müller, K.R.; Samek, W. Robust and Communication-Efficient Federated Learning From Non-i.i.d. Data. IEEE Transactions on Neural Networks and Learning Systems 2020, 31, 3400–3413.
- Zhu, Z.; Hong, J.; Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In Proceedings of the International Conference on Machine Learning. PMLR, 2021, pp. 12878–12889.
- Jiang, D.; Shan, C.; Zhang, Z. Federated learning algorithm based on knowledge distillation. In Proceedings of the 2020 International Conference on Artificial Intelligence and Computer Engineering (ICAICE). IEEE, 2020, pp. 163–167.
- Li, C.; Li, G.; Varshney, P.K. Communication-efficient federated learning based on compressed sensing. IEEE Internet of Things Journal 2021, 8, 15531–15541. [CrossRef]
- Zeng, Q.; Du, Y.; Huang, K.; Leung, K.K. Energy-efficient radio resource allocation for federated edge learning. In Proceedings of the 2020 IEEE International Conference on Communications Workshops (ICC Workshops). IEEE, 2020, pp. 1–6.
- Philip, J.M.; Durga, S.; Esther, D. Deep learning application in IOT health care: a survey. In Intelligence in Big Data Technologies—Beyond the Hype; Springer, 2021; pp. 199–208.
- Kairouz, P.; McMahan, H.B.; Avent, B.; Bellet, A.; Bennis, M.; Bhagoji, A.N.; Bonawitz, K.; Charles, Z.; Cormode, G.; Cummings, R.; et al. Advances and open problems in federated learning. Foundations and Trends® in Machine Learning 2021, 14, 1–210.
- Lyu, L.; Yu, H.; Yang, Q. Threats to federated learning: A survey. arXiv preprint arXiv:2003.02133 2020.
- Ozfatura, E.; Ozfatura, K.; Gündüz, D. Time-correlated sparsification for communication-efficient federated learning. In Proceedings of the 2021 IEEE International Symposium on Information Theory (ISIT). IEEE, 2021, pp. 461–466.
- Ahn, J.H.; Simeone, O.; Kang, J. Cooperative learning via federated distillation over fading channels. In Proceedings of the ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020, pp. 8856–8860.
- Liu, Y.; James, J.; Kang, J.; Niyato, D.; Zhang, S. Privacy-preserving traffic flow prediction: A federated learning approach. IEEE Internet of Things Journal 2020, 7, 7751–7763.
- Xiao, Y.; Shi, G.; Krunz, M. Towards ubiquitous AI in 6G with federated learning. arXiv preprint arXiv:2004.13563 2020.
- Tramèr, F.; Kurakin, A.; Papernot, N.; Goodfellow, I.; Boneh, D.; McDaniel, P. Ensemble adversarial training: Attacks and defenses. arXiv preprint arXiv:1705.07204 2017.
- Xia, S.; Zhu, J.; Yang, Y.; Zhou, Y.; Shi, Y.; Chen, W. Fast convergence algorithm for analog federated learning. In Proceedings of the ICC 2021-IEEE International Conference on Communications. IEEE, 2021, pp. 1–6.
- Li, Q.; Wen, Z.; Wu, Z.; Hu, S.; Wang, N.; Li, Y.; Liu, X.; He, B. A survey on federated learning systems: vision, hype and reality for data privacy and protection. IEEE Transactions on Knowledge and Data Engineering 2021.
- Guo, Y.; Sun, Y.; Hu, R.; Gong, Y. Hybrid Local SGD for Federated Learning with Heterogeneous Communications. In Proceedings of the International Conference on Learning Representations, 2022.
- Zamir, R.; Feder, M. On universal quantization by randomized uniform/lattice quantizers. IEEE Transactions on Information Theory 1992, 38, 428–436. [CrossRef]
- Zhao, Z.; Luo, M.; Ding, W. Deep Leakage from Model in Federated Learning. 2022.
- Bernstein, J.; Wang, Y.X.; Azizzadenesheli, K.; Anandkumar, A. signSGD: Compressed optimisation for non-convex problems. In Proceedings of the International Conference on Machine Learning. PMLR, 2018, pp. 560–569.
- Zhang, L.; Wu, D.; Yuan, X. FedZKT: Zero-Shot Knowledge Transfer towards Resource-Constrained Federated Learning with Heterogeneous On-Device Models. In Proceedings of the 2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS). IEEE, 2022, pp. 928–938.
- Nishio, T.; Yonetani, R. Client selection for federated learning with heterogeneous resources in mobile edge. In Proceedings of the ICC 2019-2019 IEEE international conference on communications (ICC). IEEE, 2019, pp. 1–7.
- Yu, C.; Tang, H.; Renggli, C.; Kassing, S.; Singla, A.; Alistarh, D.; Zhang, C.; Liu, J. Distributed learning over unreliable networks. In Proceedings of the International Conference on Machine Learning. PMLR, 2019, pp. 7202–7212.
- Sattler, F.; Wiedemann, S.; Müller, K.R.; Samek, W. Sparse Binary Compression: Towards Distributed Deep Learning with minimal Communication. In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), 2019, pp. 1–8.
- Rothchild, D.; Panda, A.; Ullah, E.; Ivkin, N.; Stoica, I.; Braverman, V.; Gonzalez, J.; Arora, R. FetchSGD: Communication-Efficient Federated Learning with Sketching. In Proceedings of the Proceedings of the 37th International Conference on Machine Learning; III, H.D.; Singh, A., Eds. PMLR, 13–18 Jul 2020, Vol. 119, Proceedings of Machine Learning Research, pp. 8253–8265.
- Hyeon-Woo, N.; Ye-Bin, M.; Oh, T.H. FedPara: Low-Rank Hadamard Product for Communication-Efficient Federated Learning. arXiv preprint arXiv:2108.06098 2021.
- Study on enablers for network automation for the 5G System (5GS); 3GPP TR 23.700-91, 2020.
- Salehi, M.; Hossain, E. Federated learning in unreliable and resource-constrained cellular wireless networks. IEEE Transactions on Communications 2021, 69, 5136–5151.
- Abdi, A.; Fekri, F. Quantized compressive sampling of stochastic gradients for efficient communication in distributed deep learning. In Proceedings of the Proceedings of the AAAI Conference on Artificial Intelligence, 2020, Vol. 34, pp. 3105–3112. [CrossRef]
- Mothukuri, V.; Parizi, R.M.; Pouriyeh, S.; Huang, Y.; Dehghantanha, A.; Srivastava, G. A survey on security and privacy of federated learning. Future Generation Computer Systems 2021, 115, 619–640.
- Ye, H.; Liang, L.; Li, G.Y. Decentralized federated learning with unreliable communications. IEEE Journal of Selected Topics in Signal Processing 2022, 16, 487–500. [CrossRef]
- Cho, Y.J.; Manoel, A.; Joshi, G.; Sim, R.; Dimitriadis, D. Heterogeneous Ensemble Knowledge Transfer for Training Large Models in Federated Learning. arXiv preprint arXiv:2204.12703 2022.
- He, Y.; Zenk, M.; Fritz, M. CosSGD: Nonlinear Quantization for Communication-efficient Federated Learning. CoRR 2020, abs/2012.08241, [2012.08241].
- Mao, Y.; Zhao, Z.; Yang, M.; Liang, L.; Liu, Y.; Ding, W.; Lan, T.; Zhang, X.P. SAFARI: Sparsity enabled Federated Learning with Limited and Unreliable Communications. arXiv preprint arXiv:2204.02321 2022. [CrossRef]
- Lin, Z.; Liu, H.; Zhang, Y.J.A. Relay-assisted cooperative federated learning. IEEE Transactions on Wireless Communications 2022.
- Shi, H.; Zhang, Y.; Shen, Z.; Tang, S.; Li, Y.; Guo, Y.; Zhuang, Y. Towards Communication-Efficient and Privacy-Preserving Federated Representation Learning. arXiv preprint arXiv:2109.14611 2021.
- Jia, X.; Song, S.; He, W.; Wang, Y.; Rong, H.; Zhou, F.; Xie, L.; Guo, Z.; Yang, Y.; Yu, L.; et al. Highly scalable deep learning training system with mixed-precision: Training imagenet in four minutes. arXiv preprint arXiv:1807.11205 2018.
- Oh, S.; Park, J.; Jeong, E.; Kim, H.; Bennis, M.; Kim, S.L. Mix2FLD: Downlink federated learning after uplink federated distillation with two-way mixup. IEEE Communications Letters 2020, 24, 2211–2215. [CrossRef]
- Wu, C.; Wu, F.; Liu, R.; Lyu, L.; Huang, Y.; Xie, X. Fedkd: Communication efficient federated learning via knowledge distillation. arXiv preprint arXiv:2108.13323 2021. [CrossRef]
- Yao, D.; Pan, W.; Dai, Y.; Wan, Y.; Ding, X.; Jin, H.; Xu, Z.; Sun, L. Local-Global Knowledge Distillation in Heterogeneous Federated Learning with Non-IID Data. arXiv preprint arXiv:2107.00051 2021.
- Aji, A.F.; Heafield, K. Sparse communication for distributed gradient descent. arXiv preprint arXiv:1704.05021 2017.
- Nori, M.K.; Yun, S.; Kim, I.M. Fast federated learning by balancing communication trade-offs. IEEE Transactions on Communications 2021, 69, 5168–5182. [CrossRef]
- Shahid, O.; Pouriyeh, S.; Parizi, R.M.; Sheng, Q.Z.; Srivastava, G.; Zhao, L. Communication efficiency in federated learning: Achievements and challenges. arXiv preprint arXiv:2107.10996 2021.
- Amiri, M.M.; Gunduz, D.; Kulkarni, S.R.; Poor, H.V. Federated learning with quantized global model updates. arXiv preprint arXiv:2006.10672 2020.
- Alistarh, D.; Grubic, D.; Li, J.; Tomioka, R.; Vojnovic, M. QSGD: Communication-efficient SGD via gradient quantization and encoding. Advances in neural information processing systems 2017, 30.
- Li, Y.; Yu, M.; Li, S.; Avestimehr, S.; Kim, N.S.; Schwing, A. Pipe-SGD: A decentralized pipelined SGD framework for distributed deep net training. Advances in Neural Information Processing Systems 2018, 31.
- Basat, R.B.; Vargaftik, S.; Portnoy, A.; Einziger, G.; Ben-Itzhak, Y.; Mitzenmacher, M. QUICK-FL: Quick Unbiased Compression for Federated Learning. arXiv preprint arXiv:2205.13341 2022.
- Lin, Y.; Han, S.; Mao, H.; Wang, Y.; Dally, W.J. Deep gradient compression: Reducing the communication bandwidth for distributed training. arXiv preprint arXiv:1712.01887 2017.
- Arandjelovic, O.; Shakhnarovich, G.; Fisher, J.; Cipolla, R.; Darrell, T. Face recognition with image sets using manifold density divergence. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05). IEEE, 2005, Vol. 1, pp. 581–588.
- Zhu, Z.; Hong, J.; Drew, S.; Zhou, J. Resilient and Communication Efficient Learning for Heterogeneous Federated Systems. In Proceedings of the International Conference on Machine Learning. PMLR, 2022, pp. 27504–27526.
- Eghlidi, N.F.; Jaggi, M. Sparse communication for training deep networks. arXiv preprint arXiv:2009.09271 2020.
- Sun, C.; Jiang, T.; Zonouz, S.; Pompili, D. Fed2KD: Heterogeneous Federated Learning for Pandemic Risk Assessment via Two-Way Knowledge Distillation. In Proceedings of the 2022 17th Wireless On-Demand Network Systems and Services Conference (WONS). IEEE, 2022, pp. 1–8.
- Vargaftik, S.; Basat, R.B.; Portnoy, A.; Mendelson, G.; Itzhak, Y.B.; Mitzenmacher, M. Eden: Communication-efficient and robust distributed mean estimation for federated learning. In Proceedings of the International Conference on Machine Learning. PMLR, 2022, pp. 21984–22014.
- Shlezinger, N.; Chen, M.; Eldar, Y.C.; Poor, H.V.; Cui, S. Federated learning with quantization constraints. In Proceedings of the ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020, pp. 8851–8855.
- Yang, Z.; Chen, M.; Saad, W.; Hong, C.S.; Shikh-Bahaei, M. Energy efficient federated learning over wireless communication networks. IEEE Transactions on Wireless Communications 2020, 20, 1935–1949. [CrossRef]
- Jin, R.; Huang, Y.; He, X.; Dai, H.; Wu, T. Stochastic-sign SGD for federated learning with theoretical guarantees. arXiv preprint arXiv:2002.10940 2020.
- Zhu, G.; Wang, Y.; Huang, K. Broadband analog aggregation for low-latency federated edge learning. IEEE Transactions on Wireless Communications 2019, 19, 491–506. [CrossRef]
- Muhammad, K.; Ullah, A.; Lloret, J.; Del Ser, J.; de Albuquerque, V.H.C. Deep learning for safe autonomous driving: Current challenges and future directions. IEEE Transactions on Intelligent Transportation Systems 2020, 22, 4316–4336. [CrossRef]
- Shi, S.; Tang, Z.; Wang, Q.; Zhao, K.; Chu, X. Layer-wise adaptive gradient sparsification for distributed deep learning with convergence guarantees. arXiv preprint arXiv:1911.08727 2019.
- Guo, H.; Liu, A.; Lau, V.K. Analog gradient aggregation for federated learning over wireless networks: Customized design and convergence analysis. IEEE Internet of Things Journal 2020, 8, 197–210. [CrossRef]
- Xu, H.; Ho, C.Y.; Abdelmoniem, A.M.; Dutta, A.; Bergou, E.H.; Karatsenidis, K.; Canini, M.; Kalnis, P. Compressed communication for distributed deep learning: Survey and quantitative evaluation. Technical report, 2020.
- Zhang, N.; Tao, M. Gradient statistics aware power control for over-the-air federated learning in fading channels. In Proceedings of the 2020 IEEE International Conference on Communications Workshops (ICC Workshops). IEEE, 2020, pp. 1–6.
- Ryabinin, M.; Gorbunov, E.; Plokhotnyuk, V.; Pekhimenko, G. Moshpit sgd: Communication-efficient decentralized training on heterogeneous unreliable devices. Advances in Neural Information Processing Systems 2021, 34, 18195–18211.
- Zniyed, Y.; Nguyen, T.P.; et al. Enhanced network compression through tensor decompositions and pruning. IEEE Transactions on Neural Networks and Learning Systems 2024.
- Shi, S.; Wang, Q.; Zhao, K.; Tang, Z.; Wang, Y.; Huang, X.; Chu, X. A Distributed Synchronous SGD Algorithm with Global Top-k Sparsification for Low Bandwidth Networks. In Proceedings of the 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), 2019, pp. 2238–2247.
- Bottou, L. Large-scale machine learning with stochastic gradient descent. In Proceedings of COMPSTAT’2010; Springer, 2010; pp. 177–186. [CrossRef]
- Feynman, R.; Vernon Jr., F. The theory of a general quantum system interacting with a linear dissipative system. Annals of Physics 1963, 24, 118–173. [CrossRef]
- Sun, J.; Chen, T.; Giannakis, G.B.; Yang, Q.; Yang, Z. Lazily aggregated quantized gradient innovation for communication-efficient federated learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 2020. [CrossRef]
- You, Y.; Buluç, A.; Demmel, J. Scaling deep learning on gpu and knights landing clusters. In Proceedings of the Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 2017, pp. 1–12.
- Chen, M.; Mao, B.; Ma, T. FedSA: A staleness-aware asynchronous Federated Learning algorithm with non-IID data. Future Generation Computer Systems 2021, 120, 1–12.
- Li, T.; Sanjabi, M.; Beirami, A.; Smith, V. Fair resource allocation in federated learning. arXiv preprint arXiv:1905.10497 2019.
- Harlap, A.; Narayanan, D.; Phanishayee, A.; Seshadri, V.; Devanur, N.; Ganger, G.; Gibbons, P. Pipedream: Fast and efficient pipeline parallel dnn training. arXiv preprint arXiv:1806.03377 2018.
- Hard, A.; Rao, K.; Mathews, R.; Ramaswamy, S.; Beaufays, F.; Augenstein, S.; Eichner, H.; Kiddon, C.; Ramage, D. Federated learning for mobile keyboard prediction. arXiv preprint arXiv:1811.03604 2018.
- Yu, C.; Shen, S.; Zhang, K.; Zhao, H.; Shi, Y. Energy-Aware Device Scheduling for Joint Federated Learning in Edge-assisted Internet of Agriculture Things. In Proceedings of the 2022 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2022, pp. 1140–1145.
- Xu, H.; Kostopoulou, K.; Dutta, A.; Li, X.; Ntoulas, A.; Kalnis, P. DeepReduce: A Sparse-tensor Communication Framework for Federated Deep Learning. In Proceedings of the Advances in Neural Information Processing Systems; Ranzato, M.; Beygelzimer, A.; Dauphin, Y.; Liang, P.; Vaughan, J.W., Eds. Curran Associates, Inc., 2021, Vol. 34, pp. 21150–21163.
- Sahoo, A.K.; Pradhan, C.; Barik, R.K.; Dubey, H. DeepReco: deep learning based health recommender system using collaborative filtering. Computation 2019, 7, 25. [CrossRef]
- Imteaj, A.; Amini, M.H. Fedar: Activity and resource-aware federated learning model for distributed mobile robots. In Proceedings of the 2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE, 2020, pp. 1153–1160.
- Yang, Z.; Chen, M.; Wong, K.K.; Poor, H.V.; Cui, S. Federated learning for 6G: Applications, challenges, and opportunities. Engineering 2021.
- Lu, Y.; Huang, X.; Zhang, K.; Maharjan, S.; Zhang, Y. Low-latency federated learning and blockchain for edge association in digital twin empowered 6G networks. IEEE Transactions on Industrial Informatics 2020, 17, 5098–5107. [CrossRef]
- Shi, S.; Chu, X.; Li, B. MG-WFBP: Efficient data communication for distributed synchronous SGD algorithms. In Proceedings of the IEEE INFOCOM 2019-IEEE Conference on Computer Communications. IEEE, 2019, pp. 172–180.
- Grigorescu, S.; Trasnea, B.; Cocias, T.; Macesanu, G. A survey of deep learning techniques for autonomous driving. Journal of Field Robotics 2020, 37, 362–386. [CrossRef]
- Xu, G.; Li, H.; Liu, S.; Yang, K.; Lin, X. Verifynet: Secure and verifiable federated learning. IEEE Transactions on Information Forensics and Security 2019, 15, 911–926.
- Hellström, H.; Fodor, V.; Fischione, C. Over-the-Air Federated Learning with Retransmissions. In Proceedings of the 2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). IEEE, 2021, pp. 291–295.
- Shi, S.; Wang, Q.; Chu, X.; Li, B.; Qin, Y.; Liu, R.; Zhao, X. Communication-Efficient Distributed Deep Learning with Merged Gradient Sparsification on GPUs. In Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, 2020, pp. 406–415.
- Mishchenko, K.; Wang, B.; Kovalev, D.; Richtárik, P. IntSGD: Adaptive Floatless Compression of Stochastic Gradients. In Proceedings of the International Conference on Learning Representations, 2022.
- Lin, T.; Kong, L.; Stich, S.U.; Jaggi, M. Ensemble distillation for robust model fusion in federated learning. Advances in Neural Information Processing Systems 2020, 33, 2351–2363.
- Kairouz, P.; Oh, S.; Viswanath, P. Extremal mechanisms for local differential privacy. Advances in neural information processing systems 2014, 27.
- Mahmoudi, A.; Ghadikolaei, H.S.; Júnior, J.M.B.D.S.; Fischione, C. FedCau: A Proactive Stop Policy for Communication and Computation Efficient Federated Learning. arXiv preprint arXiv:2204.07773 2022.
- Yang, H.; Qiu, P.; Liu, J.; Yener, A. Over-the-Air Federated Learning with Joint Adaptive Computation and Power Control. arXiv preprint arXiv:2205.05867 2022.
- Itahara, S.; Nishio, T.; Koda, Y.; Morikura, M.; Yamamoto, K. Distillation-Based Semi-Supervised Federated Learning for Communication-Efficient Collaborative Training with Non-IID Private Data. IEEE Transactions on Mobile Computing 2021. [CrossRef]
- Wang, H.; Sievert, S.; Liu, S.; Charles, Z.; Papailiopoulos, D.; Wright, S. Atomo: Communication-efficient learning via atomic sparsification. Advances in Neural Information Processing Systems 2018, 31.
- McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; y Arcas, B.A. Communication-efficient learning of deep networks from decentralized data. In Proceedings of the Artificial intelligence and statistics. PMLR, 2017, pp. 1273–1282.
- Du, W.; Atallah, M.J. Secure multi-party computation problems and their applications: a review and open problems. In Proceedings of the Proceedings of the 2001 workshop on New security paradigms, 2001, pp. 13–22.
- Sze, V.; Chen, Y.H.; Yang, T.J.; Emer, J.S. Efficient processing of deep neural networks: A tutorial and survey. Proceedings of the IEEE 2017, 105, 2295–2329. [CrossRef]
- Wu, C.; Zhu, S.; Mitra, P. Federated Unlearning with Knowledge Distillation. arXiv preprint arXiv:2201.09441 2022.
- Sun, L.; Lyu, L. Federated model distillation with noise-free differential privacy. arXiv preprint arXiv:2009.05537 2020.
- Yang, Z.; Chen, M.; Saad, W.; Hong, C.S.; Shikh-Bahaei, M.; Poor, H.V.; Cui, S. Delay minimization for federated learning over wireless communication networks. arXiv preprint arXiv:2007.03462 2020.
- Wang, S.; Tuor, T.; Salonidis, T.; Leung, K.K.; Makaya, C.; He, T.; Chan, K. Adaptive federated learning in resource constrained edge computing systems. IEEE Journal on Selected Areas in Communications 2019, 37, 1205–1221. [CrossRef]
- Mashhadi, M.B.; Shlezinger, N.; Eldar, Y.C.; Gündüz, D. Fedrec: Federated learning of universal receivers over fading channels. In Proceedings of the 2021 IEEE Statistical Signal Processing Workshop (SSP). IEEE, 2021, pp. 576–580.
- Zhang, X.; Hong, M.; Dhople, S.; Yin, W.; Liu, Y. Fedpd: A federated learning framework with optimal rates and adaptivity to non-iid data. arXiv preprint arXiv:2005.11418 2020.
- Philippenko, C.; Dieuleveut, A. Bidirectional compression in heterogeneous settings for distributed or federated learning with partial participation: tight convergence guarantees. arXiv preprint arXiv:2006.14591 2020.
- Amiri, M.M.; Gündüz, D.; Kulkarni, S.R.; Poor, H.V. Convergence of federated learning over a noisy downlink. IEEE Transactions on Wireless Communications 2021, 21, 1422–1437.
- Liu, L.; Zhang, J.; Song, S.; Letaief, K.B. Communication-Efficient Federated Distillation with Active Data Sampling. arXiv preprint arXiv:2203.06900 2022.
- Sattler, F.; Korjakow, T.; Rischke, R.; Samek, W. Fedaux: Leveraging unlabeled auxiliary data in federated learning. IEEE Transactions on Neural Networks and Learning Systems 2021.
- Li, D.; Wang, J. Fedmd: Heterogenous federated learning via model distillation. arXiv preprint arXiv:1910.03581 2019.
- Ozkara, K.; Singh, N.; Data, D.; Diggavi, S. QuPeD: Quantized Personalization via Distillation with Applications to Federated Learning. Advances in Neural Information Processing Systems 2021, 34, 3622–3634.
- Lian, X.; Zhang, C.; Zhang, H.; Hsieh, C.J.; Zhang, W.; Liu, J. Can decentralized algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic gradient descent. Advances in Neural Information Processing Systems 2017, 30.
- Sahu, A.; Dutta, A.; M Abdelmoniem, A.; Banerjee, T.; Canini, M.; Kalnis, P. Rethinking gradient sparsification as total error minimization. Advances in Neural Information Processing Systems 2021, 34, 8133–8146.
- Liu, Y.; Yuan, X.; Xiong, Z.; Kang, J.; Wang, X.; Niyato, D. Federated learning for 6G communications: Challenges, methods, and future directions. China Communications 2020, 17, 105–118. [CrossRef]
- Zhang, L.; Shen, L.; Ding, L.; Tao, D.; Duan, L.Y. Fine-tuning global model via data-free knowledge distillation for non-iid federated learning. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 10174–10183.
- Li, S.; Qi, Q.; Wang, J.; Sun, H.; Li, Y.; Yu, F.R. GGS: General Gradient Sparsification for Federated Learning in Edge Computing. In Proceedings of the ICC 2020 - 2020 IEEE International Conference on Communications (ICC), 2020, pp. 1–7.
- Fan, X.; Wang, Y.; Huo, Y.; Tian, Z. Communication-efficient federated learning through 1-bit compressive sensing and analog aggregation. In Proceedings of the 2021 IEEE International Conference on Communications Workshops (ICC Workshops). IEEE, 2021, pp. 1–6.
- Chen, M.; Shlezinger, N.; Poor, H.V.; Eldar, Y.C.; Cui, S. Communication-efficient federated learning. Proceedings of the National Academy of Sciences 2021, 118, e2024789118.
- Das, R.; Acharya, A.; Hashemi, A.; Sanghavi, S.; Dhillon, I.S.; Topcu, U. Faster non-convex federated learning via global and local momentum. arXiv preprint arXiv:2012.04061 2020.
- Cha, H.; Park, J.; Kim, H.; Kim, S.L.; Bennis, M. Federated reinforcement distillation with proxy experience memory. arXiv preprint arXiv:1907.06536 2019.
- Stich, S.U.; Cordonnier, J.B.; Jaggi, M. Sparsified SGD with memory. Advances in Neural Information Processing Systems 2018, 31.
- Miotto, R.; Wang, F.; Wang, S.; Jiang, X.; Dudley, J.T. Deep learning for healthcare: review, opportunities and challenges. Briefings in bioinformatics 2018, 19, 1236–1246.
- Wu, W.; He, L.; Lin, W.; Mao, R.; Maple, C.; Jarvis, S. SAFA: A semi-asynchronous protocol for fast federated learning with low overhead. IEEE Transactions on Computers 2020, 70, 655–668.
- Zhang, X.; Zhu, X.; Wang, J.; Yan, H.; Chen, H.; Bao, W. Federated learning with adaptive communication compression under dynamic bandwidth and unreliable networks. Information Sciences 2020, 540, 242–262.
- Shi, S.; Chu, X.; Cheung, K.C.; See, S. Understanding top-k sparsification in distributed deep learning. arXiv preprint arXiv:1911.08772 2019.
- Marfoq, O.; Xu, C.; Neglia, G.; Vidal, R. Throughput-optimal topology design for cross-silo federated learning. Advances in Neural Information Processing Systems 2020, 33, 19478–19487.
- Malekijoo, A.; Fadaeieslam, M.J.; Malekijou, H.; Homayounfar, M.; Alizadeh-Shabdiz, F.; Rawassizadeh, R. Fedzip: A compression framework for communication-efficient federated learning. arXiv preprint arXiv:2102.01593 2021.
- Han, P.; Wang, S.; Leung, K.K. Adaptive Gradient Sparsification for Efficient Federated Learning: An Online Learning Approach. In Proceedings of the 2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS), 2020, pp. 300–310.
- Ahn, J.H.; Simeone, O.; Kang, J. Wireless federated distillation for distributed edge learning with heterogeneous data. In Proceedings of the 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). IEEE, 2019, pp. 1–6.
- Al-Qizwini, M.; Barjasteh, I.; Al-Qassab, H.; Radha, H. Deep learning algorithm for autonomous driving using googlenet. In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2017, pp. 89–96.
- Zaw, C.W.; Pandey, S.R.; Kim, K.; Hong, C.S. Energy-aware resource management for federated learning in multi-access edge computing systems. IEEE Access 2021, 9, 34938–34950.
- Amiri, M.M.; Gündüz, D. Federated learning over wireless fading channels. IEEE Transactions on Wireless Communications 2020, 19, 3546–3557.
- Cha, H.; Park, J.; Kim, H.; Bennis, M.; Kim, S.L. Proxy experience replay: Federated distillation for distributed reinforcement learning. IEEE Intelligent Systems 2020, 35, 94–101.
- Chetlur, S.; Woolley, C.; Vandermersch, P.; Cohen, J.; Tran, J.; Catanzaro, B.; Shelhamer, E. cudnn: Efficient primitives for deep learning. arXiv preprint arXiv:1410.0759 2014.
- Shlezinger, N.; Chen, M.; Eldar, Y.C.; Poor, H.V.; Cui, S. UVeQFed: Universal vector quantization for federated learning. IEEE Transactions on Signal Processing 2020, 69, 500–514.
- Wangni, J.; Wang, J.; Liu, J.; Zhang, T. Gradient s for communication-efficient distributed optimization. Advances in Neural Information Processing Systems 2018, 31.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).