Preprint
Article

This version is not peer-reviewed.

Edgeworth Coefficients for Standard Multivariate Estimates

A peer-reviewed article of this preprint also exists.

Submitted:

28 June 2025

Posted:

01 July 2025

You are already at the latest version

Abstract
We give for the first time explicit formulas for the coefficients needed for the 4th order Edgeworth expansions of a multivariate standard estimate. We call these the Edgeworth coefficients. They are Bell polynomials in the cumulant coefficients. Standard estimates include most estimates of interest, including smooth functions of sample means and other empirical estimates. We also give applications to ellipsoidal and hyperrectangular sets.
Keywords: 
;  ;  ;  

1. Introduction and Summary

Suppose that w ^ is a standard estimate, as defined in §2, of an unknown parameter w R q of a statistical model, based on a sample of size n. For example w ^ may be a smooth function of a sample mean, or a smooth functional of an empirical distribution. A smooth function of a standard estimate is also a standard estimate: see Withers (2024). §2 summarises the multivariate Edgeworth expansions of Withers and Nadarajah (2010) for the distribution and density of X n = n 1 / 2 ( w ^ w ) in powers of n 1 / 2 about the multivariate normal in terms of the Edgeworth coefficients, the P r -coefficients of (11). For r 1 , these P r are needed for the r + 1 st term of the multivariate Edgeworth expansions. They are Bell polynomials in the cumulant coefficients of (5). They are given for r = 1 by (12) and for r = 2 , 3 by (12)–(14) in terms of the symmetrizing operator S , and explicitly in Appendix A. §3 derives expansions on ellipsoidal and hyperrectangular sets.
When q = 2 , §4 simplifies these Edgeworth coefficients using dual notation. Examples include the distribution and density of a sample mean, and of bivariate entangled gamma random variables.
§5 and §6 give conclusions and discussion, and suggests some future directions. Appendix B gives explicitly the bivariate Hermite polynomials needed for bivariate Edgeworth expansions to O ( n 2 ) .
Univariate estimates. Suppose that w ^ is a standard estimate of w R with respect to n, (typically the sample size). That is, w ^ is non-lattice,
E w ^ w as n , and its rth cumulant can be expanded as
κ r ( w ^ ) j = r 1 n j a r j for r 1 ,
where the cumulant coefficients  a r j may depend on n but are bounded as n , and a 21 is bounded away from 0. Here and below ≈ indicates an asymptotic expansion that need not converge. So (1) holds in the sense that
κ r ( w ^ ) = j = r 1 I 1 n j a r j + O ( n I ) for I r 1 ,
where y n = O ( x n ) means that y n / x n is bounded in n. Withers (1984) replaced the artifical assumptions of Cornish and Fisher (1937) and Fisher and Cornish (1960) by (1), and gave the distribution, density and quantiles of
U n = ( n / a 21 ) 1 / 2 ( w ^ w )
as asymptotic expansions in powers of n 1 / 2 :
P n ( u ) = P r o b . ( U n u ) Φ ( u ) ϕ ( u ) r = 1 n r / 2 h r ( u ) ,
Preprints 165636 i001
Preprints 165636 i002
where P r o b . ( A ) is the probability that A is true,
Φ ( u ) = P r o b . ( N u ) = u ϕ ( u ) d u , ϕ ( u ) = ( 2 π ) 1 / 2 e u 2 / 2 , N N ( 0 , 1 )
is a unit normal random variable with even moments E N 2 k = 1.3 ( 2 k 1 ) , and h r ( u ) , h ¯ r ( u ) , f r ( u ) , g r ( u ) are polynomials in u and also in the standardized cumulant coefficients  A r i = a r i / a 21 r / 2 . For example
h 1 ( u ) = f 1 ( u ) = g 1 ( u ) = A 11 + A 32 H 2 / 6 , h ¯ 1 ( u ) = A 11 H 1 + A 32 H 3 / 6 , h 2 ( u ) = ( A 11 2 + A 22 ) H 1 / 2 + ( A 11 A 32 + A 43 / 4 ) H 3 / 6 + A 32 2 H 5 / 72 ,
where H k is the kth Hermite polynomial. By Withers (2000), for I = 1 ,
H k = H k ( u ) = ϕ ( u ) 1 ( d / d u ) k ϕ ( u ) = E ( u + I N ) k for k 0 : H 0 = 1 , H 1 = u , H 2 = u 2 1 , H 3 = u 3 3 u , H 4 = u 4 6 u 2 + 3 .
(A1) gives H k for k 9 . Since h r ( u ) is even/odd for r odd/even,
P r o b . ( | U n | u ) Φ ( u ) 2 ϕ ( u ) r = 1 n r h 2 r ( u ) for u > 0 .
From (4), it follows that
U n u + r = 1 n r / 2 g r ( N ) where N N ( 0 , 1 ) .
For a discussion of when to truncate (2)–(4), see Withers and Nadarajah (2012a).
NOTE 1.1.
Edgeworth’s expansion was for w ^ the mean of n independent identically distributed random variables on R from a distribution with rth cumulant κ r . So (1) holds with a r , r 1 = κ r , and other a r i = 0 . An explicit formula for its general term was given in Withers and Nadarajah (2009).
For examples of the many applications of Cornish-Fisher expansions and the extensions of Hill and Davis (1968), see Withers and Nadarajah (2011, 2014, 2015). Applications to finance include Simonato (2011) and Zhang et al. (2011). For an application to Rayleigh fading amplitudes, see Withers and Nadarajah (2008). TianLi et al. (2009) used them for GPS accuracy. Winterbottom (1974, 1980, 1984) and Abdel-Wahed and Winterbottom (1983) successfully used them for system reliability, even though binomial random variables fall on a lattice.
Now suppose that w ^ * is another standard estimate of w with the same asymptotic variance a 21 / n . Denote its standardized cumulant coefficients by A r i * . Suppose that
U n * = ( n / a 21 ) 1 / 2 ( w ^ * w ) Φ n ( u ) = u ϕ n ( u ) d u Φ ( u ) as n .
Then one can expand P n ( u ) about Φ n ( u ) rather than Φ ( u ) . The above expressions for P n ( u ) , h k ( u ) become
P n ( u ) = P r o b . ( U n u ) Φ n ( u ) ϕ n ( u ) r = 1 n r / 2 h r n ( u ) , where h 1 n ( u ) = A 110 + A 320 H 2 n / 6 , h 2 n ( u ) = ( A 110 2 + A 220 ) H 1 n / 2 + ( A 110 A 320 + A 430 / 4 ) H 3 n / 6 + A 320 2 H 5 n / 72 , A r j 0 = A r j A r j * , and H k n = H k n ( u ) = ϕ n ( u ) 1 ( d / d u ) k ϕ n ( u ) .
So if for example we choose w ^ * so that A 110 = A 320 = 0 , then
h 1 n ( u ) = 0 , h 2 n ( u ) = A 220 H 1 n / 2 + A 430 H 3 n / 24 ,
and the number of terms in the analogues of h r , f r , g r are greatly reduced. The disadvantage is that H k n ( u ) is more complicated than H k ( u ) . See Withers and Nadarajah (2010). For expansions about a matching Student’s, gamma, or F distribution, see Withers and Nadarajah (2011, 2012b, 2014).

2. Multivariate Edgeworth Expansions

Ordinary Bell polynomials. For a sequence e = ( e 1 , e 2 , ) from R, the partial ordinary Bell polynomial  B ˜ r s = B ˜ r s ( e ) , is defined by the identity
for s = 0 , 1 , 2 , , and z R , S s = r = s z r B ˜ r s ( e ) where S = r = 1 z r e r .
Preprints 165636 i003
where δ 00 = 1 , δ r 0 = 0 for r 0 . They are tabled on p309 of Comtet (1974). (The partial exponential Bell polynomials are not used in this paper.) The complete ordinary Bell polynomial, B ˜ r ( e ) is defined in terms of S of (1) by
e S = r = 0 z r B ˜ r ( e ) . S o B ˜ 0 ( e ) = 1 and for r 1 , B ˜ r ( e ) = s = 1 r B ˜ r s ( e ) / s ! :
Preprints 165636 i004
Multivariate estimates. Suppose that w ^ is a standard estimate of
w R q with respect to n. That is, w ^ is non-lattice, E w ^ w as n , and for r 1 , 1 i 1 , , i r q , the rth order cumulants of w ^ can be expanded as
k ¯ 1 r = k i 1 i r = κ ( w ^ i 1 , , w ^ i r ) d = r 1 n d k ¯ d 1 r where k ¯ d 1 r = k d i 1 i r ,
and the cumulant coefficients  k ¯ d 1 r may depend on n but are bounded as n . So the bar replaces each i k by k. The use of i k is reserved for this purpose. For example k ¯ 0 1 = w i 1 and k ¯ 1 12 = k 1 i 1 i 2 . We use this bar notation repeatedly to avoid double subscripts i k . As n ,
X n = n 1 / 2 ( w ^ w ) L X = N q ( 0 , V ) for V = ( k ¯ 1 12 ) , q × q ,
the multivariate normal on R q , with density and distribution
ϕ V ( x ) = ( 2 π ) q / 2 ( d e t V ) 1 / 2 exp ( x V 1 x / 2 ) , Φ V ( x ) = x ϕ V ( x ) d x .
V may depend on n, but we assume that d e t V is bounded away from 0. Set
Preprints 165636 i005
Preprints 165636 i006
Preprints 165636 i007
where here and below, we use the tensor summation convention of implicitly summing each i k over its range 1 , , q . For example
b ¯ 2 1 t ¯ 1 = k ¯ 1 1 t ¯ 1 = i 1 = 1 q k 1 i 1 t i 1 and b ¯ 2 12 t ¯ 1 t ¯ 2 = k ¯ 1 12 t ¯ 1 t ¯ 2 = i 1 , i 2 = 1 q k 1 i 1 i 2 t i 1 t i 2 .
Preprints 165636 i008
where the rth Edgeworth coefficient, P ¯ r 1 k = P r i 1 i k , is a function of the k ¯ d 1 r . One could use unsymmetrized P ¯ r 1 k . For example by (2) B ˜ 2 ( e ( t ) ) needs the cross term in e 1 ( t ) 2 / 2 , k ¯ 1 4 k ¯ 2 1 3 t ¯ 1 t ¯ 2 t ¯ 3 t ¯ 4 / 6 . So we could use k ¯ 1 4 k ¯ 2 1 3 / 6 in P ¯ 2 1 4 . But as (3) below illustrates, there is a big advantage in making P ¯ r 1 k symmetric in i 1 , , i k using the operator S that symmetrizes over i 1 , , i k . So the P ¯ r 1 k for r = 1 , 2 , 3 that we need are
Preprints 165636 i008
Preprints 165636 i009
Preprints 165636 i010
Preprints 165636 i011
These formulas are mostly new. The terms involving S are given explicitly for the first time in Appendix A. By Withers and Nadarajah (2010), the distribution and density of X n of (6), can be expanded as
Preprints 165636 i012
Preprints 165636 i013
Preprints 165636 i014
Preprints 165636 i015
Preprints 165636 i016
Preprints 165636 i017
Preprints 165636 i018
is the multivariate Hermite polynomial. By Withers (2020), for I = 1 ,
Preprints 165636 i019
Preprints 165636 i020
Preprints 165636 i021
Preprints 165636 i022
Preprints 165636 i023
Preprints 165636 i024
for μ ¯ 1 2 k of (8). These give p 1 ( x ) and p 2 ( x ) , and so p X n ( x ) of (15) to O ( n 3 / 2 ) . For H ¯ 1 k for 7 k 9 needed for p 3 ( x ) when q = 2 , see Appendix B. P r k ( x ) is just p ˜ r k with H ¯ 1 k replaced by H ¯ * 1 k of (19). For example,
H ¯ * 1 = J ¯ 1 , H ¯ * 12 = J ¯ 12 V ¯ 12 Φ V ( x ) , H ¯ * 1 3 = J ¯ 123 3 J ¯ 1 V ¯ 23 where J ¯ 1 k = J ¯ 1 k ( x , V ) = E Y ¯ 1 Y ¯ k I ( X x ) = V ¯ 1 , k + 1 V ¯ k , 2 k M ¯ k + 1 2 k , and M ¯ a b = M ¯ a b ( x , V ) = E X ¯ a X ¯ b I ( X x ) = x x ¯ a x ¯ b ϕ V ( x ) d x .
We call { M ¯ a b ( x , V ) } the partial moments of Φ V ( x ) . So by (15), the Edgeworth expansions to O ( n 2 ) for the distribution and density of X n of (6) about those of X = N q ( 0 , V ) , are given by
P 1 ( x ) = e 1 ( / x ) Φ V ( x ) = r = 1 3 b ¯ r + 1 1 r O ¯ 1 r Φ V ( x ) / r ! = k = 1 , 3 P 1 k ( x ) , where P 11 ( x ) = k ¯ 1 1 ( ¯ 1 ) Φ V ( x ) , P 13 ( x ) = k ¯ 2 1 3 O ¯ 1 3 Φ V ( x ) / 6 , p 1 ( x ) = k ¯ 1 1 ( ¯ 1 ) ϕ V ( x ) + k ¯ 2 1 3 O ¯ 1 3 ϕ V ( x ) / 6 ,
Preprints 165636 i025
P 2 ( x ) = k = 2 , 4 , 6 P 2 k ( x ) , p ˜ 2 ( x ) = k = 2 , 4 , 6 p ˜ 2 k ,
P 3 ( x ) = k = 1 , 3 , 5 , 7 , 9 P 3 k ( x ) , p ˜ 3 ( x ) = k = 1 , 3 , 5 , 7 , 9 p ˜ 3 k ,
for p ˜ r k and P r k of (18). Each has q k terms, but many are duplicates, as it is of great advantage to make P ¯ r 1 k symmetric in i 1 , , i k . The density of X n relative to its asymptotic value is
p X n ( x ) / ϕ V ( x ) 1 + r = 1 n r / 2 p ˜ r ( x ) = 1 + n 1 / 2 p ˜ 1 ( x ) + O ( n 1 ) for x R q ,
for p ˜ r ( x ) of (17). So n 1 / 2 p ˜ 1 ( x ) is a simple measure of the accuracy of the Central Limit Theorem (CLT) approximation. An exception is
Example 1.
If the distribution of w ^ is symmetric about w, then for r odd, p r ( x ) = p ˜ r ( x ) = P r ( x ) = 0 and by (13), p ˜ 26 ( x ) = 0 . So,
Preprints 165636 i026
Preprints 165636 i027
Preprints 165636 i028
since P ¯ 2 12 = k ¯ 2 12 / 2 , P ¯ 2 1 4 = k ¯ 3 1 4 / 24 . In this case n 1 p ˜ 2 ( x ) is a measure of the accuracy of the CLT approximation. Also,
P r o b . ( X n x ) = Φ V ( x ) + n 1 P 2 ( x ) + O ( n 2 ) where P 2 = P 22 + P 24 .
Example 2.
Let w ^ be the sample mean from a distribution with finite cross cumulants κ ¯ 1 r , r 1 . Then E w ^ = w , and only the leading coefficient in (5) is non-zero. k ¯ 1 1 = k ¯ 2 12 = k ¯ 2 1 = k ¯ 3 123 = 0
p ˜ 11 = p ˜ 22 = p ˜ 31 = p ˜ 33 = 0 . For r = 1 , 2 , 3 , the non-zero P r 1 k are
P ¯ 1 1 3 = κ ¯ 1 3 / 3 ! , P ¯ 2 1 4 = κ ¯ 1 4 / 4 ! , P ¯ 2 1 6 = S κ ¯ 1 3 κ ¯ 4 6 / 72 , , P ¯ 3 1 5 = κ ¯ 1 5 / 5 ! , P ¯ 3 1 7 = S κ ¯ 123 κ ¯ 4 7 / 144 , P ¯ 3 1 9 = S κ ¯ 1 3 κ ¯ 4 6 κ ¯ 7 9 / 6 3 .
By (27)–(29), for 1 r 3 , P r ( x ) and p ˜ r ( x ) have only r terms.
NOTE 2.1.
For H k ( x ) the univariate Hermite polynomial of (6), and
1 j q , we define the jth marginal Hermite polynomial as
H j k = E ( y j + I Y j ) k = τ j k H k ( τ j 1 y j ) where I = 1 , τ j = ( V j j ) 1 / 2 : H j = y j , H j 2 = y j 2 V j j , H j 3 = y j 3 3 V j j y j , H j 4 = y j 4 6 V j j y j 2 + 3 ( V j j ) 2 .
Preprints 165636 i029
Takemura and Takeuchi (1988) showed how to extend (4) to the multivariate case by replacing (8) by
X n X + r = 1 n r / 2 g r ( X ) .
It would very useful to obtain these multivariate g r ( X ) explicitly. How does one extend the univariate formula for g r ( x ) in terms of the h r ( x ) ? Their §5 shows that the Cornish-Fisher expansions (4) are valid under the usual conditions for validity of the Edgeworth expansion (2).
NOTE 2.2.
Standard estimates have a natural extension to Type b estimates . These are estimates for which the cumulant expansion (5) is replaced by
k ¯ 1 r = k i 1 i r = κ ( w ^ i 1 , , w ^ i r ) j = 2 r 2 n j / 2 b ¯ j 1 r where b ¯ j 1 r = b j i 1 i r .
Examples are 1-sided confidence interval limits. These have the form
w ^ j = 0 n j / 2 t j ( θ ^ ) ,
where θ ^ is a standard estimate and t j are smooth functions. See Withers and Nadarajah (2010) for more details.

3. Secondary or Derived Expansions

Let V have Hermitian form H Λ H where H H = I q .
Set S = V 1 / 2 = H Λ 1 / 2 H and T = V 1 / 2 = H Λ 1 / 2 H .
As in (18)–(20), we use tensor summation and the bar notation, and
N N q ( 0 , I q ) , X = T N N q ( 0 , V ) , Y = V 1 X = S N N q ( 0 , V 1 ) .
From the 2nd Edgeworth expansion in (15), it follows that for C R q ,
Preprints 165636 i030
Preprints 165636 i031
Preprints 165636 i032
Preprints 165636 i033
Preprints 165636 i034
p 1 C = p ˜ 11 ( C ) + p ˜ 13 ( C ) , p ˜ r 1 ( C ) = P ¯ r 1 H ¯ 1 ( C ) , p ˜ r 3 ( C ) = P ¯ r 1 3 H ¯ 1 3 ( C ) ,
p 2 C = k = 2 , 4 , 6 p ˜ 2 k ( C ) where p ˜ r 2 ( C ) = P ¯ r 12 H ¯ 12 ( C ) , p ˜ r 4 ( C ) = P ¯ r 1 4 H ¯ 1 4 ( C ) , p ˜ r 6 ( C ) = P ¯ r 1 6 H ¯ 1 6 ( C ) .
As H ¯ 1 k is a linear combination of y ¯ 1 y ¯ s , we can write H ¯ 1 k ( C ) in terms of
Q ¯ 1 s = E Y ¯ 1 Y ¯ s I ( V Y C ) = C y ¯ 1 y ¯ s ϕ V ( x ) d x : H ¯ 1 ( C ) = Q ¯ 1 , H ¯ 12 ( C ) = Q ¯ 12 p 0 C V ¯ 12 , H ¯ 1 3 ( C ) = Q ¯ 1 3 3 Q ¯ 1 V ¯ 23 , H ¯ 1 4 ( C ) = Q ¯ 1 4 6 Q ¯ 12 V ¯ 34 + p 0 C μ ¯ 1 4 , H ¯ 1 6 ( C ) = Q ¯ 1 6 15 Q ¯ 1 4 V ¯ 56 + 15 Q ¯ 12 μ ¯ 3 6 p 0 C μ ¯ 1 6 .
This gives p 1 C and p 2 C of (1). So it gives P r o b . ( X n C ) to O ( n 3 / 2 ) . For w ^ a sample mean, p ˜ 22 ( C ) = 0 and for k = 4 , 6 , P ¯ 2 1 k needed for p ˜ 2 k ( C ) , are given by Example 2.2. If C = C , then for r odd, Q ¯ 1 r = p ˜ r k ( C ) = p r C = 0 , so that
P r o b . ( X n C ) r = 0 n r p 2 r C = Φ V ( C ) + n 1 p 2 C + O ( n 2 ) .
We now consider three such C. Ellipsoidal C. Take C = { x : x V 1 x u } for some u > 0 .
Then C = C , p 0 C = P r o b . ( N N < u ) = P r o b . ( χ q 2 < u ) .
(We might choose u such that p 0 C = . 5 or . 9 .) Q ¯ 1 s of (8) is given by
Preprints 165636 i035
Preprints 165636 i036
Preprints 165636 i037
Preprints 165636 i038
Preprints 165636 i039
Preprints 165636 i040
Preprints 165636 i041
Similarly R ¯ 1 k = 0 unless k is even and { i 1 , , i k } = { 1 J 1 , , q J q } where J 1 , , J q are even integers and j k is a string of js of length k.
For Z 1 , Z 2 of (13), set
R 2 k = E N 1 2 k I ( N N < u ) = E Z 1 k I ( Z 1 + Z 2 < u ) . Set R 2 k 1 , 2 k 2 = E N 1 2 k 1 N 2 2 k 2 I ( N N < u ) = E Z 1 k 1 Z 2 k 2 I ( Z 1 + Z 2 + Z 3 < u ) ,
where now for Z 1 = N 1 2 , Z 2 = N 2 2 and Z 3 = N N Z 1 Z 2 χ q 2 2 , so that Z 1 , Z 2 , Z 3 are independent. Set
Preprints 165636 i042
S o , S ¯ 2 1 4 = μ ¯ 1 4 3 S ¯ 1 1 4 ,
Q ¯ 1 4 = S ¯ 1 1 4 r 4 + μ ¯ 1 4 R 22 , where r 4 = R 4 3 R 22 ,
p ˜ r 4 ( C ) = P ¯ r 1 4 [ S ¯ 1 1 4 r 4 + 3 V ¯ 12 V ¯ 34 r 5 ] where r 5 = R 22 2 R 2 + p 0 C .
Similarly, using j , k , l to mean a sum over distinct j , k , l ,
Q ¯ 1 6 = S ¯ 17 S ¯ 6 , 12 [ R 6 I ( i 7 = = i 12 ) + R 42 I 2 + R 222 I 3 ] where R 222 = E N 1 2 N 2 2 N 3 2 I ( N N < u ) , I 2 = 15 S ¯ 1 4 : 56 , I 3 = 90 S ¯ 12 : 34 : 56 , S ¯ 1 4 : 56 = j k S i 1 j S i 4 j S i 5 k S i 6 k , S ¯ 12 : 34 : 56 = j , k , l S i 1 j S i 2 j S i 3 k S i 4 k S i 5 l S i 6 l . S o , P ¯ r 1 6 Q ¯ 1 6 = P ¯ r 1 6 [ S ¯ 1 1 6 R 6 + 15 S ¯ 1 4 : 56 R 42 + 90 S ¯ 12 : 34 : 56 R 222 ] , p ˜ r 6 ( C ) = P ¯ r 1 6 [ Q ¯ 1 6 15 Q ¯ 1 4 V ¯ 56 + 15 Q ¯ 12 μ ¯ 3 6 p 0 C μ ¯ 1 6 ] = P ¯ r 1 6 [ S ¯ 1 1 6 R 6 + 15 S ¯ 1 4 : 56 R 42 + 90 S ¯ 12 : 34 : 56 R 222 15 S ¯ 1 1 4 V ¯ 56 r 4
+ 3 V ¯ 12 V ¯ 34 V ¯ 56 r 6 ] where r 6 = 15 R 42 + 15 R 2 p 0 C .
p 2 C of (9) is now given by (15), (17), (18). Note that
V ¯ 12 V ¯ 34 V ¯ 56 = S ¯ 1 1 6 + 3 S ¯ 1 1 4 : 56 + S ¯ 1 12 : 34 : 56 .
We can write R 2 k 1 , in terms of F k ( u ) = P r o b . ( χ k 2 u ) :
R 2 k = E Z 1 k F q 1 ( u Z 1 ) = 0 u z 1 k F q 1 ( u z 1 ) d F 1 ( z 1 ) = G q 1 ( u : k ) say , R 2 k 1 , 2 k 2 = E Z 2 k 2 G q 2 ( u Z 2 : k 1 ) = 0 u z 2 k 2 G q 2 ( u z 2 : k 1 ) d F 1 ( z 2 ) = G q 2 ( u : k 1 k 2 ) say , R 222 = E Z 3 G q 3 ( u Z 3 : 11 ) = 0 u z 3 G q 3 ( u z 3 : 11 ) d F 1 ( z 3 ) .
For X , X n of (6), set
Q = X V 1 X χ q 2 , Q n = X n V 1 X n , Q ^ n = X n V ^ 1 X n = n ( w ^ w ) V ^ 1 ( w ^ w ) ,
where V ^ is an estimate V ^ , (empirical, semi-parametric, or parametric depending on the model used). So
P r o b . ( Q n u ) = P r o b . ( χ q 2 u ) + n 1 p 2 C + O ( n 2 ) = 1 α + O ( n 1 ) if u = χ q , 1 α 2 ,
the 1 α quantile of χ q 2 . It is often true that
P r o b . ( Q ^ n u ) = P r o b . ( χ q 2 u ) + O ( n 1 ) .
(An exact confidence region for w is only possible if w ^ is normal: see 5.3.2 of Anderson (1958).) χ q 2 / q = G γ / γ where γ = q / 2 and G γ is a gamma random variable with mean γ . So if q = 2 ,
p 0 C = P r o b . ( G 1 < u / 2 ) = 1 e u / 2 = 1 α if 0 < u = 2 ln α ,
Q n < 2 ln α with probability 1 α + O ( n 1 ) , and typically,
Q ^ n 2 ln α wuth probability 1 α + O ( n 1 ) .
By way of illustration, Figure 3.1 plots the elliptical contours x = X n when Q n = 2 ln α , for 1 α = . 5 , . 9 , . 99 , when
V = 2 1 1 2 , V 1 = 2 1 1 2 / 3 .
So the asymptotic correlation of w ^ 1 and w ^ 2 is 1/2.
Figure 3.1: x = X n when Q n = 2 ln α for 1 α = . 5 , . 9 , . 99
Preprints 165636 i100
courtesy of Dr Paul Teal:
One can do similarly for q > 2 , using χ q , 1 α 2 and 2-dimensional slices of these ellipsoids. For related references on confidence regions, see Withers and Nadarajah (2012a).
The R functions. If q = 1 , then R 2 k 1 , 2 k 2 = R 222 = 0 for k 2 > 0 , and
R 2 k = 2 g 2 k ( u 1 / 2 ) where g k ( u ) = E N k I ( 0 < N < u ) = 0 u n k ϕ ( n ) d n
is given in Example 3.2 using a recurrence formula. (A simpler way is just to use (7).)
Now take q = 2 . Then
Preprints 165636 i043
To get a recurrence formula for g k 1 k 2 = g k 1 k 2 ( v ) , set
f k ( u ) = g k ( u 1 / 2 ) , A = ϕ ( n 1 ) n 1 k 1 1 f k 2 ( v 2 n 1 2 ) . Then g k 1 k 2 = 0 v A d ϕ ( n 1 ) = [ A ] v 0 + g ¯ k 1 2 k 2 where g ¯ k 1 2 k 2 = 0 v ϕ ( n 1 ) d A = ( k 1 1 ) A 1 + A 2 , A 1 = 0 v d n 1 ϕ ( n 1 ) n 1 k 1 2 f k 2 ( v 2 n 1 2 ) = g k 1 2 , k 2 , A 2 = 0 v d n 1 ϕ ( n 1 ) n 1 k 1 1 ( 2 n 1 ) f . k 2 ( v 2 n 1 2 ) , f . k ( u ) = d f k ( u ) / d u . f k ( v 2 ) = g k ( v ) 2 v f . k 2 ( v 2 ) = g . k ( v ) = v k ϕ ( v ) . S o f . k 2 ( v 2 n 1 2 ) = [ x k 1 ϕ ( x ) ] x = v 2 n 1 2 = ( v 2 n 1 2 ) ( k 1 ) / 2 ϕ ( v ) e n 1 2 / 2 . S o A 2 = ϕ ( 0 ) ϕ ( v ) A 3 where for B 12 = B ( k 1 + 1 ) / 2 , k 2 + 1 ) / 2 ) , A 3 = 0 v d n 1 n 1 k 1 v 2 n 1 2 ( k 2 1 ) / 2 = v k 1 + k 2 B 12 / 2 . S o A 2 = ϕ ( 0 ) ϕ ( v ) v k 1 + k 2 B 12 / 2 = A k 1 k 2 say . S o for k 1 1 , g k 1 k 2 = ( k 1 1 ) g k 1 2 , k 2 + G k 1 k 2 where G k 1 k 2 = I ( k 1 = 1 ) g k 2 ( v ) + A k 1 k 2 .
This recurrence formula for g k 1 k 2 of (20) gives
R 22 = 4 g 22 ( u 1 / 2 ) where g 22 ( v ) = g 22 = g 02 + A 22 , and A 22 = v 4 e v 2 / 32 as B 12 = π / 8 , R 42 = 4 g 42 ( u 1 / 2 ) where g 42 ( v ) = g 42 = g 02 + A 42 , and A 42 = v 6 e v 2 / 64 as B 12 = π / 16 .
So we need g 02 . By Example 3.2,
g 2 ( u ) = Φ 0 ( u ) u ϕ ( u ) where Φ 0 ( u ) = Φ ( u ) 1 / 2 .
Transforming to u 2 = v 2 n 1 2 ,
g 02 = 0 v d n 1 ϕ ( n 1 ) g 2 ( u ) = e v 2 / 2 ( A B ) , where A = 0 v ( v 2 u 2 ) 1 / 2 Φ 0 ( u ) u ϕ ( u ) d u , B = ϕ ( 0 ) 0 v u 2 ( v 2 u 2 ) 1 / 2 ϕ ( u ) d u = ( 2 π ) 1 v 2 I ( v 2 ) , and I ( t ) = 0 1 x 1 / 2 ( 1 x ) 1 / 2 e t x d x = i = 0 B ( i + 3 / 2 , 1 / 2 ) t i / i ! . B ( i + 3 / 2 , 1 / 2 ) = π 1 / 2 Γ ( i + 3 / 2 ) / i ! . Γ ( i + 3 / 2 ) = Γ ( 3 / 2 ) [ 3 / 2 ] i where [ t ] i = t ( t + 1 ) ( t + i 1 ) . S o B = ( v 2 / 8 ) 1 F 1 ( 3 / 2 , 1 : v 2 )
where 1 F 1 ( 3 / 2 , 1 : t ) is the confluent or degenerate hypergeometric function: see 9.21 of Gradshteyn and Ryzhik (2000) and p504 of Abramowitz and Stegun (1964). Now suppose that q > 2 . Then
R 2 k 1 , 2 k 2 = 4 E N 1 2 k 1 N 2 2 k 2 I ( N 1 2 + N 2 2 < u Z , N 1 > 0 , N 2 > 0 ) = 4 E g 2 k 1 , 2 k 2 ( ( u Z ) 1 / 2 ) where Z = i = 3 q χ q 2 2 , and R 222 = 8 E N 1 2 N 2 2 N 3 2 I ( N N < u , N 1 > 0 , N 2 > 0 , N 3 > 0 ) = 8 E N 3 2 R 22 ( u N 3 2 Z ) I ( N 3 > 0 )
where R 22 ( u ) = R 22 of (20) and Z = i = 4 q N i 2 χ q 3 2 is independent of N 3 .
By Theorem 2.2 of Withers and Nadarajah (2012a), for r 1 ,
p r C = j = 1 3 r b 2 r , j ( U 1 ) j F q ( x ) where F q ( x ) = P r o b . ( χ q 2 < x ) , U j F q ( x ) = F q + 2 j ( x ) , b 2 r , j = b ¯ 2 r 1 2 j μ ¯ 1 2 j , μ ¯ 1 2 j = E X ¯ 1 X ¯ 2 j . For example, , p r C is given by b 21 = ( k ¯ 2 12 + k ¯ 1 1 k ¯ 1 2 ) V ¯ 12 , b 22 = k ¯ 3 1 4 V ¯ 12 V ¯ 34 / 4 + k ¯ 1 1 k ¯ 2 34 V ¯ 12 V ¯ 34 , b 23 = k ¯ 2 123 k ¯ 2 456 ( V ¯ 12 V ¯ 34 V ¯ 56 / 4 + V ¯ 14 V ¯ 25 V ¯ 36 / 6 ) .
Its extension to Q ^ n is given in §3 there for parametric and non-parametric models. Take C = { x : | ( V 1 / 2 x ) j | u j , j = 1 , , q } . So C = C . For Y = V 1 / 2 N and N N q ( 0 , I q ) ,
p 0 C = Π j = 1 q G 0 ( u j ) where G 0 ( u ) = P r o b . ( | N 1 | < u ) = 2 Φ ( u ) 1 .
(We might choose u j u such that p 0 C = . 5 or . 9 .) For S = V 1 / 2 ,
Q ¯ 1 k = E Y ¯ 1 Y ¯ k I ( | N | j < u j , j = 1 , , q ) = S ¯ 1 , k + 1 S ¯ k , 2 k R ¯ k + 1 2 k where now R ¯ 1 k = E N ¯ 1 N ¯ k I ( | N | j < u j , j = 1 , , q ) = F ¯ 1 k ( u 1 u q ) say . Set R 2 k 1 , , 2 k s = E N 1 2 k 1 N s 2 k s I ( | N | j < u j , j = 1 , , q ) = [ Π j = 1 s G k j ( u j ) ] [ Π j = s + 1 q G 0 ( u j ) ] where G k ( u ) = E N 1 2 k I ( | N 1 | < u ) = 2 g 2 k ( u ) where g k ( u ) = g k = 0 u n k ϕ ( n ) d n = 0 u n k 1 d ϕ ( n ) = [ n k 1 ϕ ( n ) ] u 0 + ( k 1 ) g k 2 : g 0 = Φ ( u ) 1 / 2 , g 1 = ϕ ( 0 ) ϕ ( u ) , g 2 = g 0 u ϕ ( u ) , g 3 = 2 ϕ ( 0 ) ( u 2 + 2 ) ϕ ( u ) , g 4 = 3 g 0 ( u 3 + 3 u ) ϕ ( u ) , g 5 = 2.4 ϕ ( 0 ) ( u 4 + 4 u 2 + 4.2 ) ϕ ( u ) , g 6 = 3.5 g 0 ( u 5 + 5 u 3 + 5.3 u ) ϕ ( u ) , g 7 = 2.4 . 6 ϕ ( 0 ) ( u 6 + 6 u 4 + 66.4 u 2 + 6 . 4.2 ) ϕ ( u ) , g 8 = 3.5 . 7 g 0 ( u 7 + 7 u 5 + 7.5 u 3 + 7 . 5.3 u ) ϕ ( u ) . As R 12 = 0 , Q ¯ 12 = V ¯ 12 R 2 by ( 14 ) where R 2 k = 2 q g 2 k ( u 1 ) Π j = 2 q g 0 ( u j ) . Set R 2 k 1 , 2 k 2 = 2 q [ Π j = 1 2 g 2 k j ( u j ) ] [ Π j = 3 q g 0 ( u j ) ] , R 2 k 1 , 2 k 2 , 2 k 3 = 2 q [ Π j = 1 3 g 2 k j ( u j ) ] [ Π j = 4 q g 0 ( u j ) ] ,
So now Q ¯ 1 4 is given by (16) and (17) in terms of these new R 2 k 1 , . Similarly Q ¯ 1 6 and p ˜ r k ( C ) are given by Example 3.1 with these new R 2 k 1 , . So now we have p 2 C of (9). If we choose u j u , then
R 2 k = 2 q g 2 k g 0 q 1 , R 2 k 1 , 2 k 2 = 2 q [ Π j = 1 2 g 2 k j ] g 0 q 2 , R 2 k 1 , 2 k 2 , 2 k 3 = 2 q [ Π j = 1 3 g 2 k j ] g 0 q 3 .
Take C = { x : | x j | u j , j = 1 , , q } . So C = C . This choice gives a set of q simultaneous intervals. For Y = S N and T = V 1 / 2
p 0 C = Q = P r o b . ( | ( V Y ) j | < u j , j = 1 , , q ) = P r o b . ( | ( T N ) j | < u j , j = 1 , , q ) , Q ¯ 1 k = E Y ¯ 1 Y ¯ k I ( | ( V Y ) j | < u j , j = 1 , , q ) = S ¯ 1 , k + 1 S ¯ k , 2 k R ¯ k + 1 2 k where now R ¯ 1 k = E N ¯ 1 N ¯ k I ( | ( T N ) j | < u j , j = 1 , , q ) .
So R ¯ 1 k = 0 for k odd. ( R 12 is no longer 0.) But each of those non-zero require q numerical integrations. Consider the case q = 2 .
I ( | X j | < u j , j = 1 , 2 ) = I ( X j < u j , j = 1 , 2 ) I ( X 1 < u 1 , X 2 < u 2 ) I ( X 1 < u 1 , X 2 < u 2 ) + I ( X 1 < u 1 , X 2 < u 2 ) R j k = F j k ( u 1 , u 2 ) F j k ( u 1 , u 2 ) F j k ( u 1 , u 2 ) + F j k ( u 1 , u 2 ) where F j k ( u 1 , u 2 ) = E N j N k I ( X 1 < u 1 , X 2 < u 2 ) = d n 1 d n 2 ϕ ( n 1 ) ϕ ( n 2 ) I ( k = 1 2 T j k n k < u j , j = 1 , 2 ) .
For more on these types of expansions and their inverses, see Hill and Davis (1968) and their simplifications given in §4–§5 of Withers and Nadarajah (2015). However in these papers the need to express results in terms of S = V 1 / 2 did not arise there. For the case of a sample mean with estimated covariance, it is possible to avoid the use of S = V 1 / 2 : see Xu and Gupta (2006).

4. The Distribution of X n = n 1 / 2 ( w w ) for q = 2

As above, we set y = V 1 x , Y = V 1 x . We now switch notation to
Preprints 165636 i044
Preprints 165636 i045
So H k 0 and H 0 k are given by (33) with j = 1 and 2: H 10 = y 1 , H 01 = y 2 ,
H 11 = y 1 y 2 μ 11 , H 21 = y 1 2 y 2 μ 20 y 2 2 μ 11 y 1 , H 12 = y 1 y 2 2 μ 02 y 1 2 μ 11 y 2 ,
and so on. The μ a b and H a b needed here are given in Appendix B. Let us write the cumulant expansion (5) as
κ a b ( w ^ 1 , w ^ 2 ) d = a + b 1 n d k a b d for a + b 1 where k a b d = k d 1 a 2 b .
So k 100 = w 1 , k 010 = w 2 . The density of X n = n 1 / 2 ( w ^ w ) , p X n ( x ) , is given by (15) and (18) in terms of p ˜ r ( x ) and p ˜ r k of (18). As b a r P r 1 k is symmetric,
p ˜ r k = b = 0 k P r ( k b , b ) H k b , b where P r ( a b ) = a + b a P r 1 a 2 b ,
for P ¯ r 1 k of (12)–(14). So P r ( b a ) is just P r ( a b ) with 1 and 2 reversed.
Set 2 P r ( a b ) H a b = P r ( a b ) H a b + P r ( b a ) H b a .
Then p ˜ r ( x ) is given for r = 1 , 2 , 3 by (27)–(29) in terms of
p ˜ r 1 = 2 P r ( 10 ) H 10 , p ˜ r 3 = 2 [ P r ( 30 ) H 30 + P r ( 21 ) H 21 ] , r odd , p ˜ 22 = 2 P 2 ( 20 ) H 20 + P 2 ( 11 ) H 11 , p ˜ 24 = 2 [ P 2 ( 40 ) H 40 + P 2 ( 31 ) H 31 ] + P 2 ( 22 ) H 22 , p ˜ 26 = 2 [ P 2 ( 60 ) H 60 + P 2 ( 51 ) H 51 + P 2 ( 42 ) H 42 ] + P 2 ( 33 ) H 33 , p ˜ 35 = 2 [ P 3 ( 50 ) H 50 + P 3 ( 41 ) H 41 + P 3 ( 32 ) H 32 ] , p ˜ 37 = 2 [ P 3 ( 70 ) H 70 + P 3 ( 61 ) H 61 + P 3 ( 52 ) H 52 + P 3 ( 43 ) H 43 ] , p ˜ 39 = 2 [ P 3 ( 90 ) H 90 + P 3 ( 81 ) H 81 + P 3 ( 72 ) H 72 + P 3 ( 63 ) H 63 + P 3 ( 54 ) H 54 ] .
The P r ( a b ) needed in (3) for p ˜ r k , r 3 , are as follows.
For p ˜ 11 , P 1 ( 10 ) = k 1 1 , s o P 1 ( 01 ) = k 1 2 . For p ˜ 13 , P 1 ( 30 ) = k 2 111 / 6 , s o P 1 ( 03 ) = k 2 222 / 6 , P 1 ( 21 ) = k 2 112 / 2 .
For p ˜ 22 , P 2 ( 20 ) = k 2 11 / 2 + ( k 1 1 ) 2 / 2 , P 2 ( 11 ) = k 2 12 + k 1 1 k 1 2 . For p ˜ 24 , P 2 ( 40 ) = k 3 1 4 / 24 + k 1 1 k 2 1 3 / 6 , P 2 ( 31 ) = k 3 1112 / 6 + k 1 1 k 2 112 / 3 + k 1 2 k 2 111 / 3 , P 2 ( 22 ) = k 3 1122 / 4 + k 1 1 k 2 112 / 2 + k 1 2 k 2 122 / 2 , For p ˜ 26 , P 2 ( 60 ) = ( k 2 111 ) 2 / 72 , P 2 ( 51 ) = k 2 111 k 2 112 / 12 , P 2 ( 42 ) = k 2 111 k 2 122 / 12 + ( k 2 112 ) 2 / 8 , P 2 ( 33 ) = k 2 111 k 2 222 / 36 + k 2 112 k 2 122 / 4 , For p ˜ 31 , P 3 ( 10 ) = k 2 1 . For p ˜ 33 , P 3 ( 30 ) = k 3 111 / 6 + k 2 11 k 1 1 / 2 + ( k 1 1 ) 3 / 6 , P 3 ( 21 ) = [ k 3 112 + 2 k 1 1 k 2 12 + k 1 2 k 2 11 + ( k 1 1 ) 2 k 1 2 ] / 6 . For p ˜ 35 , P 3 ( 50 ) = k 4 1 5 / 120 + k 3 1 4 k 1 1 / 24 + k 2 111 [ k 2 11 + ( k 1 1 ) 2 ] / 12 , P 3 ( 41 ) / 5 = P 3 1 4 2 = k 4 1 4 2 / 120 + S 1 / 24 + S 2 / 12 + S 3 / 12 where S 1 = ( 4 k 1 1 k 3 1112 + k 1 2 k 3 1111 ) / 5 , S 2 = ( 3 k 2 11 k 2 112 + 2 k 2 12 k 2 111 ) / 5 , S 3 = [ 2 k 1 1 k 1 2 k 2 111 + 3 ( k 1 1 ) 2 k 2 112 ] / 5 , P 3 ( 32 ) = 10 P 3 1112 = k 4 111 2 2 / 12 + k 3 1112 k 1 2 / 3 + k 3 1122 k 1 1 / 4 + k 3 111 ( k 1 2 ) 2 / 12 + k 3 112 k 1 2 k 1 2 / 2 + k 3 122 ( k 1 1 ) 2 / 4 . For p ˜ 37 , P 3 ( 70 ) = k 3 1111 k 2 111 / 144 + ( k 2 1 3 ) 2 k 1 1 / 72 , P 3 ( 61 ) = k 2 112 k 3 1111 / 48 + k 2 111 k 3 1112 / 36 + k 1 2 ( k 2 111 ) 2 / 72 + k 1 1 k 2 111 k 2 112 / 12 . P 3 ( 52 ) = k 3 1111 k 2 122 / 48 + k 3 1 3 2 k 2 112 / 12 + k 3 1122 k 2 111 / 24 + 5 k 2 111 k 2 112 k 1 2 / 24 + k 2 111 k 2 122 k 1 1 / 12 + ( k 2 112 ) 2 k 1 1 / 12 , P 3 ( 43 ) = 35 P 3 1 4 2 3 = A / 144 + B / 72 for A = k 3 1 4 k 2 222 + 13 k 3 1 3 2 k 2 122 + 17 k 3 1122 k 2 112 + k 3 1222 k 2 111 , B = ( k 2 111 k 2 222 + 15 k 2 112 k 2 122 ) k 1 1 + ( 9 k 2 111 k 2 122 + 10 k 2 112 k 2 112 ) k 1 2 . For p ˜ 39 , P 3 ( 90 ) = ( k 2 1 3 / 6 ) 3 , P 3 ( 81 ) = 9 ( k 2 111 ) 2 k 2 112 / 6 3 , and for a ¯ 123 = k ¯ 2 123 , P 3 ( 72 ) = [ 9 ( a 111 ) 2 a 122 + 3 a 111 ( a 112 ) 2 ] / 6 3 , P 3 ( 63 ) = 3 [ ( a 111 ) 2 a 222 + 18 a 111 a 112 a 122 + 9 ( a 112 ) 3 ] / 6 3 , P 3 ( 54 ) = 9 [ a 111 a 112 a 222 + 15 a 111 ( a 122 ) 2 + 27 ( a 112 ) 2 a 122 ] / 6 3 .
(15) and (18) now give the density of X n = n 1 / 2 ( w ^ w ) to O ( n 2 ) . Set
H a b * = ( 1 ) a ( 2 ) b Φ V ( x ) = x H a b ϕ V ( x ) d x . S o H a b * = H a 1 , b 1 ϕ V ( x ) if a 2 , b 1 ,
H 10 * = x 2 ϕ V ( x ) d x 2 = 1 Φ V ( x ) , H a 0 * = ( 1 ) a 1 H 10 * if a 2 , H 01 * = x 1 ϕ V ( x ) d x 1 = 2 Φ V ( x ) , H 0 b * = ( 2 ) b 1 H 01 * if b 1 .
The distribution of X n = n 1 / 2 ( w ^ w ) is given by (15) and (19) in terms of P r k ( x ) . P r k ( x ) is just p ˜ r k above with H a b replaced by H a b * of (5). That is,
P r k ( x ) = b = 0 k P r ( k b , b ) H k b , b * .
(15) and (19) now give P r o b . ( X n x ) to O ( n 2 ) for X n = n 1 / 2 ( w ^ w ) . For example for x = ( 1 , 1 ) and x = ( 2 , 2 ) , the values of H a b are given in Example B.1. For r = 1 , 2 , 3 , p r C of (1) and (9) is given by replacing p ˜ r k , H a b above by p ˜ r k ( C ) of (5) and H a b C = H 1 a 2 b ( C ) of (Section 3). By §3,
H 10 C = Q 10 , H 20 C = Q 20 p 0 C μ 20 , H 11 C = Q 11 p 0 C μ 11 , H 30 C = Q 30 3 Q 10 μ 20 , H 21 C = Q 21 2 Q 10 μ 11 Q 01 μ 20 , H 40 C = Q 40 6 Q 20 μ 20 + p 0 C μ 40 , H 31 C = Q 31 3 Q 20 μ 11 3 Q 11 μ 20 + p 0 C μ 31 , H 22 C = Q 22 Q 20 μ 02 Q 02 μ 20 4 Q 11 μ 11 + p 0 C μ 22 , H 60 C = Q 60 15 Q 40 μ 20 + 15 Q 20 μ 40 p 0 C μ 60 , H 51 C = Q 51 10 Q 31 μ 20 + 5 Q 11 μ 40 5 Q 40 μ 11 + 10 Q 20 μ 31 p 0 C μ 51 , H 42 C = Q 42 6 Q 22 μ 20 + Q 02 μ 40 8 Q 31 μ 11 + 8 Q 11 μ 31 Q 40 μ 02 + 6 Q 20 μ 22 p 0 C μ 42 , H 33 C = Q 33 + 3 2 ( Q 20 μ 13 Q 13 μ 20 ) 9 Q 22 μ 11 + 9 Q 11 μ 22 p 0 C μ 33 , where Q a b = E Y 1 a Y 2 b I ( V Y C ) .
These expressions can be read off those for H a b in Appendix B. If C = C , then 0 = Q a b = H a b C for a + b odd. For Examples 3.1 and 3.2, Q 11 = μ 11 R 2 , and p ˜ r 2 ( C ) of (4) is given by (15) in terms of P ¯ r 12 V ¯ 12 = 2 P r ( 20 ) μ 20 + 2 P r ( 11 ) μ 11 . For r = 2 this is given by (4). Let w ^ be a sample mean of a distribution with cumulants κ a b . By Example 2.2, for ( r k ) = ( 11 ) , ( 22 ) , ( 31 ) , ( 33 ) ,   p ˜ r k = 0 , and we need the following Edgeworth coefficients.
For p ˜ 13 and P 13 ( x ) : P 1 ( 30 ) = κ 30 / 3 ! , P 1 ( 21 ) = κ 21 / 2 , P 1 ( 12 ) = κ 12 / 2 . For p ˜ 24 , P 24 ( x ) : P 2 ( 40 ) = κ 40 / 4 ! , P 2 ( 31 ) = κ 31 / 6 , P 2 ( 22 ) = κ 22 / 4 . For p ˜ 26 , P 26 ( x ) : P 2 ( 60 ) = κ 30 2 / 72 , P 2 ( 51 ) = κ 30 κ 21 / 12 , P 2 ( 42 ) = ( 2 κ 30 κ 12 + 3 κ 21 2 ) / 24 , P 2 ( 33 ) = ( κ 30 κ 03 + 9 κ 21 κ 12 ) / 6 . For p ˜ 35 , P 35 ( x ) : P 3 ( 50 ) = κ 50 / 5 ! , P 3 ( 41 ) / 5 = κ 41 / 5 ! , P 3 ( 32 ) = κ 32 / 12 . For p ˜ 37 , P 37 ( x ) : P 3 ( 70 ) = κ 40 κ 30 / 144 , P 3 ( 61 ) = κ 21 κ 40 / 48 + κ 30 κ 31 / 36 , P 3 ( 52 ) = κ 40 κ 12 / 48 + κ 31 κ 21 / 12 + κ 22 κ 30 / 24 , P 3 ( 43 ) = A / 144 for A = κ 40 κ 03 + 13 κ 31 κ 12 + 17 κ 22 κ 21 + κ 13 κ 30 . For p ˜ 39 , P 39 ( x ) : P 3 ( 90 ) = κ 30 3 / 6 3 , P 3 ( 81 ) = κ 30 2 κ 21 / 6 3 , P 3 ( 72 ) = ( κ 30 2 κ 12 + 3 κ 30 κ 21 2 ) / 4 . 6 3 , P 3 ( 63 ) = ( κ 30 2 κ 03 + 12 κ 30 κ 21 κ 12 + 15 κ 21 3 ) / 28 . 6 3 , P 3 ( 54 ) = ( 5 κ 30 κ 21 κ 03 + 9 κ 30 κ 12 2 + 21 κ 21 2 κ 12 ) / 35 . 6 3 .
For a < b , P r ( a b ) is P r ( b a ) with superscripts 1 and 2 reversed. The P 2 ( a b ) needed for p 2 C of (1) and (9) are those given above for p ˜ 24 , p ˜ 26 . For a specific case of a bivariate sample mean, consider An entangled gamma model. Let G 0 , G 1 , G 2 be independent gamma random variables with means γ = γ 0 , γ 1 , γ 2 . For i = 1 , 2 , set X i = G 0 + G i , w i = E X i = γ + γ i , and let w ^ be the mean of a random sample of size n distributed as ( X 1 , X 2 ) . So, E w ^ = w , and n w ^ = L ( G n 0 + G n 1 , G n 0 + G n 2 ) where G n 0 , G n 1 , G n 2 are independent gamma random variables with means n γ , n γ 1 , n γ 2 . The rth order cumulants of X = ( X 1 , X 2 ) are κ i r = ( r 1 ) ! w i , and otherwise ( r 1 ) ! γ . For example κ 20 = κ 11 = w 1 , κ 02 = κ 22 = w 2 , κ 11 = κ 12 = γ , κ 21 = κ 112 = κ 12 = κ 122 = 2 ! γ , and
V = w 1 γ γ w 2 , V 1 = w 2 γ γ w 1 / D where D = d e t V = w 1 w 2 γ 2 .
So, y = V 1 x = ( w 2 x 1 γ x 2 , γ x 1 + w 1 x 2 ) / D . Set ν i = w i / γ . Then V has correlation ( ν 1 ν 2 ) 1 / 2 . This ranges from 0 at γ = 0 to 1 at γ = . So w ^ 1 and w ^ 2 are positively entangled. (For a negatively entangled example, replace G n 0 + G n 2 by G n 0 + G n 2 : the correlation is then ( ν 1 ν 2 ) 1 / 2 . An extension to R q is n w ^ i = λ i G n 0 + G n i , i = 1 , q . ) For c = 0 , 1 , , set
2 w 1 c H a b = w 1 c H a b + w 2 c H b a .
By Example 3.1, P 1 ( 30 ) = w 1 / 3 , (so P 1 ( 03 ) = w 2 / 3 , ) P 1 ( 22 ) = 2 γ ,
p ˜ 1 ( x ) = p ˜ 13 = 2 [ w 1 H 30 / 3 + γ H 21 ] , p ˜ 2 ( x ) = p ˜ 24 + p ˜ 26 where p ˜ 24 = 2 [ w 1 H 40 / 4 + γ H 31 ] + γ H 22 , p ˜ 26 = 2 [ w 1 2 H 60 / 18 + w 1 γ ( H 51 + H 42 ) / 3 ] + ( w 1 w 2 / 9 + γ 2 ) H 33 , p ˜ 3 ( x ) = k = 5 , 7 , 9 p ˜ 3 k where 5 p ˜ 35 = 2 [ w 1 H 50 + γ ( H 41 + H 32 ) ] , 12 p ˜ 37 = 2 [ w 1 2 H 70 + 7 w 1 γ H 61 + 6 ( w 1 γ + 2 γ 2 ) H 52 + ( w 1 w 2 + w 1 γ + 30 γ 2 ) H 43 ] , 27 p ˜ 39 = 2 [ w 1 3 H 90 + 9 w 1 2 γ H 81 + ( 9 w 1 2 γ + 3 w 1 γ 2 ) H 72 + 3 ( w 1 2 w 2 + 18 w 1 γ 2 + 9 γ 3 ) H 63 + 9 ( w 1 w 2 γ + 15 w 1 γ 2 + 27 γ 3 ) H 54 ] .
Now consider the entangled exponential case γ i 1 . So w i 2 , V and V 1 are given by (19),
p ˜ 1 ( x ) = p ˜ 13 = 2 [ 2 H 30 / 3 + H 21 ] p ˜ 24 = 2 [ H 40 / 2 + H 31 ] + H 22 , 9 p ˜ 26 = 2 2 [ H 60 + 3 H 51 + 3 H 42 ] + 13 H 33 , 5 p ˜ 35 = 2 [ 2 H 50 + H 41 + H 32 ] , 6 p ˜ 37 = 2 [ 2 H 70 + 7 H 61 + 12 H 52 + 18 H 43 ] ,
Preprints 165636 i046
For x = ( 1 , 1 ) and x = ( 2 , 2 ) , the values of H a b are given in Example B.1.
So if x = ( 1 , 1 ) , then y = ( 1 , 1 ) / 3 , p ˜ 1 ( x ) = 62 / 81 . 765 , so that our measure of the accuracy of the CLT is n 1 / 2 p ˜ 1 ( x ) = 31 / 81 . 383 for n = 4 and 62 / 243 . 255
For x = ( 1 , 1 ) , p ˜ 24 = 4 / 81 . 049 , p ˜ 26 = 11552 / 3 8 1.761 , p ˜ 2 ( x ) = 11876 / 3 8 1.810 , p ˜ 35 = 352 / 3 5 1.449 , p ˜ 37 = 65139 / 3 8 9.928 , p ˜ 39 = 5530972 / 3 12 10.408 , p ˜ 3 ( x ) = 11577055 / 3 12 21.784 , p X n ( x ) / ϕ V ( x ) 1 . 765 n 1 / 2 + 1.810 n 1 + 21.784 n 3 / 2 + O ( n 2 ) 1 . 191 + . 113 + . 340 if n = 16 so that only 3 terms can be used .
If x = ( 2 , 2 ) , then y = ( 2 , 2 ) / 3 , p ˜ 1 ( x ) = 64 / 81 . 790 , and our measure of the accuracy of the CLT is n 1 / 2 p ˜ 1 ( x ) = 32 / 81 . 395 for n = 4 , and 16 / 81 . 197 for n = 16 .
For x = ( 2 , 2 ) , p ˜ 24 = 58 / 81 . 716 , p ˜ 26 = 22910 / 3 8 3.492 , p ˜ 2 ( x ) 2.776 , p ˜ 35 = 392 / 3 5 1.613 , p ˜ 37 = 8000 / 3 7 3.658 , p ˜ 39 = 2528960 / 3 12 4.759 , p ˜ 3 ( x ) = 5330264 / 3 12 10.030 , p X n ( x ) / ϕ V ( x ) 1 . 790 n 1 / 2 + 2.776 n 1 + 10.030 n 3 / 2 + O ( n 2 ) 1 . 198 + . 174 + . 157 if n = 16 .
As in Example 2.1, suppose that the distribution of w ^ is symmetric about w. By (31),
2 p ˜ 22 = k 2 11 H 20 + 2 k 2 12 H 11 + k 2 22 H 02 , 24 p ˜ 24 = k 3 1111 H 40 + 4 k 3 1112 H 31 + 6 k 3 1122 H 22 + 4 k 3 1222 H 13 + k 3 2222 H 04 ,
and P 2 k ( x ) needed for (32) is p ˜ 2 k with H a b replaced by H a b * of (5). Now suppose that w ^ = W ^ 1 W ^ 2 where W ^ 1 and W ^ 2 are independent copies of a random vector W ^ . Then the cumulants of w ^ of odd order are zero, and the cumulants of even order are twice those of W ^ .
Consider the case W ^ = w ^ , the bivariate entangled gamma of Example 5.2. So w = ( 0 , 0 ) , the odd cumulants of w ^ are zero, and the odd p ˜ r ( x ) , P r ( x ) are zero. Denote V , x , y , X , Y of Example 3.2 as V 0 , x 0 , y 0 , X 0 , Y 0 . Then
V = 2 V 0 , X = 2 1 / 2 X 0 , Y = 2 1 / 2 Y 0 , H a b = 2 ( a + b ) / 2 H a b ( x 0 , V 0 ) where x = 2 1 / 2 x 0 , y = 2 1 / 2 y 0 .
By Example 2.2, p ˜ 22 = 0 , P 2 ( 40 ) = k 3 1 4 / 24 , P 2 ( 31 ) = κ 40 / 6 , P 2 ( 22 ) = κ 22 / 4 , where κ 40 = 12 ( γ 1 + γ 3 ) , κ 31 = κ 22 = 12 γ 3 .
S o , p ˜ 2 ( x ) = 2 [ ( γ 1 + γ 3 ) H 40 + 4 γ 3 H 31 ] + 6 γ 3 H 22 .
Now consider the exponential case γ i 1 . So
p ˜ 2 ( x ) = p ˜ 24 = 2 [ H 40 + 2 H 31 ] + 2 H 22 = 7 / 9 . 778 if x = ( 1 , 1 ) or 14 / 9 1.556 if x = ( 2 , 2 ) .
So for n = 16 , n 1 p ˜ 2 ( x ) . 049 if x = ( 1 , 1 ) , or . 194 if x = ( 2 , 2 ) . Here we used the values of H a b given in the example of Teal (2024). Takeuchi (1978) gave explicit expressions for the Cornish-Fisher expansion when q = 2 .

5. Conclusions

Most estimates of interest are standard estimates, including functions of sample moments, like the sample correlation, and any smooth multivariate function of Fisher’s k-statistics: see Stuart and Ord (1991) for these. In §2 we gave the density and distribution of X n = n 1 / 2 ( w ^ w ) to O ( n 2 ) , for w ^ any standard estimate, in terms of functions of the cumulants coefficients k ¯ j 1 r of (5), the coefficients P ¯ r 1 k of (11)–(14). §3 gave explicit detail when q = 2 using the dual notation P r ( a b ) . §3 gave as examples Edgeworth expansions for the probability of X n lying in an ellipsoidal or hyperrectangular set.

6. Discussion

A good approximation for the distribution of an estimate, is vital for accurate inference. It enables one to explore the distribution’s dependence on underlying parameters. The analytic results given here avoid the need for simulation or jack-knife or bootstrap methods while providing greater accuracy than them. Hall (1992) used the Edgeworth expansion to show that the bootstrap gives accuracy to O ( n 1 ) . Hall (1988) said that “2nd order correctness usually cannot be bettered”. But this is not true using these analytic results. Simulation, while popular, can at best shine a light on behaviour when there is only a small number of parameters.
Estimates based on a sample of independent but not identically distributed random vectors, are also generally standard estimates. For example for a univariate sample mean w ¯ = n 1 j = 1 n X j n where X j n has rth cumulant κ r j n , then κ r ( w ¯ ) = n 1 r κ r where κ r = n 1 j = 1 n κ r j n is the average rth cumulant. For some examples, see Skovgaard (1981a, 1981b) and Withers and Nadarajah (2010, 2020). The last is for a function of a weighted mean of complex random matrices. It gives an application in electrical engineering to channel capacity for multiple arrays.
For conditions for the validity of multivariate Edgeworth expansions, see Skovgaard (1986) and its references.
Cornish and Fisher (1937) and Fisher and Cornish (1960) did not deal with the question of when these expansions diverge. We showed how to confront this in the numerical examples in Example 4.2 and Withers (1984).
Lastly we discuss numerical computation. We have used Teal (2024) for the numerical calculations in Example 4.2. One could also download R-4.4.1 for Windows and google for the routines needed. dmvnorm computes the density function of the multivariate normal specified by mean and co-variance matrix. Use mvtnorm for the multivariate normal. See also qmvnorm for quantiles. rmvnorm generates multivariate normal variables. Googling ’bivariate hermite polynomials r’ gives
One can then use install.packages("calculus"). However we have not used this route.
Some future directions.
1. Hill and Davis (1968) showed how to generalise the expansions of Cornish and Fisher about N ( 0 , 1 ) to expansions about an arbitrary continuous distribution. Their results are cumbersome as they involve partition theory. In Withers and Nadarajah (2015) we overcame this using Bell polynomials. It would be straightforward to apply these to expansions about χ q 2 in Example 3.1, to obtain the percentiles of n ( w ^ w ) V 1 ( w ^ w ) and n ( w ^ w ) V ^ 1 ( w ^ w ) . However in the latter case we first need to derive the cumulant coefficients of V ^ 1 / 2 ( w ^ w ) from those of w ^ . This can be done by applying Withers (2024).
2. It would very useful to obtain the multivariate g r ( X ) of (35) explicitly.
3. The multivariate expansions considered here have been about the multivariate normal. However as noted at the end of §1, expansions about other distributions can greatly reduce the number of terms in each P r ( x ) , p ˜ r ( x ) and p r C by matching bias and/or skewness. While this has been done for q = 1 by Withers and Nadarajah (2011, 2012a, 2014) about Student’s distribution , the F-distribution, and the gamma, to date this has yet to be done for multivariate expansions about, for example, a multivariate gamma distribution.
4. The results given here are the first step for constructing confidence intervals and confidence regions. See Withers (1989).
5. The results here can be extended to tilted (saddlepoint) expansions by applying the results of Withers and Nadarajah (2010). These are very useful where convergence fails, that is, where the CLT cannot be improved upon, typically due to w ^ being in a tail. The tilted version of the multivariate distribution and density of a standard estimate are given by Corollaries 3, 4 there. Tilting was 1st used in statistics by Daniels (1954). He gave an approximation to the density of a sample mean. Jensen (1988) gave a univariate extension to S N where S n is the sum of i.i.d. observations and N is Poisson. The extension of the present results from w ^ n = w ^ to w ^ N would be useful for both univariate and multivariate observations. For a review of references on tilting, see Withers and Nadarajah (2010).
6. Teal (2024) wrote a python program to obtain both analytic and numerical values of multivariate normal moments and multivariate Hermite polynomials when q = 2 . It would be useful to have these extended to q = 3 and 4. (The dual notation for μ ¯ 1 k and H ¯ 1 k when q = 3 or 4 is straightforward.)

Appendix A: The Edgeworth coefficients P ¯ r 1 k needed for (11)

Here we give for the first time the symmetric form of the coefficients P ¯ r 1 k needed for (11) for r 3 , that is, for the Edgeworth expansions (15) to O ( n 2 ) , using the symmetrising operator S . They are given for r = 1 by (12), and for r = 2 , 3 by (13)–(14) and the following.
Preprints 165636 i047
Preprints 165636 i048
Preprints 165636 i049
Preprints 165636 i050
Preprints 165636 i051
Preprints 165636 i052
Preprints 165636 i053
Preprints 165636 i054
Preprints 165636 i055

Appendix B: μ a b and H a b of (2) for a + b 9 .

Here we give the bivariate normal moments μ a b of (1) and the bivariate Hermite polynomials H a b of (2) for a + b 9 . These are needed for the Edgeworth expansions to O ( n 2 ) .
The 1st 9 univariate Hermite polynomials are
H 0 = 1 , H 1 = u , H 2 = u 2 1 , H 3 = u 3 3 u , H 4 = u 4 6 u 2 + 3 , H 5 = u 5 10 u 3 + 15 u , H 6 = u 6 15 u 4 + 45 u 2 15 , H 7 = u 7 21 u 5 + 105 u 3 105 u , H 8 = u 8 28 u 6 + 210 u 4 420 u 2 + 105 ,
Preprints 165636 i056
These are needed for h r ( u ) , r = 1 , 2 , 3 of (2), (3), that is, for the univariate Edgeworth expansions to O ( n 2 ) . See Stuart and Ord (1991).
Let X N q ( 0 , V ) be a q-variate normal random variable with mean 0 R q , positive-definite covariance V, with density and distribution ϕ V ( x ) , Φ V ( x ) of (7). Set V a b = E Y a Y b , as in (8), so that V 1 = ( V a b ) .  Y has odd moments 0 and even moments
μ 1 2 k = E Y 1 Y 2 k = 2 k 1 V 12 μ 3 3 k = 1.3 ( 2 k 1 ) V 12 V 2 k 1 , 2 k .
Preprints 165636 i057
Preprints 165636 i058
where r m sums over the m permutations of 1 , 2 , , r giving distinct terms. For example,
3 3 V 12 y 3 = V 12 y 3 + V 13 y 2 + V 23 y 1 .
Teal (2024) has written a python program to obtain the bivariate moments using (A2). Let H 1 k = H ¯ 1 k ( x , V ) be the multivariate Hermite polynomial is defined by of (20), (21). For k 6 , H 1 k is given by (8)–(26). In these expressions 1 , 2 , , k can be replaced by any integers in 1 , 2 , , q . For example
H 11 = y 1 2 V 11 , H 112 = y 1 2 y 2 2 V 12 y 1 V 11 y 2 .
Now consider the bivariate case, q = 2 and denote the moments of Y by
μ a b = E Y 1 a Y 2 b .
Two special cases are
μ 2 k , 0 = 1.3 ( 2 k 1 ) μ 20 k , k 0 where μ 20 = E Y 1 2 = V 11 , μ 2 k 1 , 1 = ( 2 k 1 ) μ 11 μ 2 k 2 , 0 = 1.3 ( 2 k 1 ) μ 20 k 1 μ 11 , k 1 .
The μ a b needed here are those up to order a + b = 8 :
μ 20 = E Y 1 2 = V 11 , μ 11 = E Y 1 Y 2 = V 12 , μ 40 = 3 μ 20 2 , μ 31 = 3 μ 20 μ 11 , μ 22 = μ 20 μ 02 + 2 μ 11 2 , μ 60 = 15 μ 20 3 , μ 51 = 15 μ 20 2 μ 11 , μ 42 = μ 40 μ 02 + 4 μ 11 μ 31 = 3 μ 20 ( μ 20 μ 02 + 4 μ 11 2 ) , μ 33 = 2 μ 02 μ 31 + 3 μ 11 μ 22 = 3 μ 11 ( 3 μ 20 μ 02 + 2 μ 11 2 ) , μ 80 = 105 μ 20 4 , μ 71 = 105 μ 20 3 μ 11 , μ 62 = μ 02 μ 60 + 6 μ 11 μ 51 = 15 μ 20 2 ( μ 02 + 6 μ 11 2 ) , μ 53 = 2 μ 02 μ 51 + 5 μ 11 μ 42 = 15 μ 20 μ 11 ( 3 μ 20 μ 02 + 4 μ 11 2 ) , μ 44 = 3 μ 02 μ 42 + 4 μ 11 μ 33 = 3 ( 3 c 2 + 24 c d + 8 d 2 ) for c = μ 20 μ 02 , d = μ 11 2 .
For example to derive μ 53 from μ 1 8 of (A2), replace k 5 by 1 and k = 6 , 7 , 8 by 2. μ b a can be read off μ a b using symmetry. For example μ 02 = V 22 . Formulas for the general  μ a b were given by Isserlis (1918) and Withers (2). By (Section 4),
H a b = j = 0 a a j y 1 a j k = 0 b b k y 1 b k i j + k μ j k .
This is the formula used in Teal (2024) to obtain bivariate Hermite polynomials. H a b is said to be of order a + b . Most of those of order up to a + b = 9 are needed to expand the density of n 1 / 2 ( w ^ w ) to O ( n 2 ) , but not those of order 8, (nor those of order 6 if the distribution of w ^ is symmetric about w). But we include them here for completeness.
We can write H k 0 in terms of μ a 0 of (A5) and y = V 1 x :
H 10 = y 1 , H 20 = y 1 2 μ 20 , H 30 = y 1 3 3 y 1 μ 20 , H 40 = y 1 4 6 y 1 2 μ 20 + μ 40 , H 50 = y 1 5 10 y 1 3 μ 20 + 5 y 1 μ 40 , H 60 = y 1 6 15 y 1 4 μ 20 + 15 y 1 2 μ 40 μ 60 , H 70 = y 1 7 21 y 1 5 μ 20 + 35 y 1 3 μ 40 7 y 1 μ 60 , H 80 = y 1 8 28 y 1 6 μ 20 + 70 y 1 4 μ 40 28 y 1 2 μ 60 + μ 80 ,
Preprints 165636 i059
These are actually simpler formulas than their univariate forms because of the use of μ a b . The other H a b up to order 9 are
H 11 = y 1 y 2 μ 11 , H 21 = y 2 H 20 2 y 1 μ 11 , H 31 = y 2 H 30 3 y 1 2 μ 11 + μ 31 = y 1 3 y 2 3 y 1 y 2 μ 20 3 y 1 2 μ 11 + μ 31 , H 22 = y 2 2 H 20 y 1 2 μ 02 4 y 1 y 2 μ 11 + μ 22 , H 41 = y 2 H 40 4 y 1 3 μ 11 + 4 y 1 μ 31 = y 1 4 y 2 4 y 1 3 μ 11 6 y 1 2 y 2 μ 20 + 4 y 1 μ 31 + y 2 μ 40 , H 32 = y 2 2 H 30 y 1 3 μ 02 6 y 1 2 y 2 μ 11 + 3 y 1 μ 22 + 2 y 2 μ 31 , H 51 = y 2 H 50 5 y 1 4 μ 11 + 10 y 1 2 μ 31 μ 51 , H 42 = y 2 2 H 40 + 8 y 1 y 2 ( y 1 2 μ 11 + μ 31 ) y 1 4 μ 02 + 6 y 1 2 μ 22 μ 42 H 33 = y 2 3 H 30 + 3 y 2 2 ( 3 y 1 2 μ 11 + μ 31 ) + 3 y 1 y 2 ( y 1 2 μ 02 + 3 μ 22 ) + 3 y 1 2 μ 13 μ 33 = y 1 3 y 2 3 9 y 1 2 y 2 2 μ 11 + 3 12 2 ( y 1 2 μ 13 y 1 3 y 2 μ 02 ) + 9 y 1 y 2 μ 22 μ 33 , H 61 = y 2 H 60 6 y 1 5 μ 11 + 20 y 1 3 μ 31 6 y 1 μ 51 , H 52 = y 2 2 H 50 + 2 y 2 ( 5 y 1 4 μ 11 + 10 y 1 2 μ 31 μ 51 ) y 1 5 μ 02 + 10 y 1 3 μ 22 5 y 1 μ 42 , H 43 = H 40 y 2 3 + 12 y 2 2 ( y 1 3 μ 11 + y 1 μ 31 ) 3 y 2 ( y 1 4 μ 02 6 y 1 2 μ 22 + μ 42 ) + 4 y 1 3 μ 13 4 y 1 μ 33 , H 71 = y 2 H 70 7 y 1 6 μ 11 + 35 y 1 4 μ 31 21 y 1 2 μ 51 + μ 71 , H 62 = y 2 2 H 60 + 2 y 2 [ ( 6 y 1 5 μ 11 + 20 y 1 3 μ 31 6 y 1 μ 51 ) y 1 6 μ 02 + 15 y 1 4 μ 22 15 y 1 2 μ 42 + μ 62 , H 53 = y 2 3 H 50 + 15 y 2 2 ( 2 y 1 4 μ 11 + 2 y 1 2 μ 31 μ 51 ) + 3 y 2 ( y 1 5 μ 02 + 10 y 1 3 μ 22 5 y 1 μ 42 ) + 5 y 1 4 μ 13 10 y 1 2 μ 33 + 5 μ 53 , H 44 = y 2 4 H 40 + 16 y 2 3 ( y 1 3 μ 11 + y 1 μ 31 ) + 6 y 2 2 ( y 1 4 μ 02 + 6 y 1 2 μ 22 μ 42 ) + 16 y 2 ( y 1 3 μ 13 y 1 2 μ 33 ) + y 1 4 μ 04 6 y 1 2 μ 24 + μ 44 , H 81 = y 2 H 80 8 y 1 7 μ 11 + 56 y 1 5 μ 31 28 y 1 3 μ 51 + 8 y 1 μ 71 , H 72 = y 2 2 H 70 + 2 y 2 ( 7 y 1 6 μ 11 + 35 y 1 4 μ 31 21 y 1 2 μ 51 + μ 71 ) y 1 7 μ 02 + 21 y 1 5 μ 22 35 y 1 3 μ 42 + 7 y 1 μ 62 , H 63 = y 2 3 H 60 + 3 y 2 2 ( 6 y 1 5 μ 11 + 20 y 1 3 μ 31 6 y 1 μ 51 ) + 3 y 2 ( y 1 6 μ 02 + 15 y 1 4 μ 22 15 y 1 2 μ 42 + μ 62 ) + 6 y 1 5 μ 13 20 y 1 3 μ 33 + 6 y 1 μ 53 , H 54 = y 2 4 H 50 + 4 y 2 3 ( 5 y 1 4 μ 11 + 10 y 1 2 μ 31 μ 51 ) + 6 y 2 2 ( y 1 5 μ 02 + 10 y 1 3 μ 22 5 y 1 μ 42 ) + 4 y 2 ( 5 y 1 4 μ 13 10 y 1 2 μ 33 + μ 53 ) + y 1 5 μ 04 10 y 1 3 μ 24 + 5 y 1 μ 44 .
The method of proof is illustrated as follows
H a 1 = E ( y 1 + i Y 1 ) a ( y 2 + i Y 2 ) = y 2 E ( y 1 + i Y 1 ) a + E ( y 1 + i Y 1 ) a i Y 2 .
Now expand the 2nd term to get
H a 1 = y 2 H a 0 + [ ( 1 ) k a 2 k 1 y 1 a 2 k + 1 μ 2 k 1 , 1 : 1 k ( a + 1 ) / 2 ] .
Similarly for H a 2 , expand
H a 2 = E ( y 1 + i Y 1 ) a ( y 2 2 + 2 i y 2 Y 2 Y 2 2 ) .
The above formulas for H a b can be called their short form as each uses H a 0 . The explicit form when H a 0 of (A7) is substituted can be called its long form. Our short forms for H a b were checked against the long forms given by Teal (2024). Here is a selection of his results for comparison.
H 51 = 15 μ 11 μ 20 2 + 30 μ 11 μ 20 y 1 2 5 μ 11 y 1 4 + 15 μ 20 2 y 1 y 2 10 μ 20 y 1 3 y 2 + y 1 5 y 2 H 42 = 3 μ 02 μ 20 2 + 6 μ 02 μ 20 y 1 2 μ 02 y 1 4 12 μ 11 2 μ 20 + 12 μ 11 2 y 1 2 + 24 μ 11 μ 20 y 1 y 2 8 μ 11 y 1 3 y 2 + 3 μ 20 2 y 2 2 6 μ 20 y 1 2 y 2 2 + y 1 4 y 2 2 H 33 = 9 μ 02 μ 11 μ 20 + 9 μ 02 μ 11 y 1 2 + 9 μ 02 μ 20 y 1 y 2 3 μ 02 y 1 3 y 2 6 μ 11 3 + 18 μ 11 2 y 1 y 2 + 9 μ 11 μ 20 y 2 2 9 μ 11 y 1 2 y 2 2 3 μ 20 y 1 y 2 3 + y 1 3 y 2 3 H 70 = 105 μ 20 3 y 1 + 105 μ 20 2 y 1 3 21 μ 20 y 1 5 + y 1 7 H 61 = 90 μ 11 μ 20 2 y 1 + 60 μ 11 μ 20 y 1 3 6 μ 11 y 1 5 15 μ 20 3 y 2 + 45 μ 20 2 y 1 2 y 2 15 μ 20 y 1 4 y 2 + y 1 6 y 2 H 52 = 15 μ 02 μ 20 2 y 1 + 10 μ 02 μ 20 y 1 3 μ 02 y 1 5 60 μ 11 2 μ 20 y 1 + 20 μ 11 2 y 1 3 30 μ 11 μ 20 2 y 2 + 60 μ 11 μ 20 y 1 2 y 2 10 μ 11 y 1 4 y 2 + 15 μ 20 2 y 1 y 2 2 10 μ 20 y 1 3 y 2 2 + y 1 5 y 2 2 H 43 = 36 μ 02 μ 11 μ 20 y 1 + 12 μ 02 μ 11 y 1 3 9 μ 02 μ 20 2 y 2 + 18 μ 02 μ 20 y 1 2 y 2 3 μ 02 y 1 4 y 2 24 μ 11 3 y 1 36 μ 11 2 μ 20 y 2 + 36 μ 11 2 y 1 2 y 2 + 36 μ 11 μ 20 y 1 y 2 2 12 μ 11 y 1 3 y 2 2 + 3 μ 20 2 y 2 3 6 μ 20 y 1 2 y 2 3 + y 1 4 y 2 3 H 80 = 105 μ 20 4 420 μ 20 3 y 1 2 + 210 μ 20 2 y 1 4 28 μ 20 y 1 6 + y 1 8
H 54 = 45 μ 02 2 μ 20 2 y 1 30 μ 02 2 μ 20 y 1 3 + 3 μ 02 2 y 1 5 + 360 μ 02 μ 11 2 μ 20 y 1 120 μ 02 μ 11 2 y 1 3 + 180 μ 02 μ 11 μ 20 2 y 2 360 μ 02 μ 11 μ 20 y 1 2 y 2 + 60 μ 02 μ 11 y 1 4 y 2 90 μ 02 μ 20 2 y 1 y 2 2 + 60 μ 02 μ 20 y 1 3 y 2 2 6 μ 02 y 1 5 y 2 2 + 120 μ 11 4 y 1 + 240 μ 11 3 μ 20 y 2 240 μ 11 3 y 1 2 y 2 360 μ 11 2 μ 20 y 1 y 2 2 + 120 μ 11 2 y 1 3 y 2 2 60 μ 11 μ 20 2 y 2 3 + 120 μ 11 μ 20 y 1 2 y 2 3 20 μ 11 y 1 4 y 2 3 + 15 μ 20 2 y 1 y 2 4 10 μ 20 y 1 3 y 2 4 + y 1 5 y 2 4
For example the short and long forms for H 33 have 5 and 10 terms, and those for H 43 have 8 and 13 terms.
Take V , V 1 of (19). Then
μ 20 = 2 / 3 , μ 11 = 1 / 3 , μ 40 = 4 / 3 , μ 31 = 2 / 3 , μ 22 = 2 / 3 , μ 60 = 40 / 9 , μ 51 = 20 / 9 , μ 42 = 16 / 9 , μ 33 = 14 / 9 , μ 80 = 560 / 27 , μ 71 = 280 / 27 , μ 62 = 200 / 27 , μ 53 = 160 / 27 , μ 44 = 152 / 27 .
So if x = ( 1 , 1 ) then y = ( 1 , 1 ) / 3 ,
H 10 = 1 / 3 0.3333 , H 20 = 5 / 9 0.5556 , H 11 = 4 / 9 0.4444 , H 30 = 17 / 27 0.6296 , H 21 = 1 / 27 0.0370 , H 40 = 73 / 81 0.9012 , H 31 = 62 / 81 0.7654 , H 22 = 55 / 81 0.6790 , H 60 = 1709 / 9 3 2.344 , H 51 = 1576 / 9 3 2.1619 , H 42 = 1361 / 9 3 1.8669 , H 33 = 1216 / 9 3 1.6680 , H 50 = 481 / 243 1.9794 , H 41 = 131 / 243 0.5391 , H 32 = 49 / 243 . 2016 , H 70 = 19 , 025 / 3 7 8.6991 , H 61 = 6949 / 3 7 3.1774 , H 52 = 3275 / 2187 1.4975 , H 43 = 847 / 2187 0.3873 , H 90 = 965953 / 19683 49.0755 , H 81 = 403847 / 19683 20.5176 H 72 = 205165 / 19683 10.4235 , H 63 = 96 , 767 / 3 9 4.91627 , H 54 = 29773 / 19683 1.5126 .
If x = ( 2 , 2 ) , then y = ( 2 , 2 ) / 3 ,
H 10 = 2 / 3 0.6667 , H 20 = 2 / 9 0.2222 , H 11 = 7 / 9 0.7778 , H 30 = 28 / 27 1.0370 , H 21 = 8 / 27 0.2963 , H 40 = 20 / 81 0.2469 ,
H 31 = 74 / 81 0.9136 , H 22 = 70 / 81 0.8642 , H 60 = 1864 / 9 3 2.5569 , H 51 = 964 / 9 3 1.3224 , H 42 = 1520 / 729 2.0850 , H 33 = 1702 / 9 3 2.3347 , H 50 = 632 / 243 2.6008 , H 41 = 376 / 243 1.5473 , H 32 = 92 / 243 0.3786 , H 70 = 19024 / 2187 8.6987 , H 61 = 15104 / 2187 6.9063 , H 52 = 7504 / 2187 3.4312 , H 43 = 2576 / 2187 1.1779 , H 90 = 680480 / 19683 34.5720 , H 81 = 689248 / 19683 35.0174 , H 72 = 433520 / 19683 22.0251 , H 63 = 243568 / 19683 12.3745 , H 54 = 74960 / 19683 3.8084 .
These results were computed by Teal (2024), using (A6), and are used in Example 4.2.
H 10 = y 1 H 20 = μ 20 + y 1 2 H 11 = μ 11 + y 1 y 2 H 30 = 3 μ 20 y 1 + y 1 3 H 21 = 2 μ 11 y 1 μ 20 y 2 + y 1 2 y 2 H 40 = 6 μ 20 y 1 2 + μ 40 + y 1 4 H 31 = 3 μ 11 y 1 2 3 μ 20 y 1 y 2 + μ 31 + y 1 3 y 2 H 22 = μ 02 y 1 2 4 μ 11 y 1 y 2 μ 20 y 2 2 + μ 22 + y 1 2 y 2 2 H 50 = 10 μ 20 y 1 3 + 5 μ 40 y 1 + y 1 5 H 41 = 4 μ 11 y 1 3 6 μ 20 y 1 2 y 2 + 4 μ 31 y 1 + μ 40 y 2 + y 1 4 y 2 H 32 = μ 02 y 1 3 6 μ 11 y 1 2 y 2 3 μ 20 y 1 y 2 2 + 3 μ 22 y 1 + 2 μ 31 y 2 + y 1 3 y 2 2 H 60 = 15 μ 20 y 1 4 + 15 μ 40 y 1 2 μ 60 + y 1 6 H 51 = 5 μ 11 y 1 4 10 μ 20 y 1 3 y 2 + 10 μ 31 y 1 2 + 5 μ 40 y 1 y 2 μ 51 + y 1 5 y 2 H 42 = μ 02 y 1 4 8 μ 11 y 1 3 y 2 6 μ 20 y 1 2 y 2 2 + 6 μ 22 y 1 2 + 8 μ 31 y 1 y 2 + μ 40 y 2 2 μ 42 + y 1 4 y 2 2 H 33 = 3 μ 02 y 1 3 y 2 9 μ 11 y 1 2 y 2 2 + 3 μ 13 y 1 2 3 μ 20 y 1 y 2 3 + 9 μ 22 y 1 y 2 + 3 μ 31 y 2 2 μ 33 + y 1 3 y 2 3 H 70 = 21 μ 20 y 1 5 + 35 μ 40 y 1 3 7 μ 60 y 1 + y 1 7 H 61 = 6 μ 11 y 1 5 15 μ 20 y 1 4 y 2 + 20 μ 31 y 1 3 + 15 μ 40 y 1 2 y 2 6 μ 51 y 1 μ 60 y 2 + y 1 6 y 2 H 52 = μ 02 y 1 5 10 μ 11 y 1 4 y 2 10 μ 20 y 1 3 y 2 2 + 10 μ 22 y 1 3 + 20 μ 31 y 1 2 y 2 + 5 μ 40 y 1 y 2 2 5 μ 42 y 1 2 μ 51 y 2 + y 1 5 y 2 2 H 43 = 3 μ 02 y 1 4 y 2 12 μ 11 y 1 3 y 2 2 + 4 μ 13 y 1 3 6 μ 20 y 1 2 y 2 3 + 18 μ 22 y 1 2 y 2 + 12 μ 31 y 1 y 2 2 4 μ 33 y 1 + μ 40 y 2 3 3 μ 42 y 2 + y 1 4 y 2 3 H 80 = 28 μ 20 y 1 6 + 70 μ 40 y 1 4 28 μ 60 y 1 2 + μ 80 + y 1 8 H 71 = 7 μ 11 y 1 6 21 μ 20 y 1 5 y 2 + 35 μ 31 y 1 4 + 35 μ 40 y 1 3 y 2 21 μ 51 y 1 2 7 μ 60 y 1 y 2 + μ 71 + y 1 7 y 2 H 62 = μ 02 y 1 6 12 μ 11 y 1 5 y 2 15 μ 20 y 1 4 y 2 2 + 15 μ 22 y 1 4 + 40 μ 31 y 1 3 y 2 + 15 μ 40 y 1 2 y 2 2 15 μ 42 y 1 2 12 μ 51 y 1 y 2 μ 60 y 2 2 + μ 62 + y 1 6 y 2 2 H 53 = 3 μ 02 y 1 5 y 2 15 μ 11 y 1 4 y 2 2 + 5 μ 13 y 1 4 10 μ 20 y 1 3 y 2 3 + 30 μ 22 y 1 3 y 2 + 30 μ 31 y 1 2 y 2 2 10 μ 33 y 1 2 + 5 μ 40 y 1 y 2 3 15 μ 42 y 1 y 2 3 μ 51 y 2 2 + μ 53 + y 1 5 y 2 3 H 44 = 6 μ 02 y 1 4 y 2 2 + μ 04 y 1 4 16 μ 11 y 1 3 y 2 3 + 16 μ 13 y 1 3 y 2 6 μ 20 y 1 2 y 2 4 + 36 μ 22 y 1 2 y 2 2 6 μ 24 y 1 2 + 16 μ 31 y 1 y 2 3 16 μ 33 y 1 y 2 + μ 40 y 2 4 6 μ 42 y 2 2 + μ 44 + y 1 4 y 2 4
H 90 = 36 μ 20 y 1 7 + 126 μ 40 y 1 5 84 μ 60 y 1 3 + 9 μ 80 y 1 + y 1 9 H 81 = 8 μ 11 y 1 7 28 μ 20 y 1 6 y 2 + 56 μ 31 y 1 5 + 70 μ 40 y 1 4 y 2 56 μ 51 y 1 3 28 μ 60 y 1 2 y 2 + 8 μ 71 y 1 + μ 80 y 2 + y 1 8 y 2 H 72 = μ 02 y 1 7 14 μ 11 y 1 6 y 2 21 μ 20 y 1 5 y 2 2 + 21 μ 22 y 1 5 + 70 μ 31 y 1 4 y 2 + 35 μ 40 y 1 3 y 2 2 35 μ 42 y 1 3 42 μ 51 y 1 2 y 2 7 μ 60 y 1 y 2 2 + 7 μ 62 y 1 + 2 μ 71 y 2 + y 1 7 y 2 2 H 63 = 3 μ 02 y 1 6 y 2 18 μ 11 y 1 5 y 2 2 + 6 μ 13 y 1 5 15 μ 20 y 1 4 y 2 3 + 45 μ 22 y 1 4 y 2 + 60 μ 31 y 1 3 y 2 2 20 μ 33 y 1 3 + 15 μ 40 y 1 2 y 2 3 45 μ 42 y 1 2 y 2 18 μ 51 y 1 y 2 2 + 6 μ 53 y 1 μ 60 y 2 3 + 3 μ 62 y 2 + y 1 6 y 2 3 H 54 = 6 μ 02 y 1 5 y 2 2 + μ 04 y 1 5 20 μ 11 y 1 4 y 2 3 + 20 μ 13 y 1 4 y 2 10 μ 20 y 1 3 y 2 4 + 60 μ 22 y 1 3 y 2 2 10 μ 24 y 1 3 + 40 μ 31 y 1 2 y 2 3 40 μ 33 y 1 2 y 2 + 5 μ 40 y 1 y 2 4 30 μ 42 y 1 y 2 2 + 5 μ 44 y 1 4 μ 51 y 2 3 + 4 μ 53 y 2 + y 1 5 y 2 4
H 10 = 1 3 0.3333 H 20 = 5 9 0.5556 H 11 = 4 9 0.4444 H 30 = 17 27 0.6296 H 21 = 1 27 0.0370 H 40 = 73 81 0.9012 H 31 = 62 81 0.7654 H 22 = 55 81 0.6790 H 50 = 481 243 1.9794 H 41 = 131 243 0.5391 H 32 = 49 243 0.2016 H 60 = 1709 729 2.3443 H 51 = 1576 729 2.1619 H 42 = 1313 729 1.8011 H 33 = 1288 729 1.7668 H 70 = 19025 2187 8.6991 H 61 = 6949 2187 3.1774 H 52 = 3275 2187 1.4975 H 43 = 847 2187 0.3873 H 80 = 52753 6561 8.0404 H 71 = 54914 6561 8.3698 H 62 = 45571 6561 6.9457 H 53 = 41882 6561 6.3835 H 44 = 39937 6561 6.0870 H 90 = 965953 19683 49.0755 H 81 = 403847 19683 20.5176 H 72 = 205165 19683 10.4235 H 63 = 96767 19683 4.9163 H 54 = 29773 19683 1.5126
H 10 = 2 3 0.6667 H 20 = 2 9 0.2222 H 11 = 7 9 0.7778 H 30 = 28 27 1.0370 H 21 = 8 27 0.2963 H 40 = 20 81 0.2469 H 31 = 74 81 0.9136 H 22 = 70 81 0.8642 H 50 = 632 243 2.6008 H 41 = 376 243 1.5473 H 32 = 92 243 0.3786 H 60 = 1864 729 2.5569 H 51 = 964 729 1.3224 H 42 = 1520 729 2.0850 H 33 = 1702 729 2.3347 H 70 = 19024 2187 8.6987 H 61 = 15104 2187 6.9063 H 52 = 7504 2187 3.4312 H 43 = 2576 2187 1.1779 H 80 = 116336 6561 17.7314 H 71 = 1096 6561 0.1670 H 62 = 36376 6561 5.5443 H 53 = 49376 6561 7.5257 H 44 = 52936 6561 8.0683
H 90 = 680480 19683 34.5720 H 81 = 689248 19683 35.0174 H 72 = 433520 19683 22.0251 H 63 = 243568 19683 12.3745 H 54 = 74960 19683 3.8084

Appendix I Code for Bivariate Normal Moments and Bivariate Hermite Polynomals

2.12.25 ex Paul: Here is a latex file which has all the moment evaluations and Hermite polynomial evaluations corrected.
The code to generate it is publicly available at https://github.com/paultnz/bihermite/blob/main/hermite8.py so you can refer to it in the paper and hopefully that will satisfy your reviewers. It can be applied to any values of the subscripts and any values of mu02, mu20, mu11, y1 and y2.
#!/usr/bin/env python3
#
# Paul Teal - pault@nmr.nz
# Thursday 7 November, 2024
# Monday 2 December, 2024
from itertools import product
from math import comb
from fractions import Fraction as fr
import sympy as sy
import re
def split_string(str,maxlen=100):
  # This is just for limiting the maximum length of latex display lines
  sections = re.split(r’(?=[+-])’,str)
  result = []
  current = ’’
  for ss in sections:
    current += ss
    if len(current) >= maxlen:
      result.append(current)
      current = ’’
  if current:
    result.append(current)
  return result
def mup(Elist):
  # recursive function for evaluating moments
  if Elist == []:
    return 1
  if Elist == [1,1]:
    return mu20
  if Elist == [2,2]:
    return mu02
  if Elist == [1,2]:
    return mu11
  if Elist == [2,1]:
    return mu11
  Rout = 0
  for ii in range(len(Elist)-1):
    left = mup([ Elist[ii], Elist[-1] ])
    right = mup(Elist[:ii] + Elist[ii+1:-1])
    Rout += left * right
  return Rout
def sub2(sb1,sb2):
  return mup([1] * sb1 + [2] * sb2)
def biHermite(n, m, y1=0, y2=0, mu=0):
  # Generate terms for (y1 + j*Y1)^n
  terms1 = []
  for k in range(n + 1):
    terms1.append((comb(n, k) * (1j ** k), n-k, k))
  # Generate terms for (y2 + j*Y2)^m
  terms2 = []
  for k in range(m + 1):
    terms2.append((comb(m, k) * (1j ** k), m-k, k))
  # Combine terms from both expansions
  terms = 0
  for (coef1, a_pow, b_pow), (coef2, c_pow, d_pow) in product(terms1, terms2):
    coef_all = coef1 * coef2
    if coef_all.imag == 0: # ignore imaginary
      coef_all = int(coef_all.real)
      combined = coef_all * y1**a_pow * y2**c_pow * sub2(b_pow,d_pow)
      terms += combined
  return terms
if __name__ == "__main__":
  # Example usage: the first iteration is purely symbolic, then the
  # second and third use some specific values
  for loop in range(3):
    if loop==0:
      mu20, mu02, mu11, y1, y2= sy.symbols(’mu20  mu02  mu11  y1  y2’)
    elif loop==1:
      #override symbols with specific values
      mu20 = fr(2,3); mu02 = fr(2,3); mu11 = -fr(1,3); y1 = fr(1,3); y2 = fr(1,3)
    elif loop==2:
      y1 = fr(2,3); y2 = fr(2,3)
    if loop<2:
      # Print values of mu
      print(’\\begin{align*}’)
      for mn in range(4,9+1,2):
        for m in range( (mn+2)//2):
          n = mn-m
          l2 = sub2(m,n)
          print(f’\\mu_{{{m}{n}}} =& ’ + sy.latex(sy.simplify(l2)) + ’\\\\’)
      print(’\\end{align*}’)
      print(’%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%’)
    print(’\\begin{align*}’)
    for nm in range(1,10):
      for m in range(0,(nm+2)//2):
        n = nm - m
        result = sy.expand(biHermite(n, m, y1, y2),mul=True)
        la = sy.latex(result)
        print(f’H_{{{n}{m}}} =&’,sep=’’,end=’’)
        if not result.free_symbols:
          print(f’{la} \\approx {result.evalf():.4f}\\\\’)
        else:
          lines = split_string(la,150)
          for line in lines[:-1]:
            print(line,’\\\\& ’)
          print(lines[-1],’\\\\’)
    print(’\\end{align*}’)
    print(’%%%%%%%%%%%%%%%%%%%%%%%

References

  1. Abdel-Wahed, A.R. and Winterbottom, A. (1983) Approximating posterior distributions of system reliability. The Statistician, 32, 224–228. [CrossRef]
  2. Abramowitz, M. and Stegun, I. A. (1964) Handbook of mathematical functions. U.S. Department of Commerce, National Bureau of Standards, Applied Mathematics Series 55.
  3. Anderson, T. W. (1958) An introduction to multivariate analysis. John Wiley, New York.
  4. Comtet, L. Advanced Combinatorics; Reidel: Dordrecht, The Netherlands, 1974.
  5. Cornish, E.A. and Fisher, R. A. (1937) Moments and cumulants in the specification of distributions. Rev. de l’Inst. Int. de Statist. 5, 307–322. Reproduced in the collected papers of R.A. Fisher, 4. [CrossRef]
  6. Fisher, R. A. and Cornish, E.A. (1960) The percentile points of distributions having known cumulants. Technometrics, 2, 209–225. [CrossRef]
  7. Gradshteyn, I.S., and Ryzhik, I.M., (2000) Tables of integrals, series and products. 6th edition. Academic Press, New York. The generalized hypergeometric function is defined in §9.14.
  8. Gradshteyn, I.S., and Ryzhik, I.M., (2000) Tables of integrals, series and products. 6th edition. Academic Press, New York. The generalized hypergeometric function is defined in §9.14.
  9. Hill, G.W. and Davis, A.W. (1968) Generalised asymptotic expansions of Cornish-Fisher type. Ann. Math. Statist., 39, 1264–1273. [CrossRef]
  10. On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables. Biometrika, 12, 134–139. JSTOR 2331932.
  11. Jensen, J.L. (1988) Uniform saddlepoint approximations, Adv. Appl. Prob. 20, 622-634.
  12. Simonato, J.G. (2011) The performance of Johnson distributions for computing value at risk and expected shortfall. Journal of Derivatives (19) 7–24. [CrossRef]
  13. Skovgaard, I.M. (1981a) Edgeworth expansions of the distributions of maximum likelihood estimators in the general (non i.i.d.) case. Scand. J. Statist., 8, 227-236.
  14. Skovgaard, I. M. (1981b) Transformation of an Edgeworth expansion by a sequence of smooth functions. Scand. J. Statist., 8, 207-217.
  15. Skovgaard, I. M. (1986) On multivariate Edgeworth expansions. Int. Statist. Rev., 54, 169–186. [CrossRef]
  16. Stuart, A. and Ord, K. (1991). Kendall’s advanced theory of statistics, 2. 5th edition. Griffin , London.
  17. Takemura, A. and Takeuchi, K. (1988) Some results on univariate and multivariate Cornish-Fisher expansions: algebraic properties and validity. Sankhya, Series A50, 111–136.
  18. Takeuchi, K. (1978) A multivariate generalization of Cornish-Fisher expansion and its applications. (In Japanese.) Keizaigaku Ronshu, 44, (2), 1–12.
  19. Teal, P. (2024) A code to calculate bivariate Hermite polynomials.https://github.com/paultnz/bihermite/blob/main/bihermite.py Its input is V11,V12,V22 and y1,y2, not V11,V12,V22 and x1,x2.
  20. TianLi, S., ShuNing, W. and WeiLian, A. (2009) GPS positioning accuracy estimation using Cornish-Fisher expansions. International Conference on comms. and mobile computing, IEEE Computer Soc., 152–155.
  21. Winterbottom, A. (1980) Asymptotic expansions to improve large sample confidence intervals for system reliability. Biometrika, 67, 351–357. [CrossRef]
  22. Winterbottom, A. (1984) The interval estimation of system reliability component test data. Operations Research, 32, 628–640. [CrossRef]
  23. Withers, C.S. (1984) Asymptotic expansions for distributions and quantiles with power series cumulants. Journal Royal Statist. Soc. B, 46, 389–396. Corrigendum (1986) 48, 256. For typos, see p23–24 of Withers (2024). [CrossRef]
  24. Withers, C.S. (1989) Accurate confidence intervals when nuisance parameters are present. Comm. Statist. - Theory and Methods, 18, 4229–4259. [CrossRef]
  25. Withers, C.S. (2000) A simple expression for the multivariate Hermite polynomials. Statistics and Prob. Letters, 47, 165–169. [CrossRef]
  26. Withers, C.S. (2024) 5th-Order multivariate Edgeworth expansions for parametric estimates. Mathematics, 12,905, Advances in Applied Prob. and Statist. Inference. https://www.mdpi.com/2227-7390/12/6/905/pdf. [CrossRef]
  27. Withers, C.S. (2025) New methods for multivariate normal moments. Stats. 8(2), 46. [CrossRef]
  28. Withers, C.S. and Nadarajah, S.N. (2009) Charlier and Edgeworth expansions via Bell polynomials. Probability and Mathematical Statistics, 29, 271–280. For typos, see p24–25 of Withers (2024).
  29. Withers, C.S. and Nadarajah, S. (2010) Tilted Edgeworth expansions for asymptotically normal vectors. Annals of the Institute of Statistical Mathematics, 62 (6), 1113–1142. [CrossRef]
  30. Withers, C.S. and Nadarajah, S. (2011) Generalized Cornish-Fisher expansions. Bull. Brazilian Math. Soc., New Series, 42 (2), 213–242. [CrossRef]
  31. Withers, C.S. and Nadarajah, S.N. (2012a) Improved confidence regions based on Edgeworth expansions. Computational Statistics and Data Analysis, 56 (12), 4366–4380. [CrossRef]
  32. Withers, C.S. and Nadarajah, S.N. (2012b) Cornish-Fisher expansions about the F-distribution. Applied Mathematics and Computation, 218 (15), 7947–7957. [CrossRef]
  33. Withers, C.S. and Nadarajah, S. (2014) Expansions about the gamma for the distribution and quantiles of a standard estimate. Methodology and Computing in Applied Prob., 16 (3), 693-713. [CrossRef]
  34. Withers, C.S. and Nadarajah, S. (2015) Edgeworth-Cornish-Fisher-Hill-Davis expansions for normal and non-normal limits via Bell polynomials. Stochastics An International Journal of Probability and Stochastic Processes, 87 (5), 794–805. [CrossRef]
  35. Withers, C.S. and Nadarajah, S. (2020) The distribution and percentiles of channel capacity for multiple arrays. Sadhana, SADH, Indian Academy of Sciences, 45 (1), 1–25. [CrossRef]
  36. Xu, J. and Gupta, A.K. (2006) Improved confidence regions for a mean vector under general conditions. Computational Stat. and Data Analysis, 51 1051-1062. [CrossRef]
  37. Zhang, L., Mykland, P.A. and Ait-Sahalia, Y. (2011) Edgeworth expansions for realised volatility and related estimators. Journal of Econometrics (160) 190–203. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated