Submitted:
01 July 2025
Posted:
02 July 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Burden of Pneumococcal Diseases
1.2. Streptococcus Pneumoniae
1.3. Rationale for Vaccination
2. Pneumococcal Vaccines: Production and Immunity
2.1. Polysaccharide Vaccines
2.2. Conjugate Vaccines
2.3. Emerging Vaccine Technologies
- Novel antigen combinations, such as vaccines incorporating pneumococcal surface protein A (PspA) and detoxified pneumolysin, have demonstrated favorable safety and immunogenicity profiles in adults, particularly at intermediate doses[75]. Newly identified antigens like LafB have shown the ability to induce broad Th17-mediated mucosal immunity, remaining effective even under influenza-induced immunosuppression[5].
- Technological innovations have also played a crucial role. For instance, protein glycan coupling technology has enabled the development of recombinant conjugate vaccines that show protective efficacy comparable to Prevnar-13 at reduced production costs[76]. Innovative immunization strategies, including the use of attenuated influenza vectors carrying chimeric pneumococcal proteins, have enhanced protection against viral-bacterial co-infections[77].
- Mucosal vaccine platforms, such as probiotic surface expression systems[6] and Lactobacillus-based intranasal sprays[78], represent another major advancement, capable of eliciting both protective mucosal and systemic immune responses without requiring adjuvants. In parallel, significant progress has been made in addressing manufacturing challenges throughimproved antigen production techniques and rational vaccine design.
- Efforts to improve antigen production and apply rational vaccine design have addressed key manufacturing challenges. Optimized processes for producing critical components like PspA4Pro[79] and recombinant Ply have enhanced vaccine feasibility[80], while computational immunoinformatics has facilitated the development of epitope-based candidates, such as the PspA (1–5c+p)[81] vaccine, which induces strong cross-reactive and functional antibody responses.
- Genetic engineering and proteomics have opened new avenues for vaccine development. Recombinant protein vaccines, such as protein-based pneumococcal vaccines, utilize conserved antigens like PspA to achieve broader serotype coverage while simplifying manufacturing and ensuring product consistency. Phase I clinical trials have demonstrated favorable safety profiles and robust antibody responses in both adults and the elderly[75].
3. Challenges
3.1. Serotype Epidemiology and Vaccine Design Optimization
3.2. Clinical Challenges and Strategic Responses
3.3. Market Competition and the Role of Policy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CRM197 | Cross reactive material 197 |
| LMICs | Low - and middle - income countries |
| S. pneumoniae | Streptococcus pneumoniae |
| PPSV | Pneumococcal polysaccharide vaccine |
| PCV | Pneumococcal conjugate vaccine |
| IPD | Invasive pneumococcal disease |
| PspA | Pneumococcal surface protein A |
References
- Masuda, T.; Nakatani, E.; Shirai, T.; Akamatsu, T.; Tamura, K.; Takahashi, S.; Tanaka, Y.; Watanabe, H.; Endo, Y.; Suzuki, T.; et al. Effectiveness of a 23-valent pneumococcal polysaccharide vaccine for the prevention of pneumococcal pneumonia in the elderly with chronic respiratory diseases: a case-control study of a single center. BMC Pulm Med 2021, 21, 123. [Google Scholar] [CrossRef] [PubMed]
- Recommendations for the prevention of Streptococcus pneumoniae infections in infants and children: use of 13-valent pneumococcal conjugate vaccine (PCV13) and pneumococcal polysaccharide vaccine (PPSV23). Pediatrics 2010, 126, 186–190. [CrossRef] [PubMed]
- Li, Y.; Zhang, P.; An, Z.; Yue, C.; Wang, Y.; Liu, Y.; Yuan, X.; Ma, Y.; Li, K.; Yin, Z.; et al. Effectiveness of influenza and pneumococcal vaccines on chronic obstructive pulmonary disease exacerbations. Respirology 2022, 27, 844–853. [Google Scholar] [CrossRef]
- Platt, H.L.; Bruno, C.; Buntinx, E.; Pelayo, E.; Garcia-Huidobro, D.; Barranco-Santana, E.A.; Sjoberg, F.; Song, J.Y.; Grijalva, C.G.; Orenstein, W.A.; et al. Safety, tolerability, and immunogenicity of an adult pneumococcal conjugate vaccine, V116 (STRIDE-3): a randomised, double-blind, active comparator controlled, international phase 3 trial. Lancet Infect Dis 2024, 24, 1141–1150. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Van Maele, L.; Matarazzo, L.; Soulard, D.; Alves Duarte da Silva, V.; de Bakker, V.; Dénéréaz, J.; Bock, F.P.; Taschner, M.; Ou, J.; et al. A conserved antigen induces respiratory Th17-mediated broad serotype protection against pneumococcal superinfection. Cell Host Microbe 2024, 32, 304–314.e308. [Google Scholar] [CrossRef]
- Gupalova, T.; Leontieva, G.; Kramskaya, T.; Grabovskaya, K.; Kuleshevich, E.; Suvorov, A. Development of experimental pneumococcal vaccine for mucosal immunization. PLoS One 2019, 14, e0218679. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Pneumococcal Vaccine Recommendations. Available online: https://www.cdc.gov/pneumococcal/hcp/vaccine-recommendations/index.html (accessed on 26 June 2025).
- Li, Y.; Wang, S.; Hong, L.; Xin, L.; Wang, F.; Zhou, Y. Serotype distribution and antimicrobial resistance of Streptococcus pneumoniae in China among children under 14 years of age post-implementation of the PCV13: a systematic review and meta-analysis (2017-2024). Pneumonia (Nathan) 2024, 16, 18. [Google Scholar] [CrossRef]
- Maeda, H.; Ito, I.; Sando, E.; Hamao, N.; Shirata, M.; Dhoubhadel, B.G.; Ntiamoah, D.O.; Oi, I.; Nishioka, K.; Fujii, H.; et al. Serotype distribution among adults with community-acquired pneumococcal pneumonia in Japan between 2019 and 2022: A multicenter observational study. medRxiv 2001. [Google Scholar] [CrossRef]
- Perniciaro, S.; van der Linden, M. Pneumococcal vaccine uptake and vaccine effectiveness in older adults with invasive pneumococcal disease in Germany: A retrospective cohort study. Lancet Reg Health Eur 2021, 7, 100126. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Pneumonia. Available online: https://www.who.int/health-topics/pneumonia/#tab=tab_1 (accessed on 26 June 2025).
- Narciso, A.R.; Dookie, R.; Nannapaneni, P.; Normark, S.; Henriques-Normark, B. Streptococcus pneumoniae epidemiology, pathogenesis and control. Nat Rev Microbiol 2025, 23, 256–271. [Google Scholar] [CrossRef]
- Ragwar, V.; Brown, M. Causal factors of childhood pneumonia high mortalities and the impact of community case management on child survival in Sub-Saharan Africa: a systematic review. Public Health 2023, 223, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Kundu, S.; Nizum, M.W.R.; Fayeza, F.; Chowdhury, S.S.A.; Bakchi, J.; Sharif, A.B. Magnitude and trends in inequalities in healthcare-seeking behavior for pneumonia and mortality rate among under-five children in Bangladesh: Evidence from nationwide cross-sectional survey 2007 to 2017. Health Sci Rep 2023, 6, e1744. [Google Scholar] [CrossRef] [PubMed]
- Domon, H.; Terao, Y. The Role of Neutrophils and Neutrophil Elastase in Pneumococcal Pneumonia. Front Cell Infect Microbiol 2021, 11, 615959. [Google Scholar] [CrossRef]
- Mraheil, M.A.; Toque, H.A.; La Pietra, L.; Hamacher, J.; Phanthok, T.; Verin, A.; Gonzales, J.; Su, Y.; Fulton, D.; Eaton, D.C.; et al. Dual Role of Hydrogen Peroxide as an Oxidant in Pneumococcal Pneumonia. Antioxid Redox Signal 2021, 34, 962–978. [Google Scholar] [CrossRef] [PubMed]
- Walsh, R.L.; Camilli, A. Streptococcus pneumoniae is desiccation tolerant and infectious upon rehydration. mBio 2011, 2, e00092–00011. [Google Scholar] [CrossRef]
- Ahmed, J.; Malik, F. Streptococcus pneumoniae. In Encyclopedia of Infection and Immunity, Rezaei, N., Ed.; Elsevier: Oxford, 2022; pp. 511–528. [Google Scholar]
- Ganaie, F.; Saad, J.S.; McGee, L.; van Tonder, A.J.; Bentley, S.D.; Lo, S.W.; Gladstone, R.A.; Turner, P.; Keenan, J.D.; Breiman, R.F.; Nahm, M.H. A New Pneumococcal Capsule Type, 10D, is the 100th Serotype and Has a Large cps Fragment from an Oral Streptococcus. mBio 2020, 11. [Google Scholar] [CrossRef]
- Lin, T.Y.; Chiu, C.H.; Woo, P.C.; Razak Muttalif, A.; Dhar, R.; Choon Kit, L.; Morales, G.; Ozbilgili, E. Pneumococcal serotype prevalence and antibiotic resistance in children in South and Southeast Asia, 2012-2024. Hum Vaccin Immunother 2024, 20, 2417554. [Google Scholar] [CrossRef]
- Butić, I.; Gužvinec, M.; Jelić, M.; Groš, I.; Lucić, S.; Bošnjak, M.; Tambić Andrašević, A. Serotype distribution and antimicrobial resistance of invasive Streptococcus pneumoniae isolates among Croatian adults during a fifteen-year period (2005-2019). Croat Med J 2022, 63, 156–165. [Google Scholar] [CrossRef]
- Losada-Castillo, I.; Santiago-Pérez, I.; Juiz-Gonzalez, P.M.; Méndez-Lage, S.; Purriños-Hermida, M.J.; Malvar, A.; Agulla-Budiño, J.A. Temporal progression of the distribution of Streptococcus pneumoniae serotypes causing invasive pneumococcal disease in Galicia (Spain) and its relationship with resistance to antibiotics (period 2011-2021). Enferm Infecc Microbiol Clin (Engl Ed) 2024, 42, 179–186. [Google Scholar] [CrossRef]
- Alizadeh Chamkhaleh, M.; Esteghamati, A.; Sayyahfar, S.; Gandomi-Mohammadabadi, A.; Balasi, J.; Abdiaei, H.; Moradi, Y.; Moradi-Lakeh, M. Serotype distribution of Streptococcus pneumoniae among healthy carriers and clinical patients: a systematic review from Iran. Eur J Clin Microbiol Infect Dis 2020, 39, 2257–2267. [Google Scholar] [CrossRef]
- Eshwara, V.K.; Mukhopadhyay, C.; Rello, J. Community-acquired bacterial pneumonia in adults: An update. Indian J Med Res 2020, 151, 287–302. [Google Scholar] [CrossRef] [PubMed]
- Ktari, S.; Jmal, I.; Mroua, M.; Maalej, S.; Ben Ayed, N.E.; Mnif, B.; Rhimi, F.; Hammami, A. Serotype distribution and antibiotic susceptibility of Streptococcus pneumoniae strains in the south of Tunisia: A five-year study (2012-2016) of pediatric and adult populations. Int J Infect Dis 2017, 65, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Ju, Y.; Tang, N.; Li, Y.; Zhang, G.; Song, Y.; Fang, H.; Yang, L.; Feng, J. Systematic analysis of supervised machine learning as an effective approach to predicate β-lactam resistance phenotype in Streptococcus pneumoniae. Brief Bioinform 2020, 21, 1347–1355. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, S.D.; Lloyd, A.J.; Yerneni, S.S.; Narciso, A.R.; Shepherd, J.; Roper, D.I.; Dowson, C.G.; Filipe, S.R.; Hiller, N.L. A molecular link between cell wall biosynthesis, translation fidelity, and stringent response in Streptococcus pneumoniae. Proc Natl Acad Sci U S A 2021, 118. [Google Scholar] [CrossRef]
- Martinez-Garriga, B.; Vinuesa, T.; Hernandez-Borrell, J.; Viñas, M. The contribution of efflux pumps to quinolone resistance in Streptococcus pneumoniae clinical isolates. Int J Med Microbiol 2007, 297, 187–195. [Google Scholar] [CrossRef]
- Sharew, B.; Moges, F.; Yismaw, G.; Abebe, W.; Fentaw, S.; Vestrheim, D.; Tessema, B. Antimicrobial resistance profile and multidrug resistance patterns of Streptococcus pneumoniae isolates from patients suspected of pneumococcal infections in Ethiopia. Ann Clin Microbiol Antimicrob 2021, 20, 26. [Google Scholar] [CrossRef]
- Berger, Y.; Adler, A.; Ariel, T.; Rokney, A.; Averbuch, D.; Grisaru-Soen, G. Paediatric community-acquired bacteraemia, pneumococcal invasive disease and antibiotic resistance fell after the pneumococcal conjugate vaccine was introduced. Acta Paediatr 2019, 108, 1321–1328. [Google Scholar] [CrossRef]
- Ozawa, S.; Chen, H.H.; Rao, G.G.; Eguale, T.; Stringer, A. Value of pneumococcal vaccination in controlling the development of antimicrobial resistance (AMR): Case study using DREAMR in Ethiopia. Vaccine 2021, 39, 6700–6711. [Google Scholar] [CrossRef]
- Nakashima, K.; Fukushima, W. Strategies for pneumococcal vaccination in older adults in the coming era. Hum Vaccin Immunother 2024, 20, 2328963. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Vaccination schedule for Pneumococcal disease. Available online: https://immunizationdata.who.int/global/wiise-detail-page/vaccination-schedule-for-pneumococcal-disease (accessed on 26 June 2025).
- Reyburn, R.; Tsatsaronis, A.; von Mollendorf, C.; Mulholland, K.; Russell, F.M. Systematic review on the impact of the pneumococcal conjugate vaccine ten valent (PCV10) or thirteen valent (PCV13) on all-cause, radiologically confirmed and severe pneumonia hospitalisation rates and pneumonia mortality in children 0-9 years old. J Glob Health 2023, 13, 05002. [Google Scholar] [CrossRef]
- Song, J.H.; Dagan, R.; Klugman, K.P.; Fritzell, B. The relationship between pneumococcal serotypes and antibiotic resistance. Vaccine 2012, 30, 2728–2737. [Google Scholar] [CrossRef] [PubMed]
- Izurieta, P.; Nieto Guevara, J. Exploring the evidence behind the comparable impact of the pneumococcal conjugate vaccines PHiD-CV and PCV13 on overall pneumococcal disease. Hum Vaccin Immunother 2022, 18, 1872341. [Google Scholar] [CrossRef] [PubMed]
- Gonzales, B.E.; Mercado, E.H.; Castillo-Tokumori, F.; Montero, A.E.; Luna-Muschi, A.; Marcelo-Ragas, M.; Campos, F.; Chaparro, E.; Del Águila, O.; Castillo, M.E.; et al. Pneumococcal serotypes and antibiotic resistance in healthy carriage children after introduction of PCV13 in Lima, Peru. Vaccine 2023, 41, 4106–4113. [Google Scholar] [CrossRef]
- Wasserman, M.; Chapman, R.; Lapidot, R.; Sutton, K.; Dillon-Murphy, D.; Patel, S.; Chilson, E.; Snow, V.; Farkouh, R.; Pelton, S. Twenty-Year Public Health Impact of 7- and 13-Valent Pneumococcal Conjugate Vaccines in US Children. Emerg Infect Dis 2021, 27, 1627–1636. [Google Scholar] [CrossRef]
- von Mollendorf, C.; Ulziibayar, M.; Nguyen, C.D.; Batsaikhan, P.; Suuri, B.; Luvsantseren, D.; Narangerel, D.; de Campo, J.; de Campo, M.; Tsolmon, B.; et al. Effect of Pneumococcal Conjugate Vaccine on Pneumonia Incidence Rates among Children 2-59 Months of Age, Mongolia, 2015-2021. Emerg Infect Dis 2024, 30, 490–498. [Google Scholar] [CrossRef]
- Candeias, C.; Almeida, S.T.; Paulo, A.C.; Simões, A.S.; Ferreira, B.; Cruz, A.R.; Queirós, M.; Touret, T.; Brito-Avô, A.; de Lencastre, H.; Sá-Leão, R. Streptococcus pneumoniae carriage, serotypes, genotypes, and antimicrobial resistance trends among children in Portugal, after introduction of PCV13 in National Immunization Program: A cross-sectional study. Vaccine 2024, 42, 126219. [Google Scholar] [CrossRef]
- Lo, S.W.; Mellor, K.; Cohen, R.; Alonso, A.R.; Belman, S.; Kumar, N.; Hawkins, P.A.; Gladstone, R.A.; von Gottberg, A.; Veeraraghavan, B.; et al. Emergence of a multidrug-resistant and virulent Streptococcus pneumoniae lineage mediates serotype replacement after PCV13: an international whole-genome sequencing study. Lancet Microbe 2022, 3, e735–e743. [Google Scholar] [CrossRef] [PubMed]
- Lo, S.W.; Gladstone, R.A.; van Tonder, A.J.; Lees, J.A.; du Plessis, M.; Benisty, R.; Givon-Lavi, N.; Hawkins, P.A.; Cornick, J.E.; Kwambana-Adams, B.; et al. Pneumococcal lineages associated with serotype replacement and antibiotic resistance in childhood invasive pneumococcal disease in the post-PCV13 era: an international whole-genome sequencing study. Lancet Infect Dis 2019, 19, 759–769. [Google Scholar] [CrossRef]
- Grabenstein, J.D.; Klugman, K.P. A century of pneumococcal vaccination research in humans. Clin Microbiol Infect 2012, 18 Suppl 5, 15–24. [Google Scholar] [CrossRef]
- Lesinski, G.B.; Westerink, M.A. Novel vaccine strategies to T-independent antigens. J Microbiol Methods 2001, 47, 135–149. [Google Scholar] [CrossRef]
- Food, U.; Administration, D. Pneumovax 23 prescribing information. 2014.
- Wang, Y.; Li, J.; Wang, Y.; Gu, W.; Zhu, F. Effectiveness and practical uses of 23-valent pneumococcal polysaccharide vaccine in healthy and special populations. Hum Vaccin Immunother 2018, 14, 1003–1012. [Google Scholar] [CrossRef] [PubMed]
- Narii, N.; Kitamura, T.; Komukai, S.; Zha, L.; Komatsu, M.; Murata, F.; Maeda, M.; Kiyohara, K.; Sobue, T.; Fukuda, H. Association of pneumococcal vaccination with cardiovascular diseases in older adults: The vaccine effectiveness, networking, and universal safety (VENUS) study. Vaccine 2023, 41, 2307–2313. [Google Scholar] [CrossRef]
- Ender, E.; Joshi, A.; Snyder, M.; Kumar, S.; Hentz, R.; Creo, A. Seroconversion following PPSV23 vaccination in children with type 1 diabetes mellitus. Vaccine 2025, 45, 126592. [Google Scholar] [CrossRef] [PubMed]
- Shapiro Ben David, S.; Shamai-Lubovitz, O.; Mourad, V.; Goren, I.; Cohen Iunger, E.; Alcalay, T.; Irony, A.; Greenfeld, S.; Adler, L.; Cahan, A. A Nationwide Digital Multidisciplinary Intervention Aimed at Promoting Pneumococcal Vaccination in Immunocompromised Patients. Vaccines (Basel) 2023, 11. [Google Scholar] [CrossRef]
- Nielsen, K.F.; Nielsen, L.B.; Dalby, T.; Lomholt, F.K.; Slotved, H.C.; Fuursted, K.; Harboe, Z.B.; Jørgensen, C.S.; Valentiner-Branth, P. Follow-Up Study of Effectiveness of 23-Valent Pneumococcal Polysaccharide Vaccine Against All-Type and Serotype-Specific Invasive Pneumococcal Disease, Denmark. Emerg Infect Dis 2024, 30, 1164–1172. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Leidner, A.J.; Gierke, R.; Xing, W.; Accorsi, E.; Moro, P.; Kamboj, M.; Kuchel, G.A.; Schechter, R.; Loehr, J.; Cohen, A.L. Expanded Recommendations for Use of Pneumococcal Conjugate Vaccines Among Adults Aged ≥50 Years: Recommendations of the Advisory Committee on Immunization Practices - United States, 2024. MMWR Morb Mortal Wkly Rep 2025, 74, 1–8. [Google Scholar] [CrossRef]
- Sun, X.; Tang, Y.; Ma, X.; Guo, X.; Huang, Z.; Ren, J.; Qiu, J.; Jiang, H.; Lu, Y. Cost-Effectiveness Analysis of 23-Valent Pneumococcal Polysaccharide Vaccine Program for the Elderly Aged 60 Years or Older in Shanghai, China. Front Public Health 2021, 9, 647725. [Google Scholar] [CrossRef]
- Niederman, M.S.; Folaranmi, T.; Buchwald, U.K.; Musey, L.; Cripps, A.W.; Johnson, K.D. Efficacy and effectiveness of a 23-valent polysaccharide vaccine against invasive and noninvasive pneumococcal disease and related outcomes: a review of available evidence. Expert Rev Vaccines 2021, 20, 243–256. [Google Scholar] [CrossRef]
- Jotterand, V.; Jagannath, V.; Diaz, A.A.; Velez, J.D.; Letica, A.; Perez, S.N.; Clark, R.; Caraco, Y.; Degen, O.; Park, K.H.; et al. A Phase 3 Randomized Trial Investigating the Safety, Tolerability, and Immunogenicity of V116, an Adult-Specific Pneumococcal Vaccine, Compared with PPSV23, in Adults ≥50 Years of Age (STRIDE-10). Vaccines (Basel) 2025, 13. [Google Scholar] [CrossRef]
- Guo, M.; Guo, X.; Zhang, C.; Zhu, S.; Zhang, Y.; Gu, T.; Kong, W.; Wu, Y. Novel Pneumococcal Protein-Polysaccharide Conjugate Vaccine Based on Biotin-Streptavidin. Infect Immun 2022, 90, e0035221. [Google Scholar] [CrossRef]
- Briday, M.; Carvalho, N.; Oganesyan, N.; Chang, M.J.; Lees, A.; Brier, S.; Chenal, A. Comparative analysis of the structural dynamics of diphtheria toxin and CRM(197) carrier proteins used in the development of conjugate vaccines. Int J Pharm 2025, 675, 125535. [Google Scholar] [CrossRef]
- Jefferies, J.M.; Macdonald, E.; Faust, S.N.; Clarke, S.C. 13-valent pneumococcal conjugate vaccine (PCV13). Hum Vaccin 2011, 7, 1012–1018. [Google Scholar] [CrossRef]
- Preventing pneumococcal disease among infants and young children. Recommendations of the Advisory Committee on Immunization Practices (ACIP). 2000, 49, 1–35.
- Ho, P.L.; Law, P.Y.; Chiu, S.S. Increase in incidence of invasive pneumococcal disease caused by serotype 3 in children eight years after the introduction of the pneumococcal conjugate vaccine in Hong Kong. Hum Vaccin Immunother 2019, 15, 455–458. [Google Scholar] [CrossRef] [PubMed]
- Chiba, N.; Morozumi, M.; Shouji, M.; Wajima, T.; Iwata, S.; Ubukata, K. Changes in capsule and drug resistance of Pneumococci after introduction of PCV7, Japan, 2010-2013. Emerg Infect Dis 2014, 20, 1132–1139. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.E.; Shutt, K.A.; Moore, M.R.; Beall, B.W.; Bennett, N.M.; Craig, A.S.; Farley, M.M.; Jorgensen, J.H.; Lexau, C.A.; Petit, S.; et al. Effect of pneumococcal conjugate vaccine on pneumococcal meningitis. N Engl J Med 2009, 360, 244–256. [Google Scholar] [CrossRef]
- Nuorti, J.P.; Whitney, C.G. Prevention of pneumococcal disease among infants and children - use of 13-valent pneumococcal conjugate vaccine and 23-valent pneumococcal polysaccharide vaccine - recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 2010, 59, 1–18. [Google Scholar]
- Kim, H.Y.; Park, S.B.; Kang, E.S.; Lee, S.M.; Kim, H.J.; Wasserman, M. Cost-effectiveness of a national immunization program with the 13-valent pneumococcal conjugate vaccine compared with the 10-valent pneumococcal conjugate vaccine in South Korea. Hum Vaccin Immunother 2021, 17, 909–918. [Google Scholar] [CrossRef]
- Wu, D.B.; Roberts, C.; Lee, V.W.; Hong, L.W.; Tan, K.K.; Mak, V.; Lee, K.K. Cost-effectiveness analysis of infant universal routine pneumococcal vaccination in Malaysia and Hong Kong. Hum Vaccin Immunother 2016, 12, 403–416. [Google Scholar] [CrossRef]
- Mezones-Holguin, E.; Canelo-Aybar, C.; Clark, A.D.; Janusz, C.B.; Jaúregui, B.; Escobedo-Palza, S.; Hernandez, A.V.; Vega-Porras, D.; González, M.; Fiestas, F.; et al. Cost-effectiveness analysis of 10- and 13-valent pneumococcal conjugate vaccines in Peru. Vaccine 2015, 33 Suppl 1, A154–166. [Google Scholar] [CrossRef]
- Strutton, D.R.; Farkouh, R.A.; Earnshaw, S.R.; Hwang, S.; Theidel, U.; Kontodimas, S.; Klok, R.; Papanicolaou, S. Cost-effectiveness of 13-valent pneumococcal conjugate vaccine: Germany, Greece, and The Netherlands. J Infect 2012, 64, 54–67. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Fujita, H.; Iwai, K.; Kuroki, H.; Taniyama, K.; Shizuya, T.; Kishino, H.; Igarashi, R.; Shirakawa, M.; Sawata, M. Safety and immunogenicity of 15-valent pneumococcal conjugate vaccine in Japanese healthy infants: A phase III study (V114-033). Vaccine 2023, 41, 4933–4940. [Google Scholar] [CrossRef] [PubMed]
- Senders, S.; Klein, N.P.; Tamimi, N.; Thompson, A.; Baugher, G.; Trammel, J.; Peng, Y.; Giardina, P.; Scully, I.L.; Pride, M.; et al. A Phase Three Study of the Safety and Immunogenicity of a Four-dose Series of 20-Valent Pneumococcal Conjugate Vaccine in Healthy Infants. Pediatr Infect Dis J 2024, 43, 596–603. [Google Scholar] [CrossRef]
- Kobayashi, M.; Leidner, A.J.; Gierke, R.; Farrar, J.L.; Morgan, R.L.; Campos-Outcalt, D.; Schechter, R.; Poehling, K.A.; Long, S.S.; Loehr, J.; Cohen, A.L. Use of 21-Valent Pneumococcal Conjugate Vaccine Among U.S. Adults: Recommendations of the Advisory Committee on Immunization Practices - United States, 2024. MMWR Morb Mortal Wkly Rep 2024, 73, 793–798. [Google Scholar] [CrossRef]
- Anglemyer, A.; Ren, X.; Gilkison, C.; Kumbaroff, Z.; Morgan, J.; DuBray, K.; Tiong, A.; Reingold, A.; Walls, T. The impact of pneumococcal serotype replacement on the effectiveness of a national immunization program: a population-based active surveillance cohort study in New Zealand. Lancet Reg Health West Pac 2024, 46, 101082. [Google Scholar] [CrossRef]
- Huang, H.; Lin, C.Y.; Chiu, N.C.; Huang, D.T.; Huang, C.Y.; Chi, H. Antimicrobial susceptibility and serotype replacement of Streptococcus pneumoniae in children before and after PCV13 introduction in Taiwan. J Microbiol Immunol Infect 2023, 56, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Yokota, S.I.; Tsukamoto, N.; Sato, T.; Ohkoshi, Y.; Yamamoto, S.; Ogasawara, N. Serotype replacement and an increase in non-encapsulated isolates among community-acquired infections of Streptococcus pneumoniae during post-vaccine era in Japan. IJID Reg 2023, 8, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Niyibitegeka, F.; Russell, F.M.; Jit, M.; Carvalho, N. Inequitable Distribution of Global Economic Benefits from Pneumococcal Conjugate Vaccination. Vaccines (Basel) 2024, 12. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, L.M.; Flasche, S.; Mulholland, K.; Nguyen, H.A.; Nguyen, C.; Toizumi, M.; Dang, D.A. Evaluation of the effect of reduced-dose pneumococcal conjugate vaccine schedules on vaccine serotype carriage in children and their caretakers in a naïve population in Vietnam: Protocol for a cluster randomized non-inferiority trial. Gates Open Res 2023, 7, 110. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, G.; Wang, X.; Xie, Z.; Gou, J.; Huang, L.; Huang, H.; You, W.; Wang, R.; Yang, Y.; et al. Preliminary Evaluation of the Safety and Immunogenicity of a Novel Protein-Based Pneumococcal Vaccine in Healthy Adults Aged 18-49: A Phase Ia Randomized, Double Blind, Placebo-Controlled Clinical Study. Vaccines (Basel) 2024, 12. [Google Scholar] [CrossRef]
- Reglinski, M.; Ercoli, G.; Plumptre, C.; Kay, E.; Petersen, F.C.; Paton, J.C.; Wren, B.W.; Brown, J.S. A recombinant conjugated pneumococcal vaccine that protects against murine infections with a similar efficacy to Prevnar-13. NPJ Vaccines 2018, 3, 53. [Google Scholar] [CrossRef] [PubMed]
- Kramskaya, T.; Leontieva, G.; Desheva, Y.; Grabovskaya, K.; Gupalova, T.; Rudenko, L.; Suvorov, A. Combined immunization with attenuated live influenza vaccine and chimeric pneumococcal recombinant protein improves the outcome of virus-bacterial infection in mice. PLoS One 2019, 14, e0222148. [Google Scholar] [CrossRef]
- Audouy, S.A.; van Selm, S.; van Roosmalen, M.L.; Post, E.; Kanninga, R.; Neef, J.; Estevão, S.; Nieuwenhuis, E.E.; Adrian, P.V.; Leenhouts, K.; Hermans, P.W. Development of lactococcal GEM-based pneumococcal vaccines. Vaccine 2007, 25, 2497–2506. [Google Scholar] [CrossRef]
- Figueiredo, D.B.; Carvalho, E.; Santos, M.P.; Kraschowetz, S.; Zanardo, R.T.; Campani, G., Jr.; Silva, G.G.; Sargo, C.R.; Horta, A.C.L.; de, C.G.R.; et al. Production and purification of an untagged recombinant pneumococcal surface protein A (PspA4Pro) with high-purity and low endotoxin content. Appl Microbiol Biotechnol 2017, 101, 2305–2317. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Dai, W.J.; Wang, Z.M.; Chen, Z.Y.; Chi, F.L.; Li, Z.M. [Preparation of new protein carrier of vaccine against pneumococcal otitis media with genetic engineering technology]. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 2006, 41, 570–573. [Google Scholar]
- Afshari, E.; Cohan, R.A.; Sotoodehnejadnematalahi, F.; Mousavi, S.F. In-silico design and evaluation of an epitope-based serotype-independent promising vaccine candidate for highly cross-reactive regions of pneumococcal surface protein A. J Transl Med 2023, 21, 13. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, T.; van der Linden, M.; Hirano, K.; Maeda, T.; Kohno, S.; Gonzalez, E.N.; Zhang, P.; Isturiz, R.E.; Gray, S.L.; Grant, L.R.; et al. Serotype distribution and antimicrobial susceptibility of Streptococcus pneumoniae isolates cultured from Japanese adult patients with community-acquired pneumonia in Goto City, Japan. Front Microbiol 2024, 15, 1458307. [Google Scholar] [CrossRef]
- Eldholm, V.; Osnes, M.N.; Bjørnstad, M.L.; Straume, D.; Gladstone, R.A. A genome-based survey of invasive pneumococci in Norway over four decades reveals lineage-specific responses to vaccination. Genome Med 2024, 16, 123. [Google Scholar] [CrossRef]
- Kaur, R.; Pham, M.; Yu, K.O.A.; Pichichero, M.E. Rising Pneumococcal Antibiotic Resistance in the Post-13-Valent Pneumococcal Conjugate Vaccine Era in Pediatric Isolates From a Primary Care Setting. Clin Infect Dis 2021, 72, 797–805. [Google Scholar] [CrossRef]
- Qu, S.; Zhou, M.; Zhao, L.; Campy, K.S.; Zhao, M. Barriers to Uptake Pneumonia Vaccines among Chinese Elderly. Iran J Public Health 2022, 51, 1677–1678. [Google Scholar] [CrossRef]
- Kirubarajan, A.; Lynch, M.; Nasreen, S.; Gebretekle, G.B.; Fadel, S.A.; Crowcroft, N.S.; Allin, S. Increasing pneumococcal vaccine uptake in older adults: a scoping review of interventions in high-income countries. BMC Geriatr 2023, 23, 2. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, J.L.; Wagner, A.L.; Laffoon, M.; Lu, Y.H.; Jiang, Q.W. Procurement of Category 2 Vaccines in China. Vaccines (Basel) 2019, 7. [Google Scholar] [CrossRef] [PubMed]
- de Boer, P.T.; van Werkhoven, C.H.; van Hoek, A.J.; Knol, M.J.; Sanders, E.A.M.; Wallinga, J.; de Melker, H.E.; Steens, A. Higher-valency pneumococcal conjugate vaccines in older adults, taking into account indirect effects from childhood vaccination: a cost-effectiveness study for the Netherlands. BMC Med 2024, 22, 69. [Google Scholar] [CrossRef] [PubMed]
| Vaccine Type | Valency | Target Serotypes | Mechanism | Key Target Populations |
|---|---|---|---|---|
| PPSV23 | 23 | 2, 3, 4, 5...A | T-cell-independent | Adults ≥65 years |
| PCV13 | 13 | PCV7B + 1, 2, 5, 6A, 7F, 19A | T-cell-dependent | Infants, high-risk |
| PCV20 | 20 | PCV13 + 8, 10A, 11A, 12F, 15B, 22F, 33F | T-cell-dependent | Adults, children |
| PCV21 | 21 | PCV20 + 23B | T-cell-dependent | Adults (≥18 years) |
| Vaccine Type | Year | Use Status | Advantages | Challenges | |
|---|---|---|---|---|---|
| PPSV23 | 1983 | In use | Low cost; Established manufacturing; WHO-recommended for elderly |
Low immunogenicity;$$No immune memory;$$Less effective in young children and immunocompromised individuals | |
| Vaccine Type | Year | Use Status | Advantages | Challenges | |
| PCV10/PCV13 | 2009-2010 | In use | Broader coverage than PCV7 | Waning efficacy in individuals over 75 years old; Serotype replacement;$$Multi-dose regimens | |
| PCV15/PCV20 | 2021-2022 | Recently introduced | Broader serotype coverage; Single dose sufficient for some populations | Higher cost compared to PPSV23 | |
| PCV21 | 2024 | Recently introduced | Potential for expanded protection against pneumococcal disease | Still under evaluation; Regulatory approval pending; Limited data available on long-term efficacy and safety | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
