Submitted:
21 June 2025
Posted:
23 June 2025
You are already at the latest version
Abstract
Keywords:
Introduction
To map the current and emerging applications of AI across African health systems;
To identify the structural, ethical, and regulatory challenges impeding responsible AI deployment; and
To provide strategic recommendations for African-led innovation and governance in AI for health.
2. Artificial Intelligence in Global Health: A Brief Overview
3. Current Landscape of AI in African Healthcare
3.1. Policy and Strategic Frameworks
3.2. Key Actors and Innovations
- Start-ups and Private Sector: Companies such as Ubenwa (Nigeria) use AI to detect neonatal asphyxia via infant cry analysis, demonstrating practical AI applications that respond to specific local health challenges [47]. InstaDeep (Tunisia) applies machine learning for optimizing clinical trial designs and drug discovery [48]. Zipline (Rwanda/Ghana) combines AI with drone technology to optimize medical supply logistics in remote areas, significantly reducing delivery times for blood and vaccines [49].
- Academic and Research Institutions: Universities such as the University of Cape Town and Makerere University are building AI research hubs focused on health data science and machine learning tailored for African diseases and population health [50,51]. Collaborations with global AI centers provide training and infrastructure, fostering knowledge transfer.
- International Partnerships: Projects like the Deep Learning Indaba promote AI capacity building across Africa, nurturing a new generation of AI researchers and practitioners [52]. Moreover, collaborations with global technology companies (Google AI, Microsoft AI for Health) provide access to cloud computing resources and algorithmic expertise.
3.3. Applications in Practice
- Diagnostics: AI-driven computer-aided detection (CAD) tools for tuberculosis screening via chest X-rays (e.g., CAD4TB) have been deployed in South Africa and Kenya, increasing diagnostic accuracy and enabling task shifting to less specialized health workers [53,54]. AI algorithms are also being trialed for cervical cancer screening using smartphone imaging in resource-constrained settings.
- Disease Surveillance and Epidemiology: AI-powered platforms analyze social media, health records, and environmental data to detect outbreaks earlier than traditional surveillance systems. For example, during the Ebola outbreaks, AI models were used for predicting spread patterns and resource needs [55,56].
3.4. Challenges and Gaps
- Data Scarcity and Quality: Fragmented health information systems limit the availability of high-quality, interoperable data necessary to train robust AI models [61].
- Digital Divide: While mobile phone penetration is high, disparities persist in internet access, electricity, and digital literacy, particularly in rural and marginalized communities [62].
- Limited Funding and Infrastructure: Investment in AI health projects remains concentrated in a few countries, with many African health systems lacking basic digital infrastructure [63].
4. Transformative Applications of AI in African Healthcare (~900 words)
4.1. AI-Enabled Diagnostics and Clinical Decision Support
4.2. Disease Surveillance and Outbreak Prediction
4.3. Health System Optimization and Supply Chain Management
4.4. Telemedicine and mHealth Innovations
4.5. AI for Health Workforce Capacity Building
5.1. Structural Barriers
5.1.1. Digital Infrastructure and Data Ecosystems
5.1.2. Workforce Capacity and Expertise
5.1.3. Financing and Investment
5.2. Ethical and Regulatory Challenges
5.2.1. Data Privacy and Sovereignty
5.2.2. Algorithmic Bias and Fairness
5.2.3. Transparency and Accountability
5.2.4. Socio-Cultural Acceptance and Inclusion
5.3. Addressing Challenges: Recommendations
- Strengthen Digital Infrastructure: Investment in broadband, electricity, and interoperable health information systems must be prioritized alongside AI initiatives.
- Build Local Capacity: Expand interdisciplinary education and training programs in AI, data science, and digital health tailored for African contexts.
- Develop Ethical and Regulatory Frameworks: Governments and regional bodies should enact comprehensive data protection laws and AI governance policies emphasizing privacy, transparency, and equity.
- Promote Inclusive AI Design: Foster participatory approaches that engage communities, health workers, and policymakers to ensure culturally sensitive, user-centered AI solutions.
- Sustain Financing and Partnerships: Encourage blended financing models combining public, private, and donor resources to scale effective AI interventions sustainably.
- Enhance Data Governance and Sovereignty: Implement policies that safeguard local data ownership and equitable benefit sharing, particularly in partnerships with international technology firms.
Future Directions and Policy Recommendations
3.1. Strengthening AI Research and Innovation Ecosystems
- Develop AI models trained on African datasets reflecting local epidemiology and health system realities.
- Promote interdisciplinary collaborations bridging data science, clinical medicine, public health, and social sciences.
- Foster innovation hubs and incubators focused on scalable AI health solutions.
6.2. Enhancing Capacity Building and Education
- Integrating AI and data science curricula into medical, nursing, and public health education.
- Supporting continuing professional development through workshops, fellowships, and online learning platforms.
6.3. Developing Robust Ethical and Regulatory Frameworks
- Data privacy, security, and patient consent aligned with international best practices and African socio-legal contexts.
- Algorithmic transparency, fairness, and accountability mechanisms.
- Guidelines for clinical validation and approval of AI tools before integration into health systems.
6.4. Fostering Multi-Stakeholder Partnerships
6.5. Addressing Equity and Inclusion
6.6. Investing in Infrastructure and Data Ecosystems
Conclusions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Results Report 2024. (2024). https://www.theglobalfund.org/media/14794/core_2024-results_report_en.pdf.
- Oleribe, O. E., Momoh, J., Uzochukwu, B. S., Mbofana, F., Adebiyi, A., Barbera, T., Williams, R., & Robinson, S. D. T. (2019). <p>Identifying Key Challenges Facing Healthcare Systems In Africa And Potential Solutions</p> International Journal of General Medicine, Volume 12, 395–403. [CrossRef]
- Khosravi, M., Zare, Z., Mojtabaeian, S. M., & Izadi, R. (2024). Artificial Intelligence and Decision-Making in Healthcare: A Thematic Analysis of a Systematic Review of reviews. Health Services Research and Managerial Epidemiology, 11. [CrossRef]
- Alowais, S. A., Alghamdi, S. S., Alsuhebany, N., Alqahtani, T., Alshaya, A. I., Almohareb, S. N., Aldairem, A., Alrashed, M., Saleh, K. B., Badreldin, H. A., Yami, M. S. A., Harbi, S. A., & Albekairy, A. M. (2023). Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Medical Education, 23(1). [CrossRef]
- Mboa Nkoudou, T. H., International Centre of Expertise in Montreal on Artificial Intelligence, & International Development Research Centre. (2024). State of AI in healthcare in Sub-Saharan Africa. In J. P. Nsengimana, J. Cyizere, P. Yap, H. Lakougna, C. Sinha, N. Oum, A. Christabella, D. A. Eto, T. W. Ulrich, G. Le Peuch, C. Renaud, S. Janusz, J. Houde, B. F. Nga Ondigui, S. Fallaha, S. King, & M. Marcotte, State of AI in Healthcare in Sub-Saharan Africa. [CrossRef]
- Andigema, A. S., Cyrielle, N. N. T., Danaëlle, M. K. L., & Ekwelle, E. (2024). Transforming African Healthcare with AI: Paving the Way for Improved Health Outcomes. www.jscimedcentral.com.
- Ephraim, R. K. D., Kotam, G. P., Duah, E., Ghartey, F. N., Mathebula, E. M., & Mashamba-Thompson, T. P. (2024). Application of medical artificial intelligence technology in sub-Saharan Africa: Prospects for medical laboratories. Smart Health, 33, 100505. [CrossRef]
- Ubenwa - The first technology for interpreting infant cry sounds. (n.d.). https://www.ubenwa.ai/.
- InstaDeep Ltd. (2024, December 19). Home | InstaDeep - Decision-Making AI for the Enterprise. InstaDeep. https://www.instadeep.com/.
- Zipline Drone Delivery & Logistics. (n.d.). Zipline. https://www.flyzipline.com/.
- Meslamani, A. Z. A. (2023). Technical and regulatory challenges of digital health implementation in developing countries. Journal of Medical Economics, 26(1), 1057–1060. [CrossRef]
- Hanna, M., Pantanowitz, L., Jackson, B., Palmer, O., Visweswaran, S., Pantanowitz, J., Deebajah, M., & Rashidi, H. (2024). Ethical and bias considerations in artificial intelligence (AI)/Machine learning. Modern Pathology, 100686. [CrossRef]
- Pasipamire, N., & Muroyiwa, A. (2024). Navigating algorithm bias in AI: ensuring fairness and trust in Africa. Frontiers in Research Metrics and Analytics, 9. [CrossRef]
- Soori, M., Arezoo, B., & Dastres, R. (2023). Artificial intelligence, machine learning, and deep learning in advanced robotics: a review. Cognitive Robotics, 3, 54–70. [CrossRef]
- Xu, Y., Liu, X., Cao, X., Huang, C., Liu, E., Qian, S., Liu, X., Wu, Y., Dong, F., Qiu, C., Qiu, J., Hua, K., Su, W., Wu, J., Xu, H., Han, Y., Fu, C., Yin, Z., Liu, M., . . . Zhang, J. (2021). Artificial intelligence: A powerful paradigm for scientific research. The Innovation, 2(4), 100179. [CrossRef]
- Hwang, E. J., & Park, C. M. (2020). Clinical implementation of deep learning in thoracic radiology: Potential applications and challenges. Korean Journal of Radiology, 21(5), 511. [CrossRef]
- Hwang, E. J., Park, S., Jin, K., Kim, J. I., Choi, S. Y., Lee, J. H., Goo, J. M., Aum, J., Yim, J., Cohen, J. G., Ferretti, G. R., & Park, C. M. (2019). Development and validation of a Deep Learning–Based Automated detection algorithm for major thoracic diseases on chest radiographs. JAMA Network Open, 2(3), e191095. [CrossRef]
- Rajpurkar, P., Irvin, J., Ball, R. L., Zhu, K., Yang, B., Mehta, H., Duan, T., Ding, D., Bagul, A., Langlotz, C. P., Patel, B. N., Yeom, K. W., Shpanskaya, K., Blankenberg, F. G., Seekins, J., Amrhein, T. J., Mong, D. A., Halabi, S. S., Zucker, E. J., . . . Lungren, M. P. (2018). Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS Medicine, 15(11), e1002686. [CrossRef]
- AI-Powered Predictive Analytics for Early Detection of Patient Deterioration: Implications for Nursing Care | Journal of Neonatal Surgery. (n.d.). https://www.jneonatalsurg.com/index.php/jns/article/view/5592.
- Yuan, S., Yang, Z., Li, J., Wu, C., & Liu, S. (2025). AI-Powered early warning systems for clinical deterioration significantly improve patient outcomes: a meta-analysis. pmc.ncbi.nlm.nih.gov. [CrossRef]
- Kuan, L. C., Chin, L. Y., De, L. J., Cheng, C. Y., Tuao, Z., Zixian, Y., & Roy, D. (2024). Predictive analysis of patient risk of death in ICU: A bibliometric analysis. SHS Web of Conferences, 194, 01005. [CrossRef]
- Gonzalez, F. A., Santonocito, C., Lamasb, T., Costa, P., Vieira, S. M., Ferreira, H. A., & Sanfilippo, F. (2024). Is artificial intelligence prepared for the 24-h shifts in the ICU? Anaesthesia Critical Care & Pain Medicine, 101431. [CrossRef]
- Ding, X., Shang, B., Xie, C., Xin, J., & Yu, F. (2025). Artificial intelligence in the COVID-19 pandemic: balancing benefits and ethical challenges in China’s response. Humanities and Social Sciences Communications, 12(1). [CrossRef]
- Gawande, M. S., Zade, N., Kumar, P., Gundewar, S., Weerarathna, I. N., & Verma, P. (2025). The role of artificial intelligence in pandemic responses: from epidemiological modeling to vaccine development. Molecular Biomedicine, 6(1). [CrossRef]
- Lv, C., Guo, W., Yin, X., Liu, L., Huang, X., Li, S., & Zhang, L. (2024). Innovative applications of artificial intelligence during the COVID-19 pandemic. Infectious Medicine, 3(1), 100095. [CrossRef]
- Xu, Z., Su, C., Xiao, Y., & Wang, F. (2021). Artificial intelligence for COVID-19: battling the pandemic with computational intelligence. Intelligent Medicine, 2(1), 13–29. [CrossRef]
- Dong, C., Ji, Y., Fu, Z., Qi, Y., Yi, T., Yang, Y., Sun, Y., & Sun, H. (2025). Precision Management in Chronic Disease: An AI empowered Perspective on Medicine-Engineering Crossover. iScience, 28(3), 112044. [CrossRef]
- Arefin, S. (2024). Chronic Disease Management through an AI-Powered Application. Journal of Service Science and Management, 17(04), 305–320. [CrossRef]
- Artificial Intelligence in healthcare. (2025, June 4). Public Health. https://health.ec.europa.eu/ehealth-digital-health-and-care/artificial-intelligence-healthcare_en.
- Tan, T. F., Thirunavukarasu, A. J., Jin, L., Lim, J., Poh, S., Teo, Z. L., Ang, M., Chan, R. V. P., Ong, J., Turner, A., Karlström, J., Wong, T. Y., Stern, J., & Ting, D. S. (2023). Artificial intelligence and digital health in global eye health: opportunities and challenges. The Lancet Global Health, 11(9), e1432–e1443. [CrossRef]
- Adhikari, S., Ahmed, I., Bajracharya, D., Khanal, B., Solomon, C., Jayaratne, K., Mamum, K. a. A., Talukder, M. S. H., Shakya, S., Manandhar, S., Memon, Z. A., Chowdhury, M. H., Islam, I. U., Rakhshani, N. S., & Khan, M. I. (2025). Transforming healthcare through just, equitable and quality driven artificial intelligence solutions in South Asia. Npj Digital Medicine, 8(1). [CrossRef]
- McCoy, L. G., Bihorac, A., Celi, L. A., Elmore, M., Kewalramani, D., Kwaga, T., Martinez-Martin, N., Prôa, R., Schamroth, J., Shaffer, J. D., Youssef, A., & Fiske, A. (2025). Building health systems capable of leveraging AI: applying Paul Farmer’s 5S framework for equitable global health. BMC Global and Public Health, 3(1). [CrossRef]
- Mennella, C., Maniscalco, U., De Pietro, G., & Esposito, M. (2024). Ethical and regulatory challenges of AI technologies in healthcare: A narrative review. Heliyon, 10(4), e26297. [CrossRef]
- Kaushik, A., Barcellona, C., Mandyam, N. K., Tan, S. Y., & Tromp, J. (2024). Challenges and opportunities for data sharing related to Artificial Intelligence (AI) tools in healthcare in low- and middle-income countries: A systematic review and case study from Thailand. (Preprint). Journal of Medical Internet Research, 27, e58338. [CrossRef]
- Siafakas, N., & Vasarmidi, E. (2024). Risks of artificial intelligence (AI) in Medicine. Pneumon, 37(3), 1–5. [CrossRef]
- Dushma. (2025, June 9). MHealth Adoption in Low- and Middle-Income Countries: Progress, Challenges, and Opportunities. GIPHI - We Change Lives. https://giphi.ca/2025/04/28/mhealth-adoption-in-low-and-middle-incomecountries-progress-challenges-and-opportunities/#:~:text=This%20mobile%20application%20speeds%20up,less%20than%2030%25%20before%20implementation.
- Poulsen, A., Hickie, I. B., Alam, M., Wilson, C. E., & LaMonica, H. M. (2025). Access to mobile health in lower-middle-income countries: a review. Health and Technology. [CrossRef]
- Agarwal, S., Perry, H. B., Long, L., & Labrique, A. B. (2015). Evidence on feasibility and effective use of mHealth strategies by frontline health workers in developing countries: systematic review. Tropical Medicine & International Health, 20(8), 1003–1014. [CrossRef]
- Continental Artificial Intelligence Strategy. (2024). In United Nations Educational, Scientific and Cultural Organization, Continental Artificial Intelligence Strategy. https://au.int/sites/default/files/documents/44004-doc-EN-_Continental_AI_Strategy_July_2024.pdf.
- Vista de The impact of the AI in the regional integration between the EU and Africa | Revista Derecho y Economía de la Integración. (n.d.). https://revistas.colex.es/index.php/derechoeconomiaintegracion/article/view/275/475.
- The future of work in Africa. (2020). In J. Choi, M. A. Dutz, & Z. Usman (Eds.), Africa Development Forum. https://documents1.worldbank.org/curated/en/511511592867036615/pdf/The-Future-of-Work-in-Africa-Harnessing-the-Potential-of-Digital-Technologies-for-All.pdf.
- The AI Social Contract Index 2020. (n.d.). The AI Social Contract Index 2020, 198–200. https://s899a9742c3d83292.jimcontent.com/download/version/1648057926/module/8292101063/name/AISCI-2020-Rwanda.pdf.
- AI strategies and policies in Rwanda - OECD.AI. (n.d.). https://oecd.ai/en/dashboards/countries/Rwanda.
- National Artificial Intelligence Strategy | The Federal Ministry of Communications, Innovation and Digital Economy. (2023, November 18). The Federal Ministry of Communications, Innovation and Digital Economy. https://fmcide.gov.ng/initiative/nais/.
- AI strategies and policies in Nigeria - OECD.AI. (n.d.). https://oecd.ai/en/dashboards/countries/Nigeria.
- AFRICAN UNION UNION AFRICAINE. (2020). THE DIGITAL TRANSFORMATION STRATEGY FOR AFRICA (2020-2030). https://au.int/sites/default/files/documents/38507-doc-dts-english.pdf.
- Masso, A., Chukwu, M., & Calzati, S. (2022). (Non)negotiable spaces of algorithmic governance: Perceptions on the Ubenwa health app as a ‘relocated’ solution. New Media & Society, 24(4), 845–865. [CrossRef]
- Johns, L. (2024, February 14). BioNTECh to acquire InstaDeep to strengthen pioneering position in the field of AI-powered drug discovery, design and development. InstaDeep. https://instadeep.com/2023/01/biontech-to-acquire-instadeep-to-strengthen-pioneering-position-in-the-field-of-ai-powered-drug-discovery-design-and-development/.
- Ackerman, E., & Koziol, M. (2022, February 28). In the Air With Zipline’s Medical Delivery Drones. IEEE Spectrum. https://spectrum.ieee.org/in-the-air-with-ziplines-medical-delivery-drones.
- Anyango, J., & Anyango, J. (2025, March 17). Makerere launches AI and Data Science Centre to drive Africa’s technological development. Makerere University News. https://news.mak.ac.ug/2025/03/makerere-launches-ai-and-data-science-centre-to-drive-africas-technological-development/.
- Using AI to tailor drugs for Africa. (2024, April 22). UCT News. https://www.news.uct.ac.za/news/audio/-article/2024-04-22-using-ai-to-tailor-drugs-for-africa.
- Reports and Analysis - Deep Learning Indaba. (2019, June 18). Deep Learning Indaba. https://deeplearningindaba.com/about/resources/white-papers-reports/.
- Nzimande, N., Murphy, K., Reither, K., Bosman, S., Ayakaka, I., Glass, T. R., Vanobberghen, F., Jacobs, B. K., Signorell, A., & Ncayiyana, J. (2025). Performance of CAD4TB artificial intelligence technology in TB screening programmes among the adult population in South Africa and Lesotho. Journal of Clinical Tuberculosis and Other Mycobacterial Diseases, 100540. [CrossRef]
- Qin, Z. Z., Van Der Walt, M., Moyo, S., Ismail, F., Maribe, P., Denkinger, C. M., Zaidi, S., Barrett, R., Mvusi, L., Mkhondo, N., Zuma, K., Manda, S., Koeppel, L., Mthiyane, T., & Creswell, J. (2024). Computer-aided detection of tuberculosis from chest radiographs in a tuberculosis prevalence survey in South Africa: external validation and modelled impacts of commercially available artificial intelligence software. The Lancet Digital Health, 6(9), e605–e613. [CrossRef]
- Kwofie, S. K., Adams, J., Broni, E., Enninful, K. S., Agoni, C., Soliman, M. E. S., & Wilson, M. D. (2023). Artificial intelligence, machine learning, and big data for Ebola virus drug discovery. Pharmaceuticals, 16(3), 332. [CrossRef]
- Sarumi, O. A. (2021). Machine Learning-Based Big Data Analytics Framework for Ebola Outbreak Surveillance. In Advances in Intelligent Systems and computing (pp. 580–589). [CrossRef]
- Kremer, P., Haruna, F., Sarpong, R. T., Agamah, D., Billy, J., Osei-Kwakye, K., Aidoo, P., Dodoo, D., & Okoh-Owusu, M. (2023). An impact assessment of the use of aerial logistics to improve access to vaccines in the Western-North Region of Ghana. Vaccine, 41(36), 5245–5252. [CrossRef]
- Nordling, L. (2024). New AI chatbot will make African health data more usable. Nature Africa. [CrossRef]
- IDInsight. (2022). Impact evaluation of Zipline Ghana. https://www.idinsight.org/wp-content/uploads/2022/06/Zipline-Brief-FINAL-Digital-v3.pdf.
- Phiri, M., & Munoriyarwa, A. (2022). Health Chatbots in Africa: Scoping review. Journal of Medical Internet Research, 25, e35573. [CrossRef]
- Data quality assurance (DQA). (n.d.). https://www.who.int/data/data-collection-tools/health-service-data/data-quality-assurance-dqa.
- 2025 – GSMA Mobile Connectivity Index. (n.d.). 2025 – GSMA Mobile Connectivity Index. https://www.mobileconnectivityindex.com/index.html.
- World Health Organization. (n.d.). Contact us. https://apps.who.int/gho/data/node.main-afro.HEALTHFINANCING?lang=en.
- Regulating Artificial Intelligence in Africa: Strategies and Insights from Kenya, Ghana, and the African Union. (2024, September 18). Wilson Center. https://www.wilsoncenter.org/blog-post/regulating-artificial-intelligence-africa-strategies-and-insights-kenya-ghana-and-african#:~:text=AU%20Continental%20AI%20Strategy&text=On%20AI%2C%20the%20AU%20has,for%20African%20economies%20and%20societies.
- Hennemann, M. (2021). African Data Protection Laws and Artificial intelligence - Regulation, policy and ways forward. In Centre for Human Rights, University of Pretoria & Bavarian State Ministry of Science and Culture, Centre for Human Rights, University of Pretoria’s conference “Privacy and data protection law and practice in Africa - Challenges and prospects.” https://www.pulp.up.ac.za/images/edocman/edited-collections/data_privacy/Chapter%205.pdf.
- Almyranti, M., Dr, Sutherland, E., Ash, N., Dr, & Eiszele, S. (2024). ARTIFICIAL INTELLIGENCE AND THE HEALTH WORKFORCE. In OECD, OECD ARTIFICIAL INTELLIGENCE PAPERS (pp. 1–4) [Report]. OECD. https://www.oecd.org/content/dam/oecd/en/publications/reports/2024/11/artificial-intelligence-and-the-health-workforce_c8e4433d/9a31d8af-en.pdf.
- Rony, M. K. K., Akter, K., Nesa, L., Islam, M. T., Johra, F. T., Akter, F., Uddin, M. J., Begum, J., Noor, M. A., Ahmad, S., Tanha, S. M., Khatun, M. T., Bala, S. D., & Parvin, M. R. (2024). Healthcare workers’ knowledge and Attitudes regarding artificial intelligence adoption in healthcare: a cross-sectional study. Heliyon, 10(23), e40775. [CrossRef]
- Chinta, S. V., Wang, Z., Palikhe, A., Zhang, X., Kashif, A., Smith, M. A., Liu, J., & Zhang, W. (2025). AI-driven healthcare: Fairness in AI healthcare: A survey. PLOS Digital Health, 4(5), e0000864. [CrossRef]
- Edem, V. F., Nkereuwem, E., Agbla, S. C., Owusu, S. A., Sillah, A. K., Saidy, B., Jallow, M. B., Forson, A. G., Egere, U., Kampmann, B., & Togun, T. (2024b). Accuracy ofComputer-Aided Detection for Tuberculosis® on paediatric chest radiographs. European Respiratory Journal, 2400811. [CrossRef]
- Breuninger, M., Van Ginneken, B., Philipsen, R. H. H. M., Mhimbira, F., Hella, J. J., Lwilla, F., Van Den Hombergh, J., Ross, A., Jugheli, L., Wagner, D., & Reither, K. (2014). Diagnostic Accuracy of Computer-Aided Detection of Pulmonary Tuberculosis in Chest Radiographs: A Validation Study from Sub-Saharan Africa. PLoS ONE, 9(9), e106381. [CrossRef]
- Wu, T., Lucas, E., Zhao, F., Basu, P., & Qiao, Y. (2024). Artificial intelligence strengthenes cervical cancer screening – present and future. Cancer Biology and Medicine, 1–16. [CrossRef]
- Du, H., Dai, W., Zhou, Q., Li, C., Li, S. C., Wang, C., Tang, J., Wu, X., & Wu, R. (2023). AI-assisted system improves the work efficiency of cytologists via excluding cytology-negative slides and accelerating the slide interpretation. Frontiers in Oncology, 13. [CrossRef]
- Orbis. (2024, February 6). First-of-its-Kind study finds artificial intelligence screenings improve eye care access in Sub-Saharan Africa. Orbis. http://orbis.org/en/news/2022/ai-africa#:~:text=First-of-its-Kind%20Study%20Finds%20Artificial%20Intelligence%20Screenings%20Improve%20Eye%20Care%20Access%20in%20Sub-Saharan%20Africa.&text=Orbis%20announces%20new%20research%20findings%20demonstrating%20that,loss%20due%20to%20diabetes%20in%20the%20region.
- Mathenge, W. C. (2019). Artificial intelligence for diabetic retinopathy screening in Africa. The Lancet Digital Health, 1(1), e6–e7. [CrossRef]
- Bellemo, V., Lim, Z. W., Lim, G., Nguyen, Q. D., Xie, Y., Yip, M. Y. T., Hamzah, H., Ho, J., Lee, X. Q., Hsu, W., Lee, M. L., Musonda, L., Chandran, M., Chipalo-Mutati, G., Muma, M., Tan, G. S. W., Sivaprasad, S., Menon, G., Wong, T. Y., & Ting, D. S. W. (2019). Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study. The Lancet Digital Health, 1(1), e35–e44. [CrossRef]
- Matthys, B., Monnier, N., Ngaradoumadji, M., Toubangue, Y., Delcroix, P., Pereira, M., Schmitz, T., Armour-Marshall, J., Zahorka, M., Sugimoto, K., Léchenne, M., Revault, D., Wyss, K., & Montolnan, A. (2025b). Development and implementation of a digital clinical decision support system to increase the quality of primary healthcare delivery in a refugee setting in Chad. BMC Primary Care, 26(1). [CrossRef]
- Nortey, J. N. N., Takyi, K., Adabo, A., & Suleiman, R. (2023b). Clinical Decision Support Systems implementation in Africa: a systemic review. medRxiv (Cold Spring Harbor Laboratory). [CrossRef]
- Abebe, G. F., Alie, M. S., Yosef, T., Asmelash, D., Dessalegn, D., Adugna, A., & Girma, D. (2025). Role of digital technology in epidemic control: a scoping review on COVID-19 and Ebola. BMJ Open, 15(1), e095007. [CrossRef]
- Ankolekar, A., Eppings, L., Bottari, F., Pinho, I. F., Howard, K., Baker, R., Nan, Y., Xing, X., Walsh, S. L., Vos, W., Yang, G., & Lambin, P. (2024). Using artificial intelligence and predictive modelling to enable learning healthcare systems (LHS) for pandemic preparedness. Computational and Structural Biotechnology Journal, 24, 412–419. [CrossRef]
- Colubri, A., Hartley, M., Siakor, M., Wolfman, V., Felix, A., Sesay, T., Shaffer, J. G., Garry, R. F., Grant, D. S., Levine, A. C., & Sabeti, P. C. (2019). Machine-learning Prognostic Models from the 2014–16 Ebola Outbreak: Data-harmonization Challenges, Validation Strategies, and mHealth Applications. EClinicalMedicine, 11, 54–64. [CrossRef]
- Zheng, J., Lu, S., Li, Q., Li, Y., Xue, J., Gavana, T., Chaki, P., Xiao, N., Mlacha, Y., Wang, D., & Zhou, X. (2024). Deciphering the climate-malaria nexus: A machine learning approach in rural southeastern Tanzania. Public Health, 238, 124–130. [CrossRef]
- Khan, O., Ajadi, J. O., & Hossain, M. P. (2024b). Predicting malaria outbreak in The Gambia using machine learning techniques. PLoS ONE, 19(5), e0299386. [CrossRef]
- Ahmadirad, Z. (2025). The role of AI and machine learning in supply chain optimization. ijsetpub.com.
- Musa, S. M., Haruna, U. A., Aliyu, L. J., Zubairu, M., & Lucero-Prisno, D. E. (2025). Leveraging AI to optimize vaccines supply chain and logistics in Africa: opportunities and challenges. Frontiers in Pharmacology, 16. [CrossRef]
- Atadoga, N. A., Obi, N. O. C., Osasona, N. F., Onwusinkwue, N. S., Daraojimba, N. a. I., & Dawodu, N. S. O. (2024). AI in supply chain optimization: A comparative review of USA and African Trends. International Journal of Science and Research Archive, 11(1), 896–903. [CrossRef]
- Langston, E. M., Hattakitjamroen, V., Hernandez, M., Lee, H. S., Mason, H. Ç., Louis-Charles, W., Charness, N., Czaja, S. J., Rogers, W. A., Sharit, J., & Boot, W. R. (2025). Exploring Artificial Intelligence-Powered Virtual Assistants to Understand their Potential to Support Older Adults’ Search Needs. Human Factors in Healthcare, 100092. [CrossRef]
- Maher, C., Singh, B., Wylde, A., & Chastin, S. (2024). Virtual health assistants: a grand challenge in health communications and behavior change. Frontiers in Digital Health, 6. [CrossRef]
- Chavali, D. P., Dhiman, V. K., & Katari, S. C. (2024). AI powered Virtual Health Assistants: Transforming patient engagement through virtual nursing. IJPS Journal. [CrossRef]
- Ndembi, N., Rammer, B., Fokam, J., Dinodia, U., Tessema, S. K., Nsengimana, J. P., Mwangi, S., Adzogenu, E., Dongmo, L. T., Rees, B., O’Connor, B., Crowell, T. A., James, W., Colizzi, V., Ngongo, N., & Kaseya, J. (2025). Integrating artificial intelligence into African health systems and emergency response: Need for an ethical framework and guidelines. Journal of Public Health in Africa, 16(1). [CrossRef]
- Alaran, M. A., Lawal, S. K., Jiya, M. H., Egya, S. A., Ahmed, M. M., Abdulsalam, A., Haruna, U. A., Musa, M. K., & Lucero-Prisno, D. E. (2025). Challenges and opportunities of artificial intelligence in African health space. Digital Health, 11. [CrossRef]
- Wang, J., & Li, J. (2024). Artificial intelligence empowering public health education: prospects and challenges. Frontiers in Public Health, 12. [CrossRef]
- Sun, L., Yin, C., Xu, Q., & Zhao, W. (2023, July 15). Artificial intelligence for healthcare and medical education: a systematic review. https://pmc.ncbi.nlm.nih.gov/articles/PMC10408516/#:~:text=Results:%20Studies%20have%20shown%20that,we%20have%20made%20some%20suggestions.'.
- Rony, M. K. K., Alrazeeni, D. M., Akter, F., Nesa, L., Das, D. C., Uddin, M. J., Begum, J., Khatun, M. T., Noor, M. A., Ahmad, S., Tanha, S. M., Deb, T. R., & Parvin, M. R. (2024). The role of artificial intelligence in enhancing nurses’ work-life balance. Journal of Medicine Surgery and Public Health, 3, 100135. [CrossRef]
- Al-Surmi, A., Bashiri, M., & Koliousis, I. (2021). AI based decision making: combining strategies to improve operational performance. International Journal of Production Research, 60(14), 4464–4486. [CrossRef]
- Mienye, I. D., Sun, Y., & Ileberi, E. (2024). Artificial intelligence and sustainable development in Africa: A comprehensive review. Machine Learning With Applications, 100591. [CrossRef]
- Digital Health and Innovation (DHI). (2021, August 18). Global strategy on digital health 2020-2025. https://www.who.int/publications/i/item/9789240020924.
- Sokunbi, T. O., & Akinbi, E. O. (2024). The cost of the reemergence of monkeypox: An overview of health financing in Africa. Health Policy OPEN, 7, 100132. [CrossRef]
- Collaborative report unveils the transformative role of Artificial Intelligence and Data Science in advancing global health in Africa | Science for Africa Foundation. (n.d.). https://scienceforafrica.foundation/media-center/collaborative-report-unveils-transformative-role-artificial-intelligence-and-data.
- Shao, D., Ishengoma, F., Nikiforova, A., & Swetu, M. (2024). Comparative analysis of data protection regulations in East African countries. Digital Policy Regulation and Governance. [CrossRef]
- Abdulrauf, L. (2024). The complex path to digital constitutionalism in Africa. In Oxford University Press eBooks. [CrossRef]
- Munung, N. S., Staunton, C., Mazibuko, O., Wall, P. J., & Wonkam, A. (2024). Data protection legislation in Africa and pathways for enhancing compliance in big data health research. Health Research Policy and Systems, 22(1). [CrossRef]
- Hasanzadeh, F., Josephson, C. B., Waters, G., Adedinsewo, D., Azizi, Z., & White, J. A. (2025). Bias recognition and mitigation strategies in artificial intelligence healthcare applications. Npj Digital Medicine, 8(1). [CrossRef]
- Grzybowski, A., Jin, K., & Wu, H. (2024). Challenges of artificial intelligence in medicine and dermatology. Clinics in Dermatology, 42(3), 210–215. [CrossRef]
- Weiner, E. B., Dankwa-Mullan, I., Nelson, W. A., & Hassanpour, S. (2025). Ethical challenges and evolving strategies in the integration of artificial intelligence into clinical practice. PLOS Digital Health, 4(4), e0000810. [CrossRef]
- Cheong, B. C. (2024). Transparency and accountability in AI systems: safeguarding wellbeing in the age of algorithmic decision-making. Frontiers in Human Dynamics, 6. [CrossRef]
- Marko, J. G. O., Neagu, C. D., & Anand, P. B. (2025). Examining inclusivity: the use of AI and diverse populations in health and social care: a systematic review. BMC Medical Informatics and Decision Making, 25(1). [CrossRef]
- Awosiku, O. V., Gbemisola, I. N., Oyediran, O. T., Egbewande, O. M., Lami, J. H., Afolabi, D., Okereke, M., & Effiong, F. (2025). Role of digital health technologies in improving health financing and universal health coverage in Sub-Saharan Africa: a comprehensive narrative review. Frontiers in Digital Health, 7. [CrossRef]
- Oke, G. I., & Sibomana, O. (2025). Adoption of digital health technology in Nigeria: A scoping review of current trends and future directions. Advances in Public Health, 2025(1). [CrossRef]
- Policy briefs. (2024, February 19). POLIWATCH AFRICA. https://poliwatch.africa/index.php/resources/policy-briefs.
- Murithi, B. K., Onyango, C. A., & Muchwat, K. (n.d.). The State of AI in Africa - A policy brief. In The State of Artificial Intelligence in Africa 2023 Report. https://cipit.strathmore.edu/artificial-intelligence/#1684756067281-dafd0a75-19eb.
- Global Center on AI Governance. (n.d.). https://www.globalcenter.ai/research/strengthening-africa-s-ai-ecosystem-through-open-source-innovation-and-policy-alignment.
- Radoli, I. (2025, January 10). Building Data science Capacity across Africa: The Data Science Without Boarders Pathfinder Tour - APHRC. APHRC. https://aphrc.org/blogarticle/building-data-science-capacity-across-africa-the-data-science-without-boarders-pathfinder-tour/.
- Exploring AI’s potential to transform education in Africa. (2024, April 8). Mastercard Foundation. https://mastercardfdn.org/en/articles/exploring-ais-potential-to-transform-education-in-africa/.
- Ojedeji, S. O., & Adejuwon, A. M. (2024). Training future Educational leaders: Incorporating AI in capacity building and professional development. https://ujlle.org.ng/index.php/ujlle/article/view/302.
- Continental Artificial Intelligence Strategy | African Union. (n.d.). https://au.int/en/documents/20240809/continental-artificial-intelligence-strategy.
- Health Ethics & Governance (HEG). (2021, June 28). Ethics and governance of artificial intelligence for health. https://www.who.int/publications/i/item/9789240029200.
- Admin. (2024, November 11). Adoption of Digital Health Technologies in Sub-Saharan Africa. Didida. https://didida-health.eu/adoption-of-digital-health-technologies-in-sub-saharan-africa/.
- Case study: Lesotho’s Healthcare PPP Project – Replicable Success Factors – AFRI Fund Capital. (n.d.). https://afrifundcapital.com/case-study-lesothos-healthcare-ppp-project-replicable-success-factors/.
- Ghanem, S., Moraleja, M., Gravesande, D., & Rooney, J. (2025). Integrating health equity in artificial intelligence for public health in Canada: a rapid narrative review. Frontiers in Public Health, 13. [CrossRef]
- Dankwa-Mullan, I. (2024). Health equity and ethical considerations in using artificial intelligence in public health and medicine. Preventing Chronic Disease, 21. [CrossRef]
- Dychiao, R. G., Nazer, L., Mlombwa, D., & Celi, L. A. (2024). Artificial intelligence and global health equity. BMJ, q2194. [CrossRef]
- Gurevich, E., Hassan, B. E., & Morr, C. E. (2022). Equity within AI systems: What can health leaders expect? Healthcare Management Forum, 36(2), 119–124. [CrossRef]
- Abiodun, K. (2025). Digital infrastructure & sustainable data centers investment in Africa: Role of Tier III & Tier IV. International Journal of Multidisciplinary Research and Growth Evaluation, 6(1), 1878–1888. [CrossRef]
- Harris, R. (2024, August 10). The healthcare crisis in Sub-Saharan Africa: African Mission Healthcare. https://africanmissionhealthcare.org/the-healthcare-crisis-in-sub-saharan-africa/.
- Gültekin, İ., Jaiswal, K., Eyo, U. E., The Graduate Institute of International and Development Studies, & The World Economic Forum. (n.d.). AI for AI: Using Artificial Intelligence to Accelerate Investment. In Source: Image Generated Using Artificial Intelligence. https://www.graduateinstitute.ch/sites/internet/files/2024-09/AI4AI_-Using-AI-to-Accelerate-Investments.docx---Khushi-Jaiswal.pdf.
- https://www.afdb.org/sites/default/files/documents/publications/strategy_for_quality_health_infrastructure_in_africa_2022-2030.pdf.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
