Submitted:
10 July 2025
Posted:
10 July 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Design Polarization-Maintaining AR-HCF for Transmission at 2.79 μm Wavelength
3. Results and Discussion
3.1. The Influence of the Inner Diameter of the Embedded Casing Pipe on PER
3.2. The Inner Diameter of the Jacketed Pipe Affects the PER
3.3. The Core Diameter Affects the PER
4. Conclusions
References
- Huang, L.; Wang, Y.; Zhang, Y.; et al. High-efficiency 6-hole structure anti-resonant hollow-core fiber 2.79 μm Cr, Er: YSGG high-energy pulse laser transmission system. Optics and Laser Technology 2024, 175, 110743. [Google Scholar] [CrossRef]
- Urich, A.; Maier, R.; Yu, F.; et al. Flexible delivery of Er: YAG radiation at 2.94 µm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures. Biomedical Optics Express 2013, 4, 193–205. [Google Scholar] [CrossRef]
- Huang, L.; Wang, P.; Wang, Y.; et al. Mid-Infrared 2.79 μm Band Er, Cr: Y3Sc2Ga3O12 Laser Transmission Anti-Bending Low-Loss Anti-Resonant Hollow-Core Fiber. Photonics 2024, 11, 432. [Google Scholar] [CrossRef]
- Sincore, A.; Cook, J.; Tan, F.; El Halawany, A.; et al. High power single-mode delivery of mid-infrared sources through chalcogenide fiber. Optics Express 2018, 26, 7313–7323. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Z.; Tang, Y.; Jin, W.; et al. Hollow optical fiber based spectroscopy gas sensing. Optical Fiber Technology 2024, 88, 103824. [Google Scholar] [CrossRef]
- Yu, F.; Knight, J.C. Negative curvature hollow core optical fiber. IEEE Journal of Selected Topics in Quantum Electrons 2016, 22, 4400610. [Google Scholar] [CrossRef]
- Wei, C.; Weiblen, R.J.; Menyuk, C.R.; Hu, J. Negative curvature fibers. Advances in Optics and Photonics 2017, 9, 504–561. [Google Scholar] [CrossRef]
- Gong, Y.; Meng, Y. Single-polarization single-mode broadband ultra-low loss hollow-core anti-resonant fiber with nested double C-type cladding tubes. Optics Communications 2024, 552, 130062. [Google Scholar] [CrossRef]
- Gao, S.; Wang, Y.; Ding, W.; Wang, P. Hollow-core negative-curvature fiber for UV guidance. Optics Letters 2018, 43, 1347–1350. [Google Scholar] [CrossRef]
- Jaworski, P.; Krzempek, K.; Bojęś, P.; et al. Mid-IR anti-resonant hollow-core fiber based chirped laser dispersion spectroscopy of ethane with parts per trillion sensitivity. Optics and Laser Technology 2022, 156, 108539. [Google Scholar] [CrossRef]
- Popendaetal, M.A. Application of negative curvature hollow-core fiber in an optical fiber sensor setup for multiphoton spectroscopy. Sensors 2017, 17, 2278. [Google Scholar] [CrossRef] [PubMed]
- Litchinitser, N.; Abeeluck, A.; Headley, C. Anti resonant reflecting photonic crystal optical waveguides. Optics Letters 2002, 27, 1592–1594. [Google Scholar] [CrossRef]
- Wang, S.; Shan, C.; Jiang, J.; et al. Temperature-insensitive curvature sensor based on anti-resonant reflection guidance and Mach–Zehnder interferometer hybrid mechanism. Applied Physics Express 2019, 12, 106503. [Google Scholar] [CrossRef]
- Mousavi, S.; Sandoghchi, S.; Richardson, D.; Poletti, F. Broad-bandhigh birefringence and polarizing hollow core anti-resonant fibers. Optics Express 2016, 24, 22943–22958. [Google Scholar] [CrossRef]
- Jaworski, P.; Yu, F.; Maier, R.; Wadsworth, W.; et al. Picosecond and nanosecond pulse delivery through a hollow-core Negative Curvature Fiber for micro-machining applications. Optics Express 2013, 21, 22742–22753. [Google Scholar] [CrossRef]
- Daniel, A.; Nolan, E.; George, E.; et al. Single-polarization fiber with a high extinction ratio. Optics Letters 2004, 29, 1855–1857. [Google Scholar]
- Din, W.; Wang, Y. Hybrid transmission bands and large birefringence in hollow-core anti-resonant fibers. Optics Express 2015, 23, 21165. [Google Scholar]
- Wei, C.; Menyuk, C.R.; Hu, J. Polarization-filtering and polarization-maintaining low-loss negative curvature fibers. Optics Express 2018, 26, 9528–9540. [Google Scholar] [CrossRef]
- Yuan, Z.; Wang, Y.; Yan, D.; Cao, M.; Meng, M.; Li, X.; Sun, S. Study on the high birefringence and low confinement loss terahertz fiber based on the combination of double negative curvature and nested claddings. Journal of Physics D Applied Physics 2022, 55, 115106. [Google Scholar] [CrossRef]
- Yan, S.; Lou, Q.; Zhang, W.; et al. Single-polarization single-mode double-ring hollow-core ant-resonant fiber. Optics Express 2018, 26, 31160–31171. [Google Scholar] [CrossRef]
- Yang, S.; Sheng, X.; Zhao, G.; Li, S. Simple birefringent Terahertz fiber based on elliptical hollow core. Optical Fiber Technology 2019, 53, 102064. [Google Scholar] [CrossRef]
- Saitoh, K.; Koshiba, M. Single-polarization single-mode photonic crystalfibers. IEEE Photonics Technology Letters 2003, 15, 1384–1386. [Google Scholar] [CrossRef]
- Nazeri, K.; Bradley, C. The effect of photonic crystal fibre structure on the performance of Mach-Zehnder interferometer fibre optic gas sensors. Optical Fiber Technology 2020, 58, 102294. [Google Scholar] [CrossRef]
- Mousavi, S.; San, R.; David, J.; et al. Broad band high birefringence and polarizing hollow-core anti-resonant fibers. Optics Express 2016, 24, 22943. [Google Scholar] [CrossRef]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).