Submitted:
10 June 2025
Posted:
12 June 2025
You are already at the latest version
Abstract
Keywords:
Introduction
Overview of Targeted Therapies in Gu Tumors
Definitions and Classifications of Therapy Resistance
Molecular Mechanisms of Resistance
Strategies to Overcome Therapy Resistance
Clinical Implications and Translational Perspectives
Future Directions
Conclusions
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer J Clin. 2021, 71, 209–49. [Google Scholar] [CrossRef] [PubMed]
- Rawla, P. Epidemiology of Prostate Cancer. World J Oncol. 2019, 10, 63–89. [Google Scholar] [CrossRef] [PubMed]
- Ridyard, D.G.; Buller, D.M.; Ristau, B.T. The Current State of Adjuvant Therapy Following Surgery for High-risk Renal Cell Carcinoma. Eur Urol Focus. 2019, 5, 935–8. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Xu, C.; Lin, P.; Mu, L.; Yang, X. Novel Dihydroartemisinin Derivative Mito-DHA5 Induces Apoptosis Associated with Mitochondrial Pathway in Bladder Cancer Cells. 2021. [Google Scholar]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; et al. Cancer statistics for the year 2020: An overview. Int J Cancer. 2021, 149, 778–89. [Google Scholar] [CrossRef]
- Feng, Z.; Wang, B. Long non-coding RNA HNF1A-AS1 promotes cell viability and migration in human bladder cancer. Oncol Lett. 2018, 15, 4535–40. [Google Scholar] [CrossRef]
- Labadie, B.W.; Balar, A.V.; Luke, J.J. Immune Checkpoint Inhibitors for Genitourinary Cancers: Treatment Indications, Investigational Approaches and Biomarkers. Cancers. 2021, 13, 5415. [Google Scholar] [CrossRef]
- Schmidt, A.L.; Siefker-Radtke, A.; McConkey, D.; McGregor, B. Renal Cell and Urothelial Carcinoma: Biomarkers for New Treatments. Am Soc Clin Oncol Educ Book. 2020, 40, e197–206. [Google Scholar] [CrossRef]
- Maughan, B.L.; Bailey, E.; Gill, D.M.; Agarwal, N. Incidence of Immune-Related Adverse Events with Program Death Receptor-1- and Program Death Receptor-1 Ligand-Directed Therapies in Genitourinary Cancers. Front Oncol. 2017, 7, 56. [Google Scholar] [CrossRef]
- Bahleda, R.; Italiano, A.; Hierro, C.; Mita, A.; Cervantes, A.; Chan, N.; et al. Multicenter Phase I Study of Erdafitinib (JNJ-42756493), Oral Pan-Fibroblast Growth Factor Receptor Inhibitor, in Patients with Advanced or Refractory Solid Tumors. Clin Cancer Res. 2019, 25, 4888–97. [Google Scholar] [CrossRef]
- Olah, C.; Shmorhun, O.; Klamminger, G.G.; Rawitzer, J.; Sichward, L.; Hadaschik, B.; et al. Immunohistochemistry-based molecular subtypes of urothelial carcinoma derive different survival benefit from platinum chemotherapy. J Pathol: Clin Res. 2025, 11, e70017. [Google Scholar] [CrossRef]
- Boguslawska, J.; Kryst, P.; Poletajew, S.; Piekielko-Witkowska, A. TGF-β and microRNA Interplay in Genitourinary Cancers. Cells. 2019, 8, 1619. [Google Scholar] [CrossRef] [PubMed]
- Giunchi, F.; Franceschini, T.; Fiorentino, M. A narrative review of individualized treatments of genitourinary tumors: is the future brighter with molecular evaluations? Transl Androl Urol. 10, 1553561–1551561. [CrossRef] [PubMed]
- Zarrabi, K.; Paroya, A.; Wu, S. Emerging therapeutic agents for genitourinary cancers. J Hematol Oncol. 2019, 12, 89. [Google Scholar] [CrossRef]
- Weyerer, V.; Eckstein, M.; Compérat, E.; Juette, H.; Gaisa, N.T.; Allory, Y.; et al. Pure Large Nested Variant of Urothelial Carcinoma (LNUC) Is the Prototype of an FGFR3 Mutated Aggressive Urothelial Carcinoma with Luminal-Papillary Phenotype. Cancers. 2020, 12, 763. [Google Scholar] [CrossRef]
- Ding, L.; Wang, R.; Shen, D.; Cheng, S.; Wang, H.; Lu, Z.; et al. Role of noncoding RNA in drug resistance of prostate cancer. Cell Death Dis. 2021, 12, 590. [Google Scholar] [CrossRef]
- Wu S, Mu C, Sun J jia, Hu X rong, Yao Y hong. Role of Exosomal Non-Coding RNA in the Tumour Microenvironment of Genitourinary System Tumours. Technol Cancer Res Treat. 2023, 22, 15330338231198348. [Google Scholar] [CrossRef]
- Gerke, M.B.; Jansen, C.S.; Bilen, M.A. Circulating Tumor DNA in Genitourinary Cancers: Detection, Prognostics, and Therapeutic Implications. Cancers. 2024, 16, 2280. [Google Scholar] [CrossRef] [PubMed]
- Michaelis, J.; Himmelsbach, R.; Metzger, P.; Lassmann, S.; Börries, M.; Werner, M.; et al. Primary Results of Patients with Genitourinary Malignancies Presented at a Molecular Tumor Board. Urol Int. 2024, 108, 383–91. [Google Scholar] [CrossRef]
- Du, X.; Shao, Y.; Gao, H.; Zhang, X.; Zhang, H.; Ban, Y.; et al. CMTR1-ALK: an ALK fusion in a patient with no response to ALK inhibitor crizotinib. Cancer Biol Ther. 2018, 19, 962–6. [Google Scholar] [CrossRef]
- Barth, D.A.; Juracek, J.; Slaby, O.; Pichler, M.; Calin, G.A. lncRNA and Mechanisms of Drug Resistance in Cancers of the Genitourinary System. Cancers. 2020, 12, 2148. [Google Scholar] [CrossRef]
- Landmesser, M.E.; Raup-Konsavage, W.M.; Lehman, H.L.; Stairs, D.B. Loss of p120ctn causes EGFR-targeted therapy resistance and failure. PLoS ONE. 2020, 15, e0241299. [Google Scholar] [CrossRef] [PubMed]
- Sousa, M.; Peate, M.; Lewis, C.; Jarvis, S.; Willis, A.; Hickey, M.; et al. Exploring knowledge, attitudes and experience of genitourinary symptoms in women with early breast cancer on adjuvant endocrine therapy. Eur J Cancer Care. 2018, 27, e12820. [Google Scholar] [CrossRef] [PubMed]
- Aziz, Z.; Naseer, H.; Altaf, A. Challenges in Access to New Therapeutic Agents: Marginalized Patients With Cancer in Pakistan and the Need for New Guidelines. JCO Glob Oncol. 2022, 8, e2100132. [Google Scholar] [CrossRef]
- Faraj, K.S.; Kaufman, S.R.; Oerline, M.; Dall, C.; Srivastava, A.; Caram, M.E.V.; et al. The 340B Drug Pricing Program and Management of Advanced Prostate Cancer. Cancer Med. 2024, 14, e70552. [Google Scholar] [CrossRef]
- Shorning, B.Y.; Dass, M.S.; Smalley, M.J.; Pearson, H.B. The PI3K-AKT-mTOR Pathway and Prostate Cancer: At the Crossroads of AR, MAPK, and WNT Signaling. Int J Mol Sci. 2020, 21, 4507. [Google Scholar] [CrossRef]
- GUOL; LIUY; DINGZ; SUNW; YUANM Signal transduction by M3 muscarinic acetylcholine receptor in prostate cancer. Oncol Lett. 2015, 11, 385–92.
- Gasmi, A.; Roubaud, G.; Dariane, C.; Barret, E.; Beauval, J.B.; Brureau, L.; et al. Overview of the Development and Use of Akt Inhibitors in Prostate Cancer. J Clin Med. 2021, 11, 160. [Google Scholar] [CrossRef] [PubMed]
- Crumbaker, M.; Khoja, L.; Joshua, A. AR Signaling and the PI3K Pathway in Prostate Cancer. Cancers. 2017, 9, 34. [Google Scholar] [CrossRef]
- Zhang, X.; Li, H.; Wang, Y.; Zhao, H.; Wang, Z.; Chan, F.L. Nuclear receptor NURR1 functions to promote stemness and epithelial-mesenchymal transition in prostate cancer via its targeting of Wnt/β-catenin signaling pathway. Cell Death Dis. 2024, 15, 234. [Google Scholar] [CrossRef]
- Murillo-Garzón, V.; Kypta, R. WNT signalling in prostate cancer. Nat Rev Urol. 2017, 14, 683–96. [Google Scholar] [CrossRef]
- Luo, J.; Wang, D.; Wan, X.; Xu, Y.; Lu, Y.; Kong, Z.; et al. Crosstalk Between AR and Wnt Signaling Promotes Castration-Resistant Prostate Cancer Growth. OncoTargets Ther. 2020, 13, 9257–67. [Google Scholar] [CrossRef] [PubMed]
- Khurana, N.; Sikka, S.C. Interplay Between SOX9, Wnt/β-Catenin and Androgen Receptor Signaling in Castration-Resistant Prostate Cancer. Int J Mol Sci. 2019, 20, 2066. [Google Scholar] [CrossRef] [PubMed]
- Mourkioti, I.; Angelopoulou, A.; Belogiannis, K.; Lagopati, N.; Potamianos, S.; Kyrodimos, E.; et al. Interplay of Developmental Hippo–Notch Signaling Pathways with the DNA Damage Response in Prostate Cancer. Cells. 2022, 11, 2449. [Google Scholar] [CrossRef]
- Wang, L.; Zi, H.; Luo, Y.; Liu, T.; Zheng, H.; Xie, C.; et al. Inhibition of Notch pathway enhances the anti-tumor effect of docetaxel in prostate cancer stem-like cells. Stem Cell Res Ther. 2020, 11, 258. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Lu, Y.L.; Yang, Y.; Hu, L.B.; Bai, Y.; Li, R.Q.; et al. Overexpression of lncRNA ANRIL promoted the proliferation and migration of prostate cancer cells via regulating let-7a/TGF- β 1/ Smad signaling pathway. Cancer Biomark. 2018, 21, 613–20. [Google Scholar] [CrossRef]
- Datta, D.; Aftabuddin Md Gupta, D.K.; Raha, S.; Sen, P. Human Prostate Cancer Hallmarks Map. Sci Rep. 2016, 6, 30691. [Google Scholar] [CrossRef]
- Li, W.; Wang, Y.; Tan, S.; Rao, Q.; Zhu, T.; Huang, G.; et al. Overexpression of Epidermal Growth Factor Receptor (EGFR) and HER-2 in Bladder Carcinoma and Its Association with Patients’ Clinical Features. Méd Sci Monit : Int Méd J Exp Clin Res. 2018, 24, 7178–85. [Google Scholar] [CrossRef]
- Xie, W.; Chen, F.; Zhang, L.; Lin, B.; Ye, J.; Yu, Z.; et al. Gefitinib effectively treated advanced lung cancer with a rare EGFR L747P mutation in a kidney transplant recipient: the first case report. 2023. [Google Scholar]
- Rinaldi, L.; Chiuso, F.; Senatore, E.; Borzacchiello, D.; Lignitto, L.; Iannucci, R.; et al. Downregulation of praja2 restrains endocytosis and boosts tyrosine kinase receptors in kidney cancer. Commun Biol. 2024, 7, 208. [Google Scholar] [CrossRef]
- Zubair, T.; Bandyopadhyay, D. Small Molecule EGFR Inhibitors as Anti-Cancer Agents: Discovery, Mechanisms of Action, and Opportunities. Int J Mol Sci. 2023, 24, 2651. [Google Scholar] [CrossRef]
- Ghosh, T.M.; Mitra, A.K.; Davis, J.; Cummings, B.; Yates, C.; Arnold, R. Abstract LB-267: Transcriptomic and epigenomic analysis of metastatic castration-resistant prostate cancer and a pan-cancer analysis of its genetic signatures. Cancer Res. 2019;79(13_Supplement):LB-267-LB-267.
- Benjamin, D.J.; Rezazadeh, A. Characterization of genitourinary drug approvals by the FDA, 2020-2024. J Clin Oncol. 2025;43(5_suppl):872–872.
- Froehner, M.; Hakenberg, O.W.; Wirth, M.P. Molecular Therapy in Urologic Oncology. Urol Int. 2007, 79, 1–7. [Google Scholar] [CrossRef]
- Mooney, D.; Paluri, R.; Mehta, A.; Goyal, J.; Sonpavde, G. Update in Systemic Therapy of Urologic Malignancies. Postgrad Med. 2014, 126, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, J.; Muneer, A.; Rosette Jde la Powles, T. Oxford Textbook of Oncology. 2016;602–27.
- Cimadamore, A.; Scarpelli, M.; Santoni, M.; Massari, F.; Tartari, F.; Cerqueti, R.; et al. Genitourinary Tumors: Update on Molecular Biomarkers for Diagnosis, Prognosis and Prediction of Response to Therapy. Curr Drug Metab. 2019, 20, 305–12. [Google Scholar] [CrossRef]
- Gandhy, S.U.; Madan, R.A.; Aragon-Ching, J.B. The immunotherapy revolution in genitourinary malignancies. Immunotherapy. 2020, 12, 819–31. [Google Scholar] [CrossRef]
- Haidl, F.; Pfister, D.; Heidenreich, A.; Heidegger, I. Antiangiogenic therapies in urogenital malignancies. memo - Mag Eur Méd Oncol. 2017, 10, 202–5. [Google Scholar] [CrossRef] [PubMed]
- Sio, T.T.; Ko, J.; Gudena, V.K.; Verma, N.; Chaudhary, U.B. Chemotherapeutic and targeted biological agents for metastatic bladder cancer: A comprehensive review. Int J Urol. 2014, 21, 630–7. [Google Scholar] [CrossRef]
- Yim, A.; Alberto, M.; Herold, M.; Woon, D.; Ischia, J.; Bolton, D. “Pass the Genetic Scalpel”: A Comprehensive Review of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) in Urological Cancers. Société Int dUrol J. 2024, 5, 16–30. [Google Scholar] [CrossRef]
- Blonde, L.; Khunti, K.; Harris, S.B.; Meizinger, C.; Skolnik, N.S. Interpretation and Impact of Real-World Clinical Data for the Practicing Clinician. Adv Ther. 2018, 35, 1763–74. [Google Scholar] [CrossRef] [PubMed]
- Maio, M.D.; Perrone, F.; Conte, P. Real-World Evidence in Oncology: Opportunities and Limitations. Oncol. 2019, 25, e746–52. [Google Scholar] [CrossRef]
- Graham, J.; Heng, D.Y. Real-world evidence in metastatic renal cell carcinoma. Tumori J. 2018, 104, 76–82. [Google Scholar] [CrossRef]
- Pili, R.; Qin, R.; Flynn, P.J.; Picus, J.; Millward, M.; Ho, W.M.; et al. A Phase II Safety and Efficacy Study of the Vascular Endothelial Growth Factor Receptor Tyrosine Kinase Inhibitor Pazopanib in Patients With Metastatic Urothelial Cancer. Clin Genitourin Cancer. 2013, 11, 477–83. [Google Scholar] [CrossRef]
- Müller, B.; Curatolo, R.; Juratli, H.; Husic, A.; Nehring, J.; Potlukova, E.; et al. Severe cutaneous toxicity in a 67-year-old patient with metastatic urothelial carcinoma undergoing therapy with enfortumab vedotin and pembrolizumab. Eur J Case Rep Intern Med. 2024, 11, 005003. [Google Scholar] [CrossRef]
- Brahmer, J.R.; Lacchetti, C.; Schneider, B.J.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; et al. Management of Immune-Related Adverse Events in Patients Treated With Immune Checkpoint Inhibitor Therapy: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol. 2018, 36, JCO. [Google Scholar] [CrossRef] [PubMed]
- Xipell, M.; Victoria, I.; Hoffmann, V.; Villarreal, J.; García-Herrera, A.; Reig, O.; et al. Acute tubulointerstitial nephritis associated with atezolizumab, an anti-programmed death-ligand 1 (pd-l1) antibody therapy. OncoImmunology. 2018, 7, e1445952. [Google Scholar] [CrossRef]
- Ertl, I.E.; Shariat, S.F.; Mostafaei, H.; Ilijazi, D.; Loriot, Y. Fibroblast growth factor receptors across urothelial carcinoma landscape. Curr Opin Urol. 2020, 30, 557–65. [Google Scholar] [CrossRef] [PubMed]
- Kaymakcalan, M.D.; Xie, W.; Albiges, L.; North, S.A.; Kollmannsberger, C.K.; Smoragiewicz, M.; et al. Risk factors and model for predicting toxicity-related treatment discontinuation in patients with metastatic renal cell carcinoma treated with vascular endothelial growth factor–targeted therapy: Results from the International Metastatic Renal Cell Carcinoma Database Consortium. Cancer. 2015, 122, 411–9. [Google Scholar]
- Donskov, F.; Motzer, R.J.; Voog, E.; Hovey, E.; Grüllich, C.; Nott, L.M.; et al. Outcomes based on age in the phase III METEOR trial of cabozantinib versus everolimus in patients with advanced renal cell carcinoma. Eur J Cancer. 2020, 126, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Klümpen, H.J.; Samer, C.F.; Mathijssen, R.H.J.; Schellens, J.H.M.; Gurney, H. Moving towards dose individualization of tyrosine kinase inhibitors. Cancer Treat Rev. 2011, 37, 251–60. [Google Scholar] [CrossRef]
- Ruiz, J.N.; Belum, V.R.; Creel, P.; Cohn, A.; Ewer, M.; Lacouture, M.E. Current Practices in the Management of Adverse Events Associated With Targeted Therapies for Advanced Renal Cell Carcinoma: A National Survey of Oncologists. Clin Genitourin Cancer. 2014, 12, 341–7. [Google Scholar] [CrossRef]
- Yabroff, K.R.; Shi, K.S.; Zhao, J.; Freedman, A.N.; Zheng, Z.; Nogueira, L.; et al. Importance of Patient Health Insurance Coverage and Out-of-Pocket Costs for Genomic Testing in Oncologists’ Treatment Decisions. JCO Oncol Pr. 2024, 20, 429–37. [Google Scholar] [CrossRef]
- Krajewski, K.M.; Franchetti, Y.; Nishino, M.; Fay, A.P.; Ramaiya, N.; Abbeele ADVden et, a.l. 10% Tumor Diameter Shrinkage on the First Follow-Up Computed Tomography Predicts Clinical Outcome in Patients With Advanced Renal Cell Carcinoma Treated With Angiogenesis Inhibitors: A Follow-Up Validation Study. Oncol. 2014, 19, 507–14. [Google Scholar] [CrossRef]
- Yoshii, Y.; Furukawa, T.; Oyama, N.; Hasegawa, Y.; Kiyono, Y.; Nishii, R.; et al. Fatty Acid Synthase Is a Key Target in Multiple Essential Tumor Functions of Prostate Cancer: Uptake of Radiolabeled Acetate as a Predictor of the Targeted Therapy Outcome. PLoS ONE. 2013, 8, e64570. [Google Scholar] [CrossRef]
- Sobol, R.E.; Menander, K.B.; Chada, S.; Wiederhold, D.; Sellman, B.; Talbott, M.; et al. Meta-Analysis of Adenoviral p53 Gene Therapy Clinical Trials in Recurrent Head and Neck Squamous Cell Carcinoma. medRxiv. 2021;2021.01.06.20248743.
- Lv, H.; Zhou, Q.H.; Zhong, D.S. A pooled analysis of molecularly targeted agents for treatment of metastatic oesophago-gastric cancer in elderly patients. Arch Méd Sci : AMS. 2020, 16, 253–9. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Zhang, Y.; Ma, Y.; Zhou, T.; Zhang, J.; Hong, S.; et al. Optimal tumor shrinkage predicts long-term outcome in advanced nonsmall cell lung cancer (NSCLC) treated with target therapy. Medicine. 2016, 95, e4176. [Google Scholar] [CrossRef] [PubMed]
- Kalemoglu, E.; Jani, Y.; Canaslan, K.; Bilen, M.A. The role of immunotherapy in targeting tumor microenvironment in genitourinary cancers. Front Immunol. 2025, 16, 1506278. [Google Scholar] [CrossRef]
- Ni, T.; Liu, G.; Huo, T.; Shi, W.; Gu, Q.; Ji, Q. Abstract 6009: Developing drug-induced resistant tumor models for efficacy evaluation of next-generation anticancer therapies. Cancer Res. 2022;82(12_Supplement):6009–6009.
- Ramos, P.; Bentires-Alj, M. Mechanism-based cancer therapy: resistance to therapy, therapy for resistance. Oncogene. 2014, 34, 3617–26. [Google Scholar] [CrossRef]
- Ni, T.; Zhang, Z.; Tang, X.; Shi, W.; Gu, Q.; Ji, Q. Abstract 2958: Drug induced resistant tumor models enable the development of next-generation anticancer therapeutics. Cancer Res. 2021;81(13_Supplement):2958–2958.
- Gumusay, O.; Vitiello, P.P.; Wabl, C.; Corcoran, R.B.; Bardelli, A.; Rugo, H.S. Strategic Combinations to Prevent and Overcome Resistance to Targeted Therapies in Oncology. Am Soc Clin Oncol Educ Book. 2020, 40, e292–308. [Google Scholar] [CrossRef]
- Ou, X.; Gao, G.; Habaz, I.A.; Wang, Y. Mechanisms of resistance to tyrosine kinase inhibitor-targeted therapy and overcoming strategies. MedComm. 2024, 5, e694. [Google Scholar] [CrossRef]
- Hopper-Borge, E.A.; Nasto, R.E.; Ratushny, V.; Weiner, L.M.; Golemis, E.A.; Astsaturov, I. Mechanisms of tumor resistance to EGFR-targeted therapies. Expert Opin Ther Targets. 2009, 13, 339–62. [Google Scholar] [CrossRef] [PubMed]
- Ong, M.; Banerji, U. Oxford Textbook of Oncology. 2016;209–19.
- Evans, W.E.; Johnson, J.A. PHARMACOGENOMICS: The Inherited Basis for Interindividual Differences in Drug Response. Annu Rev Genom Hum Genet. 2001, 2, 9–39. [Google Scholar] [CrossRef]
- Hurria, A.; Lichtman, S.M. Pharmacokinetics of Chemotherapy in the Older Patient. Cancer Control. 2007, 14, 32–43. [Google Scholar] [CrossRef]
- Hedrich, W.D.; Fandy, T.E.; Ashour, H.M.; Wang, H.; Hassan, H.E. Antibody–Drug Conjugates: Pharmacokinetic/Pharmacodynamic Modeling, Preclinical Characterization, Clinical Studies, and Lessons Learned. Clin Pharmacokinet. 2017, 57, 687–703. [Google Scholar] [CrossRef] [PubMed]
- Bellmunt, J.; Wit Rde Vaughn, D.J.; Fradet, Y.; Lee, J.L.; Fong, L.; et al. Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. N Engl J Med. 2017, 376, 1015–26. [Google Scholar] [CrossRef] [PubMed]
- Hansen, A.R.; Massard, C.; Ott, P.A.; Haas, N.B.; Lopez, J.S.; Ejadi, S.; et al. Pembrolizumab for advanced prostate adenocarcinoma: findings of the KEYNOTE-028 study. Ann Oncol. 2018, 29, 1807–13. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Escudier, B.; McDermott, D.F.; George, S.; Hammers, H.J.; Srinivas, S.; et al. Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. N Engl J Med. 2015, 373, 1803–13. [Google Scholar] [CrossRef]
- Massard, C.; Gordon, M.S.; Sharma, S.; Rafii, S.; Wainberg, Z.A.; Luke, J.; et al. Safety and Efficacy of Durvalumab (MEDI4736), an Anti–Programmed Cell Death Ligand-1 Immune Checkpoint Inhibitor, in Patients With Advanced Urothelial Bladder Cancer. J Clin Oncol. 2016, 34, 3119–25. [Google Scholar] [CrossRef]
- McGregor, B.A.; Campbell, M.T.; Xie, W.; Farah, S.; Bilen, M.A.; Schmidt, A.L.; et al. Results of a multicenter, phase 2 study of nivolumab and ipilimumab for patients with advanced rare genitourinary malignancies. Cancer. 2020, 127, 840–9. [Google Scholar] [CrossRef]
- Shih, Y.C.T.; Xu, Y.; Liu, L.; Smieliauskas, F. Rising Prices of Targeted Oral Anticancer Medications and Associated Financial Burden on Medicare Beneficiaries. J Clin Oncol. 2017, 35, JCO. [Google Scholar] [CrossRef]
- Yabroff, K.R.; Zhao, J.; Moor JSde Sineshaw, H.M.; Freedman, A.N.; Zheng, Z.; et al. Factors Associated With Oncologist Discussions of the Costs of Genomic Testing and Related Treatments. JNCI: J Natl Cancer Inst. 2019, 112, 498–506. [Google Scholar] [CrossRef]
- Zafar, S.Y.; Peppercorn, J.M.; Schrag, D.; Taylor, D.H.; Goetzinger, A.M.; Zhong, X.; et al. The Financial Toxicity of Cancer Treatment: A Pilot Study Assessing Out-of-Pocket Expenses and the Insured Cancer Patient’s Experience. Oncol. 2013, 18, 381–90. [Google Scholar] [CrossRef]
- Gong, J.; Pan, K.; Fakih, M.; Pal, S.; Salgia, R. Value-based genomics. Oncotarget. 2018, 9, 15792–815. [Google Scholar] [CrossRef]
- Liu, A.; Vicenzi, P.; Sharma, I.; Orr, K.; Teller, C.; Koentz, M.; et al. Molecular Tumor Boards: The Next Step towards Precision Therapy in Cancer Care. Hematol Rep. 2023, 15, 244–55. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Tannir, N.M.; McDermott, D.F.; Frontera, O.A.; Melichar, B.; Choueiri, T.K.; et al. Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma. N Engl J Med. 2018, 378, 1277–90. [Google Scholar] [CrossRef] [PubMed]
- Dudani, S.; Graham, J.; Wells, J.C.; Bakouny, Z.; Pal, S.K.; Dizman, N.; et al. First-line Immuno-Oncology Combination Therapies in Metastatic Renal-cell Carcinoma: Results from the International Metastatic Renal-cell Carcinoma Database Consortium. Eur Urol. 2019, 76, 861–7. [Google Scholar] [CrossRef]
- Yi, M.; Zheng, X.; Niu, M.; Zhu, S.; Ge, H.; Wu, K. Combination strategies with PD-1/PD-L1 blockade: current advances and future directions. Mol Cancer. 2022, 21, 28. [Google Scholar] [CrossRef]
- Schulz, G.B.; Black, P.C. Combination therapies involving checkpoint-inhibitors for treatment of urothelial carcinoma: a narrative review. Transl Androl Urol. 2021, 0, 0–0. [Google Scholar] [CrossRef] [PubMed]
- Kamoun, A.; Reyniès Ade Allory, Y.; Sjödahl, G.; Robertson, A.G.; Seiler, R.; et al. A Consensus Molecular Classification of Muscle-invasive Bladder Cancer. Eur Urol. 2020, 77, 420–33. [Google Scholar] [CrossRef]
- Ribas, A.; Wolchok, J.D. Cancer immunotherapy using checkpoint blockade. Science. 2018, 359, 1350–5. [Google Scholar] [CrossRef]
- Kirtane, K.; Elmariah, H.; Chung, C.H.; Abate-Daga, D. Adoptive cellular therapy in solid tumor malignancies: review of the literature and challenges ahead. J Immunother Cancer. 2021, 9, e002723. [Google Scholar] [CrossRef]
- Tong, Z.; Yan, C.; Dong, Y.A.; Yao, M.; Zhang, H.; Liu, L.; et al. Whole-exome sequencing reveals potential mechanisms of drug resistance to FGFR3-TACC3 targeted therapy and subsequent drug selection: towards a personalized medicine. BMC Méd Genom. 2020, 13, 138. [Google Scholar] [CrossRef]
- Almassalha, L.M.; Bauer, G.M.; Chandler, J.E.; Gladstein, S.; Szleifer, I.; Roy, H.K.; et al. The Greater Genomic Landscape: The Heterogeneous Evolution of Cancer. Cancer Res. 2016, 76, 5605–9. [Google Scholar] [CrossRef]
- Shin, D.S.; Zaretsky, J.M.; Escuin-Ordinas, H.; Garcia-Diaz, A.; Hu-Lieskovan, S.; Kalbasi, A.; et al. Primary Resistance to PD-1 Blockade Mediated by JAK1/2 Mutations. Cancer Discov. 2017, 7, 188–201. [Google Scholar] [CrossRef]
- Gurjao, C.; Liu, D.; Hofree, M.; AlDubayan, S.H.; Wakiro, I.; Su, M.J.; et al. Intrinsic Resistance to Immune Checkpoint Blockade in a Mismatch Repair–Deficient Colorectal Cancer. Cancer Immunol Res. 2019, 7, 1230–6. [Google Scholar] [CrossRef] [PubMed]
- Tie, Y.; Chen, C.; Yang, Y.; Qian, Z.; Yuan, H.; Wang, H.; et al. Upregulation of let-7f-5p promotes chemotherapeutic resistance in colorectal cancer by directly repressing several pro-apoptotic proteins. Oncol Lett. 2018, 15, 8695–702. [Google Scholar] [CrossRef] [PubMed]
- Rieth, J.; Subramanian, S. Mechanisms of Intrinsic Tumor Resistance to Immunotherapy. Int J Mol Sci. 2018, 19, 1340. [Google Scholar] [CrossRef]
- Zhang, G.; Frederick, D.T.; Wu, L.; Wei, Z.; Krepler, C.; Srinivasan, S.; et al. Targeting mitochondrial biogenesis to overcome drug resistance to MAPK inhibitors. J Clin Investig. 2016, 126, 1834–56. [Google Scholar] [CrossRef]
- França, G.S.; Baron, M.; Pour, M.; King, B.R.; Rao, A.; Misirlioglu, S.; et al. Drug-induced adaptation along a resistance continuum in cancer cells. bioRxiv. 4968. [Google Scholar]
- Zhao, X.; Wangmo, D.; Robertson, M.; Subramanian, S. Acquired Resistance to Immune Checkpoint Blockade Therapies. Cancers. 2020, 12, 1161. [Google Scholar] [CrossRef] [PubMed]
- Seliger, B.; Massa, C. Modulation of Lymphocyte Functions in the Microenvironment by Tumor Oncogenic Pathways. Front Immunol. 2022, 13, 883639. [Google Scholar] [CrossRef]
- Adelaiye-Ogala, R.M.; Gryder, B.; Nguyen, Y.T.M.; Alilin, A.N.; Grayson, A.; Jansson, K.H.; et al. Targeting the PI3K/AKT pathway overcomes enzalutamide resistance by inhibiting induction of the glucocorticoid receptor. bioRxiv. 3803. [Google Scholar]
- Datta, J.; Damodaran, S.; Parks, H.; Ocrainiciuc, C.; Miya, J.; Yu, L.; et al. Akt Activation Mediates Acquired Resistance to Fibroblast Growth Factor Receptor Inhibitor BGJ398. Mol Cancer Ther. 2017, 16, 614–24. [Google Scholar] [CrossRef]
- Lau, D.K.; Jenkins, L.; Weickhardt, A. Mechanisms of acquired resistance to fibroblast growth factor receptor targeted therapy. Cancer Drug Resist. 2019, 2, 568–79. [Google Scholar] [CrossRef]
- Bockorny, B.; Rusan, M.; Chen, W.; Liao, R.G.; Li, Y.; Piccioni, F.; et al. RAS-MAPK reactivation facilitates acquired resistance in FGFR1-amplified lung cancer and underlies a rationale for upfront FGFR-MEK blockade. Mol Cancer Ther. 2018, 17, molcanther. [Google Scholar] [CrossRef]
- Ulanet, D.B.; Ludwig, D.L.; Kahn, C.R.; Hanahan, D. Insulin receptor functionally enhances multistage tumor progression and conveys intrinsic resistance to IGF-1R targeted therapy. Proc Natl Acad Sci. 2010, 107, 10791–8. [Google Scholar] [CrossRef] [PubMed]
- Buck, E.; Gokhale, P.C.; Koujak, S.; Brown, E.; Eyzaguirre, A.; Tao, N.; et al. Compensatory Insulin Receptor (IR) Activation on Inhibition of Insulin-Like Growth Factor-1 Receptor (IGF-1R): Rationale for Cotargeting IGF-1R and IR in Cancer. Mol Cancer Ther. 2010, 9, 2652–64. [Google Scholar] [CrossRef]
- Niederst, M.J.; Engelman, J.A. Bypass Mechanisms of Resistance to Receptor Tyrosine Kinase Inhibition in Lung Cancer. Sci Signal. 2013, 6, re6. [Google Scholar] [CrossRef]
- Manstein Vvon Yang, C.M.; Richter, D.; Delis, N.; Vafaizadeh, V.; Groner, B. Resistance of Cancer Cells to Targeted Therapies Through the Activation of Compensating Signaling Loops. Curr Signal Transduct Ther. 2014, 8, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Maleki, S.; Jabalee, J.; Garnis, C. The Role of Extracellular Vesicles in Mediating Resistance to Anticancer Therapies. Int J Mol Sci. 2021, 22, 4166. [Google Scholar] [CrossRef]
- Izzo, S.; Naponelli, V.; Bettuzzi, S. Flavonoids as Epigenetic Modulators for Prostate Cancer Prevention. Nutrients. 2020, 12, 1010. [Google Scholar] [CrossRef] [PubMed]
- Li, L.C.; Carroll, P.R.; Dahiya, R. Epigenetic Changes in Prostate Cancer: Implication for Diagnosis and Treatment. J Natl Cancer Inst. 2005, 97, 103–15. [Google Scholar] [CrossRef]
- Alkhouli, M.A.; Bazargan, S.; Pilon-Thomas, S.; Poch, M.; Chahoud, J. Current State of Cell Therapies for Genitourinary Malignancies. Cancer J. 2022, 28, 294–300. [Google Scholar] [CrossRef]
- Bernardo, C.; Eriksson, P.; Marzouka, N.; Liedberg, F.; Sjödahl, G.; Höglund, M. Molecular pathology of the luminal class of urothelial tumors. J Pathol. 2019, 249, 308–18. [Google Scholar] [CrossRef]
- Arabi, T.Z.; Ashraf, N.; Sabbah, B.N.; Ouban, A. Claudins in genitourinary tract neoplasms: mechanisms, prognosis, and therapeutic prospects. Front Cell Dev Biol. 2023, 11, 1308082. [Google Scholar] [CrossRef]
- Zhang, X.; Nguyen, K.D.; Rudnick, P.; Roper, N.; Kawaler, E.; Maity, T.K.; et al. Quantitative mass spectrometry to interrogate proteomic heterogeneity in metastatic lung adenocarcinoma and validate a novel somatic mutation CDK12-G879V. bioRxiv. 8313. [Google Scholar]
- Jilaveanu, L.B.; Shuch, B.; Zito, C.R.; Parisi, F.; Barr, M.; Kluger, Y.; et al. PD-L1 Expression in Clear Cell Renal Cell Carcinoma: An Analysis of Nephrectomy and Sites of Metastases. J Cancer. 2014, 5, 166–72. [Google Scholar] [CrossRef] [PubMed]
- Saito, T.; Kondo, C.; Shitara, K.; Ito, Y.; Saito, N.; Ikehara, Y.; et al. Comparison of intratumoral heterogeneity of HER2 expression between primary tumor and multiple organ metastases in gastric cancer: Clinicopathological study of three autopsy cases and one resected case. Pathol Int. 2015, 65, 309–17. [Google Scholar] [CrossRef]
- Shuch, B.; Falbo, R.; Parisi, F.; Adeniran, A.; Kluger, Y.; Kluger, H.M.; et al. MET Expression in Primary and Metastatic Clear Cell Renal Cell Carcinoma: Implications of Correlative Biomarker Assessment to MET Pathway Inhibitors. BioMed Res Int. 2015, 2015, 192406. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Tsang, J.Y.S.; Ni, Y.; Tse, G.M. Intratumoral Heterogeneity in Breast Cancer: A Comparison of Primary and Metastatic Breast Cancers. Oncol. 2017, 22, 487–90. [Google Scholar] [CrossRef] [PubMed]
- Grinda, T.; Joyon, N.; Lusque, A.; Lefèvre, S.; Arnould, L.; Penault-Llorca, F.; et al. Phenotypic discordance between primary and metastatic breast cancer in the large-scale real-life multicenter French ESME cohort. npj Breast Cancer. 2021, 7, 41. [Google Scholar] [CrossRef]
- Wang, W.; Ye, L.F.; Bao, H.; Hu, M.T.; Han, M.; Tang, H.M.; et al. Heterogeneity and evolution of tumour immune microenvironment in metastatic gastroesophageal adenocarcinoma. Gastric Cancer. 2022, 25, 1017–30. [Google Scholar] [CrossRef]
- Turajlic, S.; Xu, H.; Litchfield, K.; Rowan, A.; Chambers, T.; Lopez, J.I.; et al. Tracking Cancer Evolution Reveals Constrained Routes to Metastases: TRACERx Renal. Cell. 2018, 173, 581–594. [Google Scholar] [CrossRef]
- Burrell, R.A.; Swanton, C. Tumour heterogeneity and the evolution of polyclonal drug resistance. Mol Oncol. 2014, 8, 1095–111. [Google Scholar] [CrossRef]
- Sottoriva, A.; Kang, H.; Ma, Z.; Graham, T.A.; Salomon, M.P.; Zhao, J.; et al. A Big Bang model of human colorectal tumor growth. Nat Genet. 2015, 47, 209–16. [Google Scholar] [CrossRef]
- McGranahan, N.; Swanton, C. Clonal Heterogeneity and Tumor Evolution: Past, Present, and the Future. Cell. 2017, 168, 613–28. [Google Scholar] [CrossRef]
- Landau, D.A.; Carter, S.L.; Stojanov, P.; McKenna, A.; Stevenson, K.; Lawrence, M.S.; et al. Evolution and Impact of Subclonal Mutations in Chronic Lymphocytic Leukemia. Cell. 2013, 152, 714–26. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.J.; Lin, D.C.; Dinh, H.Q.; Mayakonda, A.; Jiang, Y.Y.; Chang, C.; et al. Spatial intratumoral heterogeneity and temporal clonal evolution in esophageal squamous cell carcinoma. Nat Genet. 2016, 48, 1500–7. [Google Scholar] [CrossRef] [PubMed]
- Lamprecht, S.; Schmidt, E.M.; Blaj, C.; Hermeking, H.; Jung, A.; Kirchner, T.; et al. Multicolor lineage tracing reveals clonal architecture and dynamics in colon cancer. Nat Commun. 2017, 8, 1406. [Google Scholar] [CrossRef] [PubMed]
- Larionova, I.; Tuguzbaeva, G.; Ponomaryova, A.; Stakheyeva, M.; Cherdyntseva, N.; Pavlov, V.; et al. Tumor-Associated Macrophages in Human Breast, Colorectal, Lung, Ovarian and Prostate Cancers. Front Oncol. 2020, 10, 566511. [Google Scholar] [CrossRef]
- Ghambashidze, K.; Chikhladze, R.; Saladze, T.; Hoopes, P.J.; Shubitidze, F.E. coli Phagelysate: A Primer to Enhance Nanoparticles and Drug Deliveries in Tumor. Cancers. 2023, 15, 2315. [Google Scholar] [CrossRef]
- Gambera, S.; Abarrategi, A.; González-Camacho, F.; Morales-Molina, Á.; Roma, J.; Alfranca, A.; et al. Clonal dynamics in osteosarcoma defined by RGB marking. Nat Commun. 2018, 9, 3994. [Google Scholar] [CrossRef]
- Semenza, G.L. The hypoxic tumor microenvironment: A driving force for breast cancer progression. Biochim Biophys Acta (BBA) - Mol Cell Res. 2016, 1863, 382–91. [Google Scholar] [CrossRef]
- Seth, S.; Li, C.Y.; Ho, I.L.; Corti, D.; Loponte, S.; Sapio, L.; et al. Pre-existing Functional Heterogeneity of Tumorigenic Compartment as the Origin of Chemoresistance in Pancreatic Tumors. Cell Rep. 2019, 26, 1518–1532. [Google Scholar] [CrossRef]
- Mustafa, S.; Jansen, C.S.; Jani, Y.; Evans, S.; Zhuang, T.Z.; Brown, J.; et al. The Evolving Landscape of Biomarkers for Immune Checkpoint Blockade in Genitourinary Cancers. Biomark Insights. 2024, 19, 11772719241254180. [Google Scholar] [CrossRef]
- Bravaccini, S.; Bronte, G.; Ulivi, P. TMB in NSCLC: A Broken Dream? Int J Mol Sci. 2021, 22, 6536. [Google Scholar] [CrossRef]
- Friedlaender, A.; Nouspikel, T.; Christinat, Y.; Ho, L.; McKee, T.; Addeo, A. Tissue-Plasma TMB Comparison and Plasma TMB Monitoring in Patients With Metastatic Non-small Cell Lung Cancer Receiving Immune Checkpoint Inhibitors. Front Oncol. 2020, 10, 142. [Google Scholar] [CrossRef] [PubMed]
- Elgendy, M.; Fusco, J.P.; Segura, V.; Lozano, M.D.; Minucci, S.; Echeveste, J.I.; et al. Identification of mutations associated with acquired resistance to sunitinib in renal cell cancer. Int J Cancer. 2019, 145, 1991–2001. [Google Scholar] [CrossRef] [PubMed]
- Jang, A.; Lanka, S.M.; Jaeger, E.B.; Lieberman, A.; Huang, M.; Sartor, A.O.; et al. Longitudinal Monitoring of Circulating Tumor DNA to Assess the Efficacy of Immune Checkpoint Inhibitors in Patients With Advanced Genitourinary Malignancies. JCO Precis Oncol. 2023, 7, e2300131. [Google Scholar] [CrossRef]
- Malla, M.; Loree, J.M.; Kasi, P.M.; Parikh, A.R. Using Circulating Tumor DNA in Colorectal Cancer: Current and Evolving Practices. J Clin Oncol. 2022, 40, 2846–57. [Google Scholar] [CrossRef] [PubMed]
- Alix-Panabières, C.; Pantel, K. Clinical Applications of Circulating Tumor Cells and Circulating Tumor DNA as Liquid Biopsy. Cancer Discov. 2016, 6, 479–91. [Google Scholar] [CrossRef]
- Ozdogan, M.; Papadopoulou, E.; Metaxa-Mariatou, V.; Kapetsis, G.; Meintani, A.; Florou-Chatzigiannidou, C.; et al. Case report: Immunotherapy guided by molecular profiling of tumors: illustrative cases and literature review. Front Med. 2024, 11, 1403056. [Google Scholar] [CrossRef]
- Krasniqi, E.; Goeman, F.; Pulito, C.; Palcau, A.C.; Ciuffreda, L.; Lisa, F.S.D.; et al. Biomarkers of Response and Resistance to CDK4/6 Inhibitors in Breast Cancer: Hints from Liquid Biopsy and microRNA Exploration. Int J Mol Sci. 2022, 23, 14534. [Google Scholar] [CrossRef]
- Blomain, E.S.; Moding, E.J. Liquid Biopsies for Molecular Biology-Based Radiotherapy. Int J Mol Sci. 2021, 22, 11267. [Google Scholar] [CrossRef]
- Siravegna, G.; Mussolin, B.; Venesio, T.; Marsoni, S.; Seoane, J.; Dive, C.; et al. How liquid biopsies can change clinical practice in oncology. Ann Oncol. 2019, 30, 1580–90. [Google Scholar] [CrossRef]
- Hodara, E.; Morrison, G.; Cunha, A.T.; Zainfeld, D.; Xu, T.; Xu, Y.; et al. Multi-parametric liquid biopsy analysis in metastatic prostate cancer. JCI Insight.
- Meo, A.D.; Bartlett, J.; Cheng, Y.; Pasic, M.D.; Yousef, G.M. Liquid biopsy: a step forward towards precision medicine in urologic malignancies. Mol Cancer. 2017, 16, 80. [Google Scholar] [CrossRef]
- Parisi, F.M.; Lentini, M.; Chiesa-Estomba, C.M.; Mayo-Yanez, M.; Leichen, J.R.; White, M.; et al. Liquid Biopsy in HPV-Associated Head and Neck Cancer: A Comprehensive Review. Cancers. 2025, 17, 977. [Google Scholar] [CrossRef] [PubMed]
- Visal, T.H.; Hollander Pden Cristofanilli, M.; Mani, S.A. Circulating tumour cells in the -omics era: how far are we from achieving the ‘singularity’? Br J Cancer. 2022, 127, 173–84. [Google Scholar] [CrossRef]
- Baird, B.N.; Schliekelman, M.J.; Ahn, Y.H.; Chen, Y.; Roybal, J.D.; Gill, B.J.; et al. Fibulin-2 Is a Driver of Malignant Progression in Lung Adenocarcinoma. PLoS ONE. 2013, 8, e67054. [Google Scholar] [CrossRef] [PubMed]
- Park, E.S.; Kim, S.J.; Kim, S.W.; Yoon, S.L.; Leem, S.H.; Kim, S.B.; et al. Cross-species hybridization of microarrays for studying tumor transcriptome of brain metastasis. Proc Natl Acad Sci. 2011, 108, 17456–61. [Google Scholar] [CrossRef]
- Elia, A.R.; Caputo, S.; Bellone, M. Immune Checkpoint-Mediated Interactions Between Cancer and Immune Cells in Prostate Adenocarcinoma and Melanoma. Front Immunol. 2018, 9, 1786. [Google Scholar] [CrossRef]
- Zhao, Y.; Weng, Z.; Zhou, X.; Xu, Z.; Cao, B.; Wang, B.; et al. Mesenchymal stromal cells promote the drug resistance of gastrointestinal stromal tumors by activating the PI3K-AKT pathway via TGF-β2. J Transl Med. 2023, 21, 219. [Google Scholar] [CrossRef] [PubMed]
- Straussman, R.; Morikawa, T.; Shee, K.; Barzily-Rokni, M.; Qian, Z.R.; Du, J.; et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature. 2012, 487, 500–4. [Google Scholar] [CrossRef]
- ZIF; HEJ; HED; LIY; YANGL; CAIZ Fibroblast activation protein α in tumor microenvironment: Recent progression and implications (Review). Mol Med Rep. 2015, 11, 3203–11. [CrossRef]
- Scioli, M.G.; Terriaca, S.; Fiorelli, E.; Storti, G.; Fabbri, G.; Cervelli, V.; et al. Extracellular Vesicles and Cancer Stem Cells in Tumor Progression: New Therapeutic Perspectives. Int J Mol Sci. 2021, 22, 10572. [Google Scholar] [CrossRef]
- Zhu, Y.; Knolhoff, B.L.; Meyer, M.A.; Nywening, T.M.; West, B.L.; Luo, J.; et al. CSF1/CSF1R Blockade Reprograms Tumor-Infiltrating Macrophages and Improves Response to T-cell Checkpoint Immunotherapy in Pancreatic Cancer Models. Cancer Res. 2014, 74, 5057–69. [Google Scholar] [CrossRef]
- Flores, C.T.; Wildes, T.J.; Drake, J.A.; Moore, G.L.; Dean, B.D.; Abraham, R.S.; et al. Lin−CCR2+ hematopoietic stem and progenitor cells overcome resistance to PD-1 blockade. Nat Commun. 2018, 9, 4313. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, S.; Bhola, N.E.; Grandis, J.R. HGF/Met Signaling in Head and Neck Cancer: Impact on the Tumor Microenvironment. Clin Cancer Res. 2016, 22, 4005–13. [Google Scholar] [CrossRef] [PubMed]
- Doha, Z.O.; Sears, R.C. Unraveling MYC’s Role in Orchestrating Tumor Intrinsic and Tumor Microenvironment Interactions Driving Tumorigenesis and Drug Resistance. Pathophysiology. 2023, 30, 400–19. [Google Scholar] [CrossRef]
- Liang, X.; Li, Y.; Guo, B.; Zeng, Z.; Deng, K.; Zou, D.; et al. Inherent Tumor Microenvironment-Reversing Hydrogels: Potentiating Molecular Therapy Efficacy Against Drug-Resistant Tumors. Adv Funct Mater.
- Xing, Y.; Zhang, Y.; Li, J.; Tang, Y.; Zhang, J.; Yang, R.; et al. Bioresponsive Nanoparticles Boost Starvation Therapy and Prevent Premetastatic Niche Formation for Pulmonary Metastasis Treatment. ACS Appl Mater Interfaces. 2024, 16, 51798–806. [Google Scholar] [CrossRef]
- Nguyen, B.; Fong, C.; Luthra, A.; Smith, S.A.; DiNatale, R.G.; Nandakumar, S.; et al. Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell. 2022, 185, 563–575. [Google Scholar] [CrossRef]
- Shao, X.; Lv, N.; Liao, J.; Long, J.; Xue, R.; Ai, N.; et al. Copy number variation is highly correlated with differential gene expression: a pan-cancer study. BMC Méd Genet. 2019, 20, 175. [Google Scholar] [CrossRef]
- Racher, H.; Soliman, S.; Argiropoulos, B.; Chan, H.S.L.; Gallie, B.L.; Perrier, R.; et al. Molecular analysis distinguishes metastatic disease from second cancers in patients with retinoblastoma. Cancer Genet.
- Han, Y.; Wang, C.; Dong, Q.; Chen, T.; Yang, F.; Liu, Y.; et al. Genetic Interaction-Based Biomarkers Identification for Drug Resistance and Sensitivity in Cancer Cells. Mol Ther - Nucleic Acids. 2019, 17, 688–700. [Google Scholar] [CrossRef]
- Martins, F.C.; Couturier, D.L.; Santiago Ide Sauer, C.M.; Vias, M.; Angelova, M.; et al. Clonal somatic copy number altered driver events inform drug sensitivity in high-grade serous ovarian cancer. Nat Commun. 2022, 13, 6360. [Google Scholar] [CrossRef]
- Bambury, R.M.; Bhatt, A.S.; Riester, M.; Pedamallu, C.S.; Duke, F.; Bellmunt, J.; et al. DNA copy number analysis of metastatic urothelial carcinoma with comparison to primary tumors. BMC Cancer. 2015, 15, 242. [Google Scholar] [CrossRef]
- Pappas, K.; Xu, J.; Zairis, S.; Resnick-Silverman, L.; Abate, F.; Steinbach, N.; et al. p53 Maintains Baseline Expression of Multiple Tumor Suppressor Genes. Mol Cancer Res. 2017, 15, 1051–62. [Google Scholar] [CrossRef]
- Morris, L.G.T.; Chan, T.A. Therapeutic targeting of tumor suppressor genes. Cancer. 2014, 121, 1357–68. [Google Scholar] [CrossRef] [PubMed]
- Davoli, T.; Xu, A.W.; Mengwasser, K.E.; Sack, L.M.; Yoon, J.C.; Park, P.J.; et al. Cumulative Haploinsufficiency and Triplosensitivity Drive Aneuploidy Patterns and Shape the Cancer Genome. Cell. 2013, 155, 948–62. [Google Scholar] [CrossRef] [PubMed]
- Alanee, S.; Shah, S.; Murali, R.; Rau-Murthy, R.; Schrader, K.A.; Offit, K. Absence of loss of heterozygosity of BRCA1 in a renal tumor from a BRCA1 germline mutation carrier. Fam Cancer. 2012, 12, 125–7. [Google Scholar] [CrossRef]
- Logothetis, C.; Morris, M.J.; Den, R.; Coleman, R.E. Current perspectives on bone metastases in castrate-resistant prostate cancer. Cancer Metastasis Rev. 2018, 37, 189–96. [Google Scholar] [CrossRef]
- Zhao, M.; Kim, P.; Mitra, R.; Zhao, J.; Zhao, Z. TSGene 2.0: an updated literature-based knowledgebase for tumor suppressor genes. Nucleic Acids Res. 1023. [Google Scholar]
- Kong, B.; Zheng, Z.; Mi, Z.; Dou, Z.; Yang, Y.; Shen, Y.; et al. Restoration of tumor suppressor protein with enhanced activity using engineered tRNAs to induce tumor regression. bioRxiv. 6432. [Google Scholar]
- Tomar, T.; Jong Sde Alkema, N.G.; Hoekman, R.L.; Meersma, G.J.; Klip, H.G.; et al. Genome-wide methylation profiling of ovarian cancer patient-derived xenografts treated with the demethylating agent decitabine identifies novel epigenetically regulated genes and pathways. Genome Med. 2016, 8, 107. [Google Scholar] [CrossRef]
- Matthews, B.G.; Bowden, N.A.; Wong-Brown, M.W. Epigenetic Mechanisms and Therapeutic Targets in Chemoresistant High-Grade Serous Ovarian Cancer. Cancers. 2021, 13, 5993. [Google Scholar] [CrossRef]
- Bai, Z.T.; Bai, B.; Zhu, J.; Di, C.X.; Li, X.; Zhou, W.C. Epigenetic actions of environmental factors and promising drugs for cancer therapy. Oncol Lett. 2017, 15, 2049–56. [Google Scholar] [CrossRef]
- Castro-Muñoz, L.J.; Ulloa, E.V.; Sahlgren, C.; Lizano, M.; Cruz-Hernández, E.D.L.; Contreras-Paredes, A. Modulating epigenetic modifications for cancer therapy (Review). Oncol Rep. 2023, 49, 59. [Google Scholar] [CrossRef]
- Bennett, R.L.; Licht, J.D. Targeting Epigenetics in Cancer. Annu Rev Pharmacol Toxicol. 2018, 58, 1–21. [Google Scholar] [CrossRef]
- Toh, T.B.; Lim, J.J.; Chow, E.K.H. Epigenetics in cancer stem cells. Mol Cancer. 2017, 16, 29. [Google Scholar] [CrossRef]
- Chen, C.; Guo, Y.; Guo, Y.; Wu, X.; Si, C.; Xu, Y.; et al. m6A Modification in Non-Coding RNA: The Role in Cancer Drug Resistance. Front Oncol. 2021, 11, 746789. [Google Scholar] [CrossRef] [PubMed]
- Panda, R.; Mohan, S.; Vellapandian, C. Harnessing Epigenetic Mechanisms to Overcome Immune Evasion in Cancer: The Current Strategies and Future Directions. Cureus. 2024, 16, e70631. [Google Scholar] [CrossRef] [PubMed]
- Rubatto, M.; Borriello, S.; Sciamarrelli, N.; Pala, V.; Tonella, L.; Ribero, S.; et al. Exploring the role of epigenetic alterations and non-coding RNAs in melanoma pathogenesis and therapeutic strategies. Melanoma Res. 2023, 33, 462–74. [Google Scholar] [CrossRef] [PubMed]
- Liau, B.B.; Sievers, C.; Donohue, L.K.; Gillespie, S.M.; Flavahan, W.A.; Miller, T.E.; et al. Adaptive Chromatin Remodeling Drives Glioblastoma Stem Cell Plasticity and Drug Tolerance. Cell Stem Cell. 2017, 20, 233–246. [Google Scholar] [CrossRef]
- Bao, Y.; Oguz, G.; Lee, W.C.; Lee, P.L.; Ghosh, K.; Li, J.; et al. EZH2-mediated PP2A inactivation confers resistance to HER2-targeted breast cancer therapy. Nat Commun. 2020, 11, 5878. [Google Scholar] [CrossRef]
- Anderson, N.M.; Simon, M.C. The tumor microenvironment. Curr Biol. 2020, 30, R921–5. [Google Scholar] [CrossRef]
- Somasundaram, R.; Herlyn, M.; Wagner, S.N. The role of tumor microenvironment in melanoma therapy resistance. Melanoma Manag. 2016, 3, 23–32. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, J.; Bai, J.; Ren, J. Reverse of non-small cell lung cancer drug resistance induced by cancer-associated fibroblasts via a paracrine pathway. Cancer Sci. 2018, 109, 944–55. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, J.; Huang, H.; Ye, M.; Li, X.; Wu, R.; et al. Metastasis-associated fibroblasts: an emerging target for metastatic cancer. Biomark Res. 2021, 9, 47. [Google Scholar] [CrossRef]
- Behera, R.; Kaur, A.; Webster, M.R.; Kim, S.; Ndoye, A.; Kugel, C.H.; et al. Inhibition of Age-Related Therapy Resistance in Melanoma by Rosiglitazone-Mediated Induction of Klotho. Clin Cancer Res. 2017, 23, 3181–90. [Google Scholar] [CrossRef]
- Domukhovska, A.; Burakgazi, Z.A.; Springer, M.; Nafchi, B.; Beary, M.C.; Acquisto, A.; et al. Hif-1a-Mediated Disruption of Cellular Junctions: The Impact of Hypoxia on the Tumor Microenvironment and Invasion. 2025. [Google Scholar]
- Lv, X.; Li, J.; Zhang, C.; Hu, T.; Li, S.; He, S.; et al. The role of hypoxia-inducible factors in tumor angiogenesis and cell metabolism. Genes Dis. 2017, 4, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Lee, J.Y. Targeting Tumor Adaption to Chronic Hypoxia: Implications for Drug Resistance, and How It Can Be Overcome. Int J Mol Sci. 2017, 18, 1854. [Google Scholar] [CrossRef]
- Kumar, H.; Choi, D.K. Hypoxia Inducible Factor Pathway and Physiological Adaptation: A Cell Survival Pathway? Mediat Inflamm. 2015, 2015, 584758. [Google Scholar] [CrossRef]
- Zheng, X.; Fan, H.; Liu, Y.; Wei, Z.; Li, X.; Wang, A.; et al. Hypoxia Boosts Aerobic Glycolysis in Carcinoma: A Complex Process for Tumour Development. Curr Mol Pharmacol. 2022, 15, 487–501. [Google Scholar] [CrossRef] [PubMed]
- Chipurupalli, S.; Kannan, E.; Tergaonkar, V.; D’Andrea, R.; Robinson, N. Hypoxia Induced ER Stress Response as an Adaptive Mechanism in Cancer. Int J Mol Sci. 2019, 20, 749. [Google Scholar] [CrossRef] [PubMed]
- Leiphrakpam, P.D.; Are, C. PI3K/Akt/mTOR Signaling Pathway as a Target for Colorectal Cancer Treatment. Int J Mol Sci. 2024, 25, 3178. [Google Scholar] [CrossRef]
- Pungsrinont, T.; Kallenbach, J.; Baniahmad, A. Role of PI3K-AKT-mTOR Pathway as a Pro-Survival Signaling and Resistance-Mediating Mechanism to Therapy of Prostate Cancer. Int J Mol Sci. 2021, 22, 11088. [Google Scholar] [CrossRef]
- Dong, C.; Wu, J.; Chen, Y.; Nie, J.; Chen, C. Activation of PI3K/AKT/mTOR Pathway Causes Drug Resistance in Breast Cancer. Front Pharmacol. 2021, 12, 628690. [Google Scholar] [CrossRef]
- Yang, J.; Nie, J.; Ma, X.; Wei, Y.; Peng, Y.; Wei, X. Targeting PI3K in cancer: mechanisms and advances in clinical trials. Mol Cancer. 2019, 18, 26. [Google Scholar] [CrossRef]
- Schwartz, S.; Wongvipat, J.; Trigwell, C.B.; Hancox, U.; Carver, B.S.; Rodrik-Outmezguine, V.; et al. Feedback Suppression of PI3Kα Signaling in PTEN-Mutated Tumors Is Relieved by Selective Inhibition of PI3Kβ. Cancer Cell. 2015, 27, 109–22. [Google Scholar] [CrossRef]
- Amin, T.; Viol, F.; Krause, J.; Fahl, M.; Eggers, C.; Awwad, F.; et al. Cancer-Associated Fibroblasts Induce Proliferation and Therapeutic Resistance to Everolimus in Neuroendocrine Tumors through STAT3 Activation. Neuroendocrinology. 2022, 113, 501–18. [Google Scholar] [CrossRef] [PubMed]
- Thakur, N.; Singh, P.; Bagri, A.; Srivastava, S.; Dwivedi, V.; Singh, A.; et al. Therapy resistance in prostate cancer: mechanism, signaling and reversal strategies. Explor Target Anti-tumor Ther. 2024, 5, 1110–34. [Google Scholar] [CrossRef] [PubMed]
- Crowley, F.; Sterpi, M.; Buckley, C.; Margetich, L.; Handa, S.; Dovey, Z. A Review of the Pathophysiological Mechanisms Underlying Castration-resistant Prostate Cancer. Res Rep Urol. 2021, 13, 457–72. [Google Scholar] [CrossRef]
- Tran, M.G.B.; Bibby, B.A.S.; Yang, L.; Lo, F.; Warren, A.Y.; Shukla, D.; et al. Independence of HIF1a and androgen signaling pathways in prostate cancer. BMC Cancer. 2020, 20, 469. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, E.V.; Reece, K.M.; Ley, A.M.; Troutman, S.M.; Sissung, T.M.; Price, D.K.; et al. Dual Targeting of the Androgen Receptor and Hypoxia-Inducible Factor 1α Pathways Synergistically Inhibits Castration-Resistant Prostate Cancer Cells. Mol Pharmacol. 2015, 87, 1006–12. [Google Scholar] [CrossRef]
- Lee, A.C.K.; Lau, P.M.; Kwan, Y.W.; Kong, S.K. Mitochondrial Fuel Dependence on Glutamine Drives Chemo-Resistance in the Cancer Stem Cells of Hepatocellular Carcinoma. Int J Mol Sci. 2021, 22, 3315. [Google Scholar] [CrossRef]
- Crispim, D.; Ramos, C.; Esteves, F.; Kranendonk, M. The Adaptation of MCF-7 Breast Cancer Spheroids to the Chemotherapeutic Doxorubicin: The Dynamic Role of Phase I Drug Metabolizing Enzymes. Metabolites. 2025, 15, 136. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Xia, L.; Oyang, L.; Liang, J.; Tan, S.; Wu, N.; et al. The POU2F1-ALDOA axis promotes the proliferation and chemoresistance of colon cancer cells by enhancing glycolysis and the pentose phosphate pathway activity. Oncogene. 2022, 41, 1024–39. [Google Scholar] [CrossRef] [PubMed]
- Lv, L.; Yang, S.; Zhu, Y.; Zhai, X.; Li, S.; Tao, X.; et al. Relationship between metabolic reprogramming and drug resistance in breast cancer. Front Oncol. 2022, 12, 942064. [Google Scholar] [CrossRef]
- McCann, C.; Kerr, E.M. Metabolic Reprogramming: A Friend or Foe to Cancer Therapy? Cancers. 2021, 13, 3351. [Google Scholar] [CrossRef]
- Germain, N.; Dhayer, M.; Boileau, M.; Fovez, Q.; Kluza, J.; Marchetti, P. Lipid Metabolism and Resistance to Anticancer Treatment. Biology. 2020, 9, 474. [Google Scholar] [CrossRef] [PubMed]
- Criscuolo, D.; Avolio, R.; Calice, G.; Laezza, C.; Paladino, S.; Navarra, G.; et al. Cholesterol Homeostasis Modulates Platinum Sensitivity in Human Ovarian Cancer. Cells. 2020, 9, 828. [Google Scholar] [CrossRef]
- Ponton-Almodovar, A.; Udumula, M.P.; Khullar, V.; Rashid, F.; Rattan, R.; Bernard, J.J.; et al. GPT2 mediates metabolic alterations in platinum-resistant ovarian cancer cells. Res Sq. 6480. [Google Scholar]
- Bort, A.; Sánchez, B.G.; León, C.; Nozal, L.; Mora-Rodríguez, J.M.; Castro, F.; et al. Metabolic fingerprinting of chemotherapy-resistant prostate cancer stem cells. An untargeted metabolomic approach by liquid chromatography-mass spectrometry. Front Cell Dev Biol. 2022, 10, 1005675. [Google Scholar] [CrossRef]
- Shi, J.; Shen, Y.; Zhang, J. Emerging roles of small extracellular vesicles in metabolic reprogramming and drug resistance in cancers. Cancer Drug Resist. 2024, 7, N/A–N/A. [Google Scholar] [CrossRef] [PubMed]
- Kou, Z.; Liu, C.; Zhang, W.; Sun, C.; Liu, L.; Zhang, Q. Heterogeneity of primary and metastatic CAFs: From differential treatment outcomes to treatment opportunities (Review). Int J Oncol. 2024, 64, 54. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, S.; Yao, J.; Lowery, F.J.; Zhang, Q.; Huang, W.C.; et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature. 2015, 527, 100–4. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.C.; Lin, J.C.; Hwang, W.L.; Kuo, Y.J.; Chen, H.K.; Tai, S.K.; et al. Macrophage-secreted interleukin-35 regulates cancer cell plasticity to facilitate metastatic colonization. Nat Commun. 2018, 9, 3763. [Google Scholar] [CrossRef]
- Michaud, D.E.; Guerriero, J.L. Myeloid Cells Pave the Metastatic Road in Breast Cancer. Cancer Res. 2023, 84, 181–3. [Google Scholar] [CrossRef]
- Gouirand, V.; Guillaumond, F.; Vasseur, S. Influence of the Tumor Microenvironment on Cancer Cells Metabolic Reprogramming. Front Oncol. 2018, 8, 117. [Google Scholar] [CrossRef]
- Lehuédé, C.; Dupuy, F.; Rabinovitch, R.; Jones, R.G.; Siegel, P.M. Metabolic Plasticity as a Determinant of Tumor Growth and Metastasis. Cancer Res. 2016, 76, 5201–8. [Google Scholar] [CrossRef]
- Rushing, B.R.; Molina, S.; Sumner, S. Metabolomics Analysis Reveals Altered Metabolic Pathways and Response to Doxorubicin in Drug-Resistant Triple-Negative Breast Cancer Cells. Metabolites. 2023, 13, 865. [Google Scholar] [CrossRef] [PubMed]
- Rozenblit, M.; Huang, R.; Danziger, N.; Hegde, P.; Alexander, B.; Ramkissoon, S.; et al. Comparison of PD-L1 protein expression between primary tumors and metastatic lesions in triple negative breast cancers. J Immunother Cancer. 2020, 8, e001558. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Chen, J.; Sarungbam, J.; Tickoo, S.; Dickson, B.C.; Reuter, V.E.; et al. NUTM1-fusion positive malignant neoplasms of the genitourinary tract: A report of six cases highlighting involvement of unusual anatomic locations and histologic heterogeneity. Genes, Chromosom Cancer. 2022, 61, 542–50. [Google Scholar] [CrossRef]
- Luo, W.; Stevens, T.M.; Stafford, P.; Miettinen, M.; Gatalica, Z.; Vranic, S. NUTM1-Rearranged Neoplasms: A Heterogeneous Group of Primitive Tumors with Expanding Spectrum of Histology and Molecular Alterations: An Updated Review. Preprints. 2109. [Google Scholar]
- McEvoy, C.R.; Fox, S.B.; Prall, O.W.J. Emerging entities in NUTM1-rearranged neoplasms. Genes, Chromosom Cancer. 2020, 59, 375–85. [Google Scholar] [CrossRef]
- Abida, W.; Cheng, M.L.; Armenia, J.; Middha, S.; Autio, K.A.; Vargas, H.A.; et al. Analysis of the Prevalence of Microsatellite Instability in Prostate Cancer and Response to Immune Checkpoint Blockade. JAMA Oncol. 2019, 5, 471–8. [Google Scholar] [CrossRef]
- Ukleja, J.; Kusaka, E.; Miyamoto, D.T. Immunotherapy Combined With Radiation Therapy for Genitourinary Malignancies. Front Oncol. 2021, 11, 663852. [Google Scholar] [CrossRef]
- Herr, H.; Sogani, P.; Eastham, J. Genitourinary tumors. J Surg Oncol. 2022, 126, 926–32. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Cui, Y.; Zhang, Y.; Wu, J. Editorial: The functional role of non-coding RNAs in tumor microenvironment and metastasis of genitourinary tumor and its potential application as tumor molecular biomarkers. Front Genet. 2023, 14, 1133496. [Google Scholar] [CrossRef]
- Gareev, I.; Gileva, Y.; Dzidzaria, A.; Beylerli, O.; Pavlov, V.; Agaverdiev, M.; et al. Long non-coding RNAs in oncourology. Non-coding RNA Res. 2021, 6, 139–45. [Google Scholar] [CrossRef]
- Wang, R.; Du, N.; Jin, L.; Chen, W.; Ma, Z.; Zhang, T.; et al. Hyaluronic Acid Modified Au@SiO2@Au Nanoparticles for Photothermal Therapy of Genitourinary Tumors. Polymers. 2022, 14, 4772. [Google Scholar] [CrossRef]
- Yanovsky, R.L.; Bartenstein, D.W.; Rogers, G.S.; Isakoff, S.J.; Chen, S.T. Photodynamic therapy for solid tumors: A review of the literature. Photodermatol, Photoimmunol Photomed. 2019, 35, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Nathan, P.; Rajeh, A.; Noor, M.; Boldt, G.; Fernandes, R. Antibody–Drug Conjugates in the Treatment of Genitourinary Cancers: An Updated Review of Data. Curr Oncol. 2024, 31, 2316–27. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.K.; Pu, H.; Penticuff, J.C.; Cao, Z.; Horbinski, C.; Kyprianou, N. Multinucleation and Mesenchymal-to-Epithelial Transition Alleviate Resistance to Combined Cabazitaxel and Antiandrogen Therapy in Advanced Prostate Cancer. Cancer Res. 2016, 76, 912–26. [Google Scholar] [CrossRef]
- Wattenberg, M.M.; Fong, L.; Madan, R.A.; Gulley, J.L. Immunotherapy in genitourinary malignancies. Curr Opin Urol. 2016, 26, 501–7. [Google Scholar] [CrossRef] [PubMed]
- Obinata, D.; Hashimoto, S.; Uchida, H.; Nakahara, K.; Yoshizawa, T.; Mochida, J.; et al. Clinical characteristics of patients with metastatic castration-resistant prostate cancer after treatment with combined androgen blockade. BMC Urol. 2023, 23, 74. [Google Scholar] [CrossRef]
- McKay, R.R.; Bossé, D.; Choueiri, T.K. Evolving Systemic Treatment Landscape for Patients With Advanced Renal Cell Carcinoma. J Clin Oncol. 2018, 36, 3615–23. [Google Scholar] [CrossRef]
- Weinstock, M.; McDermott, D. Targeting PD-1/PD-L1 in the treatment of metastatic renal cell carcinoma. Ther Adv Urol. 2015, 7, 365–77. [Google Scholar] [CrossRef]
- Costanzo, F.D.; Napolitano, F.; Salomone, F.; Amato, A.R.; Alberico, G.; Migliaccio, F.; et al. Analysis of Health-Related Quality of Life Reporting in Phase III RCTs of Advanced Genitourinary Tumors. Cancers. 2023, 15, 5703. [Google Scholar] [CrossRef]
- Malik, A.; Srinivasan, S.; Batra, J. A New Era of Prostate Cancer Precision Medicine. Front Oncol. 2019, 9, 1263. [Google Scholar] [CrossRef]
- Kamran, S.C.; Efstathiou, J.A. Current State of Personalized Genitourinary Cancer Radiotherapy in the Era of Precision Medicine. Front Oncol. 2021, 11, 675311. [Google Scholar] [CrossRef]
- Takeuchi, S.; Yoshimura, A.; Sofuni, A.; Ueda, Y.; Umezu, T.; Kuroda, M.; et al. A single-institution retrospective study of comprehensive genomic profiling tests based on C-CAT findings for advanced solid cancers. Jpn J Clin Oncol. 2024, 54, 1298–305. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, N.; Kato, T.; Fujisawa, T.; Shiota, M.; Eto, M.; Osawa, T.; et al. Landscape of genomic alterations of circulating tumor DNA in advanced genitourinary cancer patients: SCRUM-Japan MONSTAR SCREEN Project. J Clin Oncol.
- Jia, E.; Zheng, T.; Huang, Y.; Du, P. Exome-wide molecular insights from blood and urine liquid biopsies in genitourinary cancers. UroPrecision. 2025. [CrossRef]
- Jiang, J.; Yan, Y.; Luo, Z.; He, J.; Yu, T.; Du, W.; et al. Abstract 3982: Prediction and selection of cancer drug treatments using personalized tumor models or models with matching genomic profiles. Cancer Res. 3982. [Google Scholar]
- Gao, S.; Soares, F.; Wang, S.; Wong, C.C.; Chen, H.; Yang, Z.; et al. CRISPR screens identify cholesterol biosynthesis as a therapeutic target on stemness and drug resistance of colon cancer. Oncogene. 2021, 40, 6601–13. [Google Scholar] [CrossRef]
- Jüptner, M.; Marx, M.; Zuhayra, M.; Lützen, U. Experimental 177Lu-PSMA-617 radioligand therapy in a patient with extended metastasized leiomyosarcoma. Nuklearmedizin. 2019, 58, 328–30. [Google Scholar] [CrossRef]
- Lee, M.; Hirpara, J.L.; Eu, J.Q.; Sethi, G.; Wang, L.; Goh, B.C.; et al. Targeting STAT3 and oxidative phosphorylation in oncogene-addicted tumors. Redox Biol. 2019, 25, 101073. [Google Scholar] [CrossRef]
- Alexidis, P.; Dragoumis, D.; Karatzoglou, S.; Drevelegas, K.; Tzitzikas, I.; Hatzimouratidis, K.; et al. The role of hypofractionated radiotherapy for the definitive treatment of localized prostate cancer: early results of a randomized trial. J Cancer. 2019, 10, 6217–24. [Google Scholar] [CrossRef]
- Ye, Y.; Hu, Q.; Chen, H.; Liang, K.; Yuan, Y.; Xiang, Y.; et al. Characterization of hypoxia-associated molecular features to aid hypoxia-targeted therapy. Nat Metab. 2019, 1, 431–44. [Google Scholar] [CrossRef] [PubMed]
- Nunes, T.; Hamdan, D.; Leboeuf, C.; Bouchtaoui, M.E.; Gapihan, G.; Nguyen, T.T.; et al. Targeting Cancer Stem Cells to Overcome Chemoresistance. Int J Mol Sci. 2018, 19, 4036. [Google Scholar] [CrossRef]
- Nguyen, L.L.; Watson, Z.L.; Ortega, R.; Woodruff, E.R.; Jordan, K.R.; Iwanaga, R.; et al. Combinatory EHMT and PARP inhibition induces an interferon response and a CD8 T cell-dependent tumor regression in PARP inhibitor-resistant models. bioRxiv. 5297. [Google Scholar]
- Xiao, M.; Benoit, A.; Hasmim, M.; Duhem, C.; Vogin, G.; Berchem, G.; et al. Targeting Cytoprotective Autophagy to Enhance Anticancer Therapies. Front Oncol. 2021, 11, 626309. [Google Scholar] [CrossRef]
- Steen, N.V.D.; Giovannetti, E.; Carbone, D.; Leonetti, A.; Rolfo, C.D.; Peters, G.J. Resistance to epidermal growth factor receptor inhibition in non-small cell lung cancer. Cancer Drug Resist. 2018, 1, 230–49. [Google Scholar]
- Jiang, Z.; Gu, Z.; Yu, X.; Cheng, T.; Liu, B. Research progress on the role of bypass activation mechanisms in resistance to tyrosine kinase inhibitors in non-small cell lung cancer. Front Oncol. 2024, 14, 1447678. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Yang, J.; Liu, G.X.; Zi, H.; Tang, S.D.; Jia, H.C.; et al. Changes in disease burden and global inequalities in bladder, kidney and prostate cancers from 1990 to 2019: a comparative analysis based on the global burden of disease study 2019. BMC Public Heal. 2024, 24, 891. [Google Scholar] [CrossRef]
- Arora, V.K.; Schenkein, E.; Murali, R.; Subudhi, S.K.; Wongvipat, J.; Balbas, M.D.; et al. Glucocorticoid Receptor Confers Resistance to Antiandrogens by Bypassing Androgen Receptor Blockade. Cell. 2013, 155, 1309–22. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Dong, X.; Gleave, M. Molecular model for neuroendocrine prostate cancer progression. BJU Int. 2018, 122, 560–70. [Google Scholar] [CrossRef]
- Puhr, M.; Hoefer, J.; Eigentler, A.; Ploner, C.; Handle, F.; Schaefer, G.; et al. The Glucocorticoid Receptor Is a Key Player for Prostate Cancer Cell Survival and a Target for Improved Antiandrogen Therapy. Clin Cancer Res. 2018, 24, 927–38. [Google Scholar] [CrossRef]
- Voortman, J.; Chęcińska, A.; Giaccone, G. The proteasomal and apoptotic phenotype determine bortezomib sensitivity of non-small cell lung cancer cells. Mol Cancer. 2007, 6, 73. [Google Scholar] [CrossRef]
- Bluemn, E.G.; Coleman, I.M.; Lucas, J.M.; Coleman, R.T.; Hernandez-Lopez, S.; Tharakan, R.; et al. Androgen Receptor Pathway-Independent Prostate Cancer Is Sustained through FGF Signaling. Cancer Cell. 2017, 32, 474–489. [Google Scholar] [CrossRef]
- Wheeler, S.E.; Shi, H.; Lin, F.; Dasari, S.; Bednash, J.; Thorne, S.; et al. Enhancement of head and neck squamous cell carcinoma proliferation, invasion, and metastasis by tumor-associated fibroblasts in preclinical models. Head Neck. 2014, 36, 385–92. [Google Scholar] [CrossRef] [PubMed]
- Plava, J.; Cihova, M.; Burikova, M.; Matuskova, M.; Kucerova, L.; Miklikova, S. Recent advances in understanding tumor stroma-mediated chemoresistance in breast cancer. Mol Cancer. 2019, 18, 67. [Google Scholar] [CrossRef]
- Ruan, K.; Song, G.; Ouyang, G. Role of hypoxia in the hallmarks of human cancer. J Cell Biochem. 2009, 107, 1053–62. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Xu, J.; Liu, S. The Metabolism Symbiosis Between Pancreatic Cancer and Tumor Microenvironment. Front Oncol. 2021, 11, 759376. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhang, X.; Fu, M.L.; Weichselbaum, R.R.; Gajewski, T.F.; Guo, Y.; et al. Targeting the Tumor Microenvironment with Interferon-β Bridges Innate and Adaptive Immune Responses. Cancer Cell. 2014, 25, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Jiang, Y.; Ou, B.; Lu, X.; Cheng, X.; Zhao, R. Editorial: The role of angiogenesis and immune response in tumor microenvironment of solid tumor. Front Immunol. 2023, 14, 1195390. [Google Scholar] [CrossRef]
- Baghban, R.; Roshangar, L.; Jahanban-Esfahlan, R.; Seidi, K.; Ebrahimi-Kalan, A.; Jaymand, M.; et al. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal. 2020, 18, 59. [Google Scholar] [CrossRef]
- Kalli, M.; Li, R.; Mills, G.B.; Stylianopoulos, T.; Zervantonakis, I.K. Mechanical stress in pancreatic cancer: Signaling pathway adaptation activates cytoskeletal remodeling and enhances cell migration. bioRxiv. 4480. [Google Scholar]
- Schmid, M.C.; Varner, J.A. Myeloid Cells in the Tumor Microenvironment: Modulation of Tumor Angiogenesis and Tumor Inflammation. J Oncol. 2010, 2010, 201026. [Google Scholar] [CrossRef]
- Li, J.L.; Sainson, R.C.A.; Oon, C.E.; Turley, H.; Leek, R.; Sheldon, H.; et al. DLL4-Notch Signaling Mediates Tumor Resistance to Anti-VEGF Therapy In Vivo. Cancer Res. 2011, 71, 6073–83. [Google Scholar] [CrossRef]
- Klampfer, L. Cytokines, Inflammation and Colon Cancer. Curr Cancer Drug Targets. 2011, 11, 451–64. [Google Scholar] [CrossRef]
- Salemme, V.; Centonze, G.; Avalle, L.; Natalini, D.; Piccolantonio, A.; Arina, P.; et al. The role of tumor microenvironment in drug resistance: emerging technologies to unravel breast cancer heterogeneity. Front Oncol. 2023, 13, 1170264. [Google Scholar] [CrossRef]
- Xiang, Y.; Liu, X.; Wang, Y.; Zheng, D.; Meng, Q.; Jiang, L.; et al. Mechanisms of resistance to targeted therapy and immunotherapy in non-small cell lung cancer: promising strategies to overcoming challenges. Front Immunol. 2024, 15, 1366260. [Google Scholar] [CrossRef]
- Sant, M.; Bernat-Peguera, A.; Felip, E.; Margelí, M. Role of ctDNA in Breast Cancer. Cancers. 2022, 14, 310. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, H.; Chen, Y.; Xiao, N.; Zheng, Z.; Liu, H.; et al. Liquid biopsy on the horizon in immunotherapy of non-small cell lung cancer: current status, challenges, and perspectives. Cell Death Dis. 2023, 14, 230. [Google Scholar] [CrossRef] [PubMed]
- Main, S.C.; Cescon, D.W.; Bratman, S.V. Liquid biopsies to predict CDK4/6 inhibitor efficacy and resistance in breast cancer. Cancer Drug Resist. 2022, 5, 727–48. [Google Scholar] [CrossRef]
- Goodall, J.; investigators for the, T.A.; Mateo, J.; Yuan, W.; Mossop, H.; Porta, N.; et al. Circulating Cell-Free DNA to Guide Prostate Cancer Treatment with PARP Inhibition. Cancer Discov. 2017, 7, 1006–17. [Google Scholar] [CrossRef]
- Battaglin, F.; Lenz, H.J. Clinical Applications of Circulating Tumor DNA Profiling in GI Cancers. JCO Oncol Pr. 2024, 20, 1481–90. [Google Scholar] [CrossRef]
- Thompson, J.C.; Yee, S.S.; Troxel, A.B.; Savitch, S.L.; Fan, R.; Balli, D.; et al. Detection of Therapeutically Targetable Driver and Resistance Mutations in Lung Cancer Patients by Next-Generation Sequencing of Cell-Free Circulating Tumor DNA. Clin Cancer Res. 2016, 22, 5772–82. [Google Scholar] [CrossRef]
- Jiang, M.; Jin, S.; Han, J.; Li, T.; Shi, J.; Zhong, Q.; et al. Detection and clinical significance of circulating tumor cells in colorectal cancer. Biomark Res. 2021, 9, 85. [Google Scholar] [CrossRef] [PubMed]
- Lianidou, E.; Pantel, K. Liquid biopsies. Genes, Chromosom Cancer. 2019, 58, 219–32. [Google Scholar] [CrossRef] [PubMed]
- Alemzadeh, E.; Allahqoli, L.; Dehghan, H.; Mazidimoradi, A.; Ghasempour, A.; Salehiniya, H. Circulating tumor cells and circulating tumor DNA in breast cancer diagnosis and monitoring. Oncol Res. 2023, 31, 667–75. [Google Scholar] [CrossRef]
- McDonald, B.R.; Contente-Cuomo, T.; Sammut, S.J.; Odenheimer-Bergman, A.; Ernst, B.; Perdigones, N.; et al. Personalized circulating tumor DNA analysis to detect residual disease after neoadjuvant therapy in breast cancer. Sci Transl Med.
- Fraipont Fde Gazzeri, S.; Cho, W.C.; Eymin, B. Circular RNAs and RNA Splice Variants as Biomarkers for Prognosis and Therapeutic Response in the Liquid Biopsies of Lung Cancer Patients. Front Genet. 2019, 10, 390. [Google Scholar] [CrossRef]
- Gailhouste, L.; Liew, L.C.; Hatada, I.; Nakagama, H.; Ochiya, T. Epigenetic reprogramming using 5-azacytidine promotes an anti-cancer response in pancreatic adenocarcinoma cells. Cell Death Dis. 2018, 9, 468. [Google Scholar] [CrossRef]
- Sun, F.; Li, L.; Yan, P.; Zhou, J.; Shapiro, S.D.; Xiao, G.; et al. Causative role of PDLIM2 epigenetic repression in lung cancer and therapeutic resistance. Nat Commun. 2019, 10, 5324. [Google Scholar] [CrossRef]
- Griffiths, C.; Bilbao, M.; Krill, L.; Ostrovsky, O. Ovarian Cancer - Updates in Tumour Biology and Therapeutics [Working Title]. 2021. [Google Scholar]
- Ari, F.; Napieralski, R.; Akgun, O.; Magdolen, V.; Ulukaya, E. Epigenetic modulators combination with chemotherapy in breast cancer cells. Cell Biochem Funct. 2021, 39, 571–83. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Carvalho, D.D.D. Clinical advances in targeting epigenetics for cancer therapy. FEBS J. 2022, 289, 1214–39. [Google Scholar] [CrossRef]
- Liu, Z.; Ren, Y.; Weng, S.; Xu, H.; Li, L.; Han, X. A New Trend in Cancer Treatment: The Combination of Epigenetics and Immunotherapy. Front Immunol. 2022, 13, 809761. [Google Scholar] [CrossRef] [PubMed]
- Dominici, C.; Sgarioto, N.; Yu, Z.; Sesma-Sanz, L.; Masson, J.Y.; Richard, S.; et al. Synergistic effects of type I PRMT and PARP inhibitors against non-small cell lung cancer cells. Clin Epigenetics. 2021, 13, 54. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Chen, Y.; Peng, C.; Kuang, L.; Zhang, Z.; Li, Y.; et al. Advances in Targeted Therapy Against Driver Mutations and Epigenetic Alterations in Non-Small Cell Lung Cancer. Oncologie. 2022, 24, 613–48. [Google Scholar] [CrossRef]
- Sookram, J.; Zheng, A.; Linden, K.M.; Morgan, A.B.; Brown, S.A.; Ostrovsky, O. Epigenetic therapy can inhibit growth of ovarian cancer cells and reverse chemoresistant properties acquired from metastatic omentum. Int J Gynecol Obstet. 2019, 145, 225–32. [Google Scholar] [CrossRef]
- Rimar, K.J.; Tran, P.T.; Matulewicz, R.S.; Hussain, M.; Meeks, J.J. The emerging role of homologous recombination repair and PARP inhibitors in genitourinary malignancies. Cancer. 2017, 123, 1912–24. [Google Scholar] [CrossRef]
- Palliyage, G.H.; Ghosh, R.; Rojanasakul, Y. Cancer chemoresistance and therapeutic strategies targeting tumor microenvironment. ScienceAsia. 2020, 46, 639. [Google Scholar] [CrossRef]
- Gupta, S.; Smith, T.R.; Broekman, M.L.D. Ethics of Innovation in Neurosurgery. 2019;121–8.
- Sindhu, K.K.; Dovey, Z.; Thompson, M.; Nehlsen, A.D.; Skalina, K.A.; Malachowska, B.; et al. The potential role of precision medicine to alleviate racial disparities in prostate, bladder and renal urological cancer care. BJUI Compass. 2024, 5, 405–25. [Google Scholar] [CrossRef]
- Vo, H.H.; Fu, S.; Hong, D.S.; Karp, D.D.; Piha-Paul, S.; Subbiah, V.; et al. Challenges and opportunities associated with the MD Anderson IMPACT2 randomized study in precision oncology. npj Precis Oncol. 2022, 6, 78. [Google Scholar] [CrossRef] [PubMed]
- Song, K.W.; Wen, P.Y. Novel trial designs in neuro-oncology. Curr Opin Neurol. 2023, 36, 571–8. [Google Scholar] [CrossRef]
- McClatchy, D.M.; Willers, H.; Hata, A.N.; Piotrowska, Z.; Sequist, L.V.; Paganetti, H.; et al. Modeling Resistance and Recurrence Patterns of Combined Targeted–Chemoradiotherapy Predicts Benefit of Shorter Induction Period. Cancer Res. 2020, 80, 5121–33. [Google Scholar] [CrossRef]
- Finzel, A.; Sadik, H.; Ghitti, G.; Laes, J.F. The combined analysis of solid and liquid biopsies provides additional clinical information to improve patient care. J Cancer Metastasis Treat. 2018, 4, null–null. [Google Scholar] [CrossRef]
- Kus, T.; Aktas, G.; Oktay, C.; Puyan, F.O.; Tastekin, E. Dramatic response to crizotinib in a breast cancer patient with ALK gene rearrangement. Anti-Cancer Drugs. 2022, 33, 400–5. [Google Scholar] [CrossRef]
- Arbab, A.S.; Rashid, M.H.; Angara, K.; Borin, T.F.; Lin, P.C.; Jain, M.; et al. Major Challenges and Potential Microenvironment-Targeted Therapies in Glioblastoma. Int J Mol Sci. 2017, 18, 2732. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Coleman, M.; Brekken, R.A. Perspectives on Hypoxia Signaling in Tumor Stroma. Cancers. 2021, 13, 3070. [Google Scholar] [CrossRef]
- Jr Jp Polivka, J.; Holubec, L.; Kubikova, T.; Priban, V.; Hes, O.; et al. Advances in Experimental Targeted Therapy and Immunotherapy for Patients with Glioblastoma Multiforme. Anticancer Res. 2017, 37, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Letai, A.; Bhola, P.; Welm, A.L. Functional precision oncology: Testing tumors with drugs to identify vulnerabilities and novel combinations. Cancer Cell. 2022, 40, 26–35. [Google Scholar] [CrossRef]
- Ho HY, Chung KS (Kasey), Kan CM, Wong SC (Cesar). Liquid Biopsy in the Clinical Management of Cancers. Int J Mol Sci. 2024, 25, 8594. [Google Scholar] [CrossRef]
- Noor, J.; Chaudhry, A.; Noor, R.; Batool, S. Advancements and Applications of Liquid Biopsies in Oncology: A Narrative Review. Cureus. 2023, 15, e42731. [Google Scholar] [CrossRef] [PubMed]
- Gumà, J.; Peña, K.; Riu, F.; Guilarte, C.; Hernandez, A.; Lucía, C.; et al. Utility of ctDNA Liquid Biopsies from Cancer Patients: An Institutional Study of 285 ctDNA Samples. Cancers. 2022, 14, 5859. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Lai, W.; Fan, D.; Fang, Q. Protein biomarkers in breast cancer-derived extracellular vesicles for use in liquid biopsies. Am J Physiol-Cell Physiol. 2021, 321, C779–97. [Google Scholar] [CrossRef]
- Han, H.S.; Lee, K.W. Liquid Biopsy: An Emerging Diagnostic, Prognostic, and Predictive Tool in Gastric Cancer. J Gastric Cancer. 2024, 24, 4–28. [Google Scholar] [CrossRef]
- Sehayek, O.; Kian, W.; Onn, A.; Stoff, R.; Sorotsky, H.G.; Zemel, M.; et al. Liquid First Is “Solid” in Naïve Non-Small Cell Lung Cancer Patients: Faster Turnaround Time With High Concordance to Solid Next-Generation Sequencing. Front Oncol. 2022, 12, 912801. [Google Scholar] [CrossRef]
- Saarenheimo, J.; Eigeliene, N.; Andersen, H.; Tiirola, M.; Jekunen, A. The Value of Liquid Biopsies for Guiding Therapy Decisions in Non-small Cell Lung Cancer. Front Oncol. 2019, 9, 129. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Zhang, H.; Cao, H.; Mao, J.; Chen, X.; et al. Liquid biopsy for human cancer: cancer screening, monitoring, and treatment. MedComm. 2024, 5, e564. [Google Scholar] [CrossRef]
- Chehade, C.H.; Ozay, Z.I.; Agarwal, N. Targeting the FGFR Pathway in Patients with Advanced Solid Tumors. Clin Cancer Res. 2024, 30, 4549–51. [Google Scholar] [CrossRef] [PubMed]
- Hu-Lieskovan, S.; Malouf, G.G.; Jacobs, I.; Chou, J.; Liu, L.; Johnson, M.L. Addressing resistance to immune checkpoint inhibitor therapy: an urgent unmet need. Futur Oncol. 2021, 17, 1401–39. [Google Scholar] [CrossRef]
- Kasim, A.; Bean, N.; Hendriksen, S.J.; Chen, T.T.; Zhou, H.; Psioda, M.A. Basket trials in oncology: a systematic review of practices and methods, comparative analysis of innovative methods, and an appraisal of a missed opportunity. Front Oncol. 2023, 13, 1266286. [Google Scholar] [CrossRef]
- Iyer, G.; Kwiatkowski, D.J.; Ding, L.; Schmid, A.N.; Navarro, W.H.; Ahnert, J.R. PRECISION 1: A phase 2, multicenter, open-label basket trial of nab-sirolimus for malignant solid tumors harboring pathogenic inactivating alterations in TSC1 and TSC2. J Clin Oncol. 2024;42(4_suppl):TPS526–TPS526.
- Raj, N.; Zheng, Y.; Kelly, V.; Katz, S.S.; Chou, J.; Do, R.K.G.; et al. PD-1 Blockade in Advanced Adrenocortical Carcinoma. J Clin Oncol. 2020, 38, 71–80. [Google Scholar] [CrossRef]
- Deleuze, A.; Saout, J.; Dugay, F.; Peyronnet, B.; Mathieu, R.; Verhoest, G.; et al. Immunotherapy in Renal Cell Carcinoma: The Future Is Now. Int J Mol Sci. 2020, 21, 2532. [Google Scholar] [CrossRef] [PubMed]
- Juang, H.H.; Chen, S.M.; Lin, G.; Chiang, M.H.; Hou, C.P.; Lin, Y.H.; et al. The Clinical Experiences of Urine Metabolomics of Genitourinary Urothelial Cancer in a Tertiary Hospital in Taiwan. Front Oncol. 2021, 11, 680910. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; He, M.; Li, L.; Wang, X.; Han, S.; Zhao, J.; et al. EMT and Cancer Cell Stemness Associated With Chemotherapeutic Resistance in Esophageal Cancer. Front Oncol. 2021, 11, 672222. [Google Scholar] [CrossRef]
- Adam-Zahir, S.; Plowman, P.N.; Bourton, E.C.; Sharif, F.; Parris, C.N. Increased γ-H2AX and Rad51 DNA Repair Biomarker Expression in Human Cell Lines Resistant to the Chemotherapeutic Agents Nitrogen Mustard and Cisplatin. Chemotherapy.
- Ma, S.; Zhou, M.; Xu, Y.; Gu, X.; Zou, M.; Abudushalamu, G.; et al. Clinical application and detection techniques of liquid biopsy in gastric cancer. Mol Cancer. 2023, 22, 7. [Google Scholar] [CrossRef] [PubMed]
- Johann, D.J.; Steliga, M.; Shin, I.J.; Yoon, D.; Arnaoutakis, K.; Hutchins, L.; et al. Liquid biopsy and its role in an advanced clinical trial for lung cancer. Exp Biol Med. 2018, 243, 262–71. [Google Scholar] [CrossRef]
- Carlo Ed Schiappacassi, M.; Pelizzari, G.; Baresic, T.; Conte Ad Stanzione, B.; et al. Acquired EGFR C797G Mutation Detected by Liquid Biopsy as Resistance Mechanism After Treatment With Osimertinib: A Case Report. Vivo. 2021, 35, 2941–5. [Google Scholar] [CrossRef]
- Durgut, S.; Salihefendić, L.; Pećar, D.; Čeko, I.; Mulahuseinović, N.; Izmirlija, M.; et al. Droplet Digital PCR as a Molecular Tool for the Detection of the EGFR T790M Mutation in NSCLC Patients with the EGFR Activating Mutations. Balk J Méd Genet. 2023, 26, 21–6. [Google Scholar] [CrossRef]
- Lu, J.; Han, B. Liquid Biopsy Promotes Non-Small Cell Lung Cancer Precision Therapy. Technol Cancer Res Treat. 2018, 17, 1533033818801809. [Google Scholar] [CrossRef]
- Lau, C.; Jamali, F.; Loebenberg, R. Health Canada Usage of Real World Evidence (RWE) in Regulatory Decision Making compared with FDA/EMA usage based on publicly available information: Real-World Evidence used by Health Canada in Regulatory Decision Making. J Pharm Pharm Sci. 2022, 25, 227–36. [Google Scholar] [CrossRef]
- Jackson, M.L.; Manickam, R.; Derieg, D.; Gombar, S.; Low, Y.S. Quantifying Fit-for-Purpose in Real World Data: Data Grading and FitQ Scores. medRxiv. 2430. [Google Scholar]
- Khozin, S.; Abernethy, A.P.; Nussbaum, N.C.; Zhi, J.; Curtis, M.D.; Tucker, M.; et al. Characteristics of Real-World Metastatic Non-Small Cell Lung Cancer Patients Treated with Nivolumab and Pembrolizumab During the Year Following Approval. Oncol. 2018, 23, 328–36. [Google Scholar] [CrossRef]
- Green, A.K.; Curry, M.; Trivedi, N.; Bach, P.B.; Mailankody, S. Assessment of Outcomes Associated With the Use of Newly Approved Oncology Drugs in Medicare Beneficiaries. JAMA Netw Open. 2021, 4, e210030. [Google Scholar] [CrossRef] [PubMed]
- Mahal, B.A.; Chen, Y.; Muralidhar, V.; Mahal, A.R.; Choueiri, T.K.; Hoffman, K.E.; et al. National sociodemographic disparities in the treatment of high-risk prostate cancer: Do academic cancer centers perform better than community cancer centers? Cancer. 2016, 122, 3371–7. [Google Scholar] [CrossRef]
- Barocas, D.A.; Gray, D.T.; Fowke, J.H.; Mercaldo, N.D.; Blume, J.D.; Chang, S.S.; et al. Racial Variation in the Quality of Surgical Care for Prostate Cancer. J Urol. 2012, 188, 1279–85. [Google Scholar] [CrossRef] [PubMed]
- Torre, L.A.; Sauer, A.M.G.; Chen, M.S.; Kagawa-Singer, M.; Jemal, A.; Siegel, R.L. Cancer statistics for Asian Americans, Native Hawaiians, and Pacific Islanders, 2016: Converging incidence in males and females. CA: A Cancer J Clin. 2016, 66, 182–202. [Google Scholar] [CrossRef]
- Ryoo, J.J.; Ordin, D.L.; Antonio, A.L.M.; Oishi, S.M.; Gould, M.K.; Asch, S.M.; et al. Patient Preference and Contraindications in Measuring Quality of Care: What Do Administrative Data Miss? J Clin Oncol. 2013, 31, 2716–23. [Google Scholar] [CrossRef]
- Wolfson, J.A.; Sun, C.L.; Kim, H.; Kang, T.; Bhatia, S. Evaluation of the effect of care at NCI comprehensive cancer centers (NCICCCs) on disparities in outcome within adolescents and young adults (AYAs) with cancer. J Clin Oncol. 9512. [Google Scholar]
- Vingiani, A.; Agnelli, L.; Duca, M.; Lorenzini, D.; Damian, S.; Proto, C.; et al. Molecular Tumor Board as a Clinical Tool for Converting Molecular Data Into Real-World Patient Care. JCO Precis Oncol. 2023, 7, e2300067. [Google Scholar] [CrossRef] [PubMed]
- Schwaederle, M.; Parker, B.A.; Schwab, R.B.; Fanta, P.T.; Boles, S.G.; Daniels, G.A.; et al. Molecular Tumor Board: The University of California San Diego Moores Cancer Center Experience. Oncol. 2014, 19, 631–6. [Google Scholar] [CrossRef]
- Specchia, M.L.; Frisicale, E.M.; Carini, E.; Pilla, A.D.; Cappa, D.; Barbara, A.; et al. The impact of tumor board on cancer care: evidence from an umbrella review. BMC Heal Serv Res. 2020, 20, 73. [Google Scholar] [CrossRef]
- Pujol, P.; Rouge, T.D.L.M.; Penault-Llorca, F. From Targeting Somatic Mutations to Finding Inherited Cancer Predispositions: The Other Side of the Coin. Diagnostics. 2019, 9, 83. [Google Scholar] [CrossRef]
- Salgia, R. Diagnostic challenges in non-small-cell lung cancer: an integrated medicine approach. Futur Oncol. 2015, 11, 489–500. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.S.W.; Yom, S.S.; Tsao, M.S.; Pass, H.I.; Kelly, K.; Peled, N.; et al. The International Association for the Study of Lung Cancer Consensus Statement on Optimizing Management of EGFR Mutation–Positive Non–Small Cell Lung Cancer: Status in 2016. J Thorac Oncol. 2016, 11, 946–63. [Google Scholar] [CrossRef]
- Broes, S.; Saesen, R.; Lacombe, D.; Huys, I. Past, Current, and Future Cancer Clinical Research Collaborations: The Case of the European Organisation for Research and Treatment of Cancer. Clin Transl Sci. 2020, 14, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.C.; Coyle, A.J. Building a New Biomedical Ecosystem: Pfizer’s Centers for Therapeutic Innovation. Clin Pharmacol Ther. 2013, 94, 314–6. [Google Scholar] [CrossRef]
- Stahel, R.A.; Lacombe, D.; Cardoso, F.; Casali, P.G.; Negrouk, A.; Marais, R.; et al. Current models, challenges and best practices for work conducted between European academic cooperative groups and industry. ESMO Open. 2020, 5, e000628. [Google Scholar] [CrossRef] [PubMed]
- Kasichayanula, S.; Mandlekar, S.; Shivva, V.; Patel, M.; Girish, S. Evolution of preclinical characterization and insights into clinical pharmacology of checkpoint inhibitors approved for cancer immunotherapy. Clin Transl Sci. 2022, 15, 1818–37. [Google Scholar] [CrossRef]
- Palafox, N.; Guerrero, R.L.; Robinett, H.; Peterson, J.; Ward, D.; Vogel, C.W. Advancing Cancer Health Equity in Pacific Islanders: A 15-Year Investment in Cancer Research, Training and Outreach in Guam, Hawaii and the U.S. Associated Pacific Islands. J Glob Oncol. 1: 2).
- Guerrero, R.T.L.; Hattori-Uchima, M.; Robinett, H.R.; Vogel, C.W.; Palafox, N.A. Abstract PO-036: University of Guam/University of Hawai‘i Cancer Center Partnership: A seventeen-year investment in cancer health equity in Pacific Islanders. Cancer Epidemiology, Biomark Prev. 2020;29(12_Supplement):PO-036-PO-036.
- Mazariego, C.; Daly, R.; McGill, B.; Kelada, L.; McKay, S.; Hetherington, K.; et al. Barriers to access of precision guided therapies for children with high-risk cancer. Pediatr Blood Cancer. 2024, 71, e31147. [Google Scholar] [CrossRef]
- Moerdler, S.; Zhang, L.; Gerasimov, E.; Zhu, C.; Wolinsky, T.; Roth, M.; et al. Physician perspectives on compassionate use in pediatric oncology. Pediatr Blood Cancer. 2018, 66, e27545. [Google Scholar] [CrossRef]
- Tan, A.C.; Bagley, S.J.; Wen, P.Y.; Lim, M.; Platten, M.; Colman, H.; et al. Systematic review of combinations of targeted or immunotherapy in advanced solid tumors. J Immunother Cancer. 2021, 9, e002459. [Google Scholar] [CrossRef]
- Moffit, J.S.; Blanset, D.L.; Lynch, J.L.; MacLachlan, T.K.; Meyer, K.E.; Ponce, R.; et al. Regulatory Consideration for the Nonclinical Safety Assessment of Gene Therapies. Hum Gene Ther. 1126. [Google Scholar]
- Stride, E.; Segers, T.; Lajoinie, G.; Cherkaoui, S.; Bettinger, T.; Versluis, M.; et al. Microbubble Agents: New Directions. Ultrasound Med Biol. 2020, 46, 1326–43. [Google Scholar] [CrossRef]
- Mifsud, J.; Cranswick, N. Addressing the challenges of novel therapies in rare diseases with mechanistic perspectives: Missed opportunities or the way forward? Br J Clin Pharmacol. 2022, 88, 2480–3. [Google Scholar] [CrossRef] [PubMed]
- Castellano, D.; Apolo, A.B.; Porta, C.; Capdevila, J.; Viteri, S.; Rodriguez-Antona, C.; et al. Cabozantinib combination therapy for the treatment of solid tumors: a systematic review. Ther Adv Méd Oncol. 2022, 14, 17588359221108692. [Google Scholar] [CrossRef]
- Bansal, D.; Reimers, M.A.; Knoche, E.M.; Pachynski, R.K. Immunotherapy and Immunotherapy Combinations in Metastatic Castration-Resistant Prostate Cancer. Cancers. 2021, 13, 334. [Google Scholar] [CrossRef]
- Benjamin, D.J.; Padula, W.V.; Hsu, R.C. Cost effectiveness of immunotherapy combination therapies for endometrial cancer. Gynecol Oncol Rep. 2024, 52, 101351. [Google Scholar] [CrossRef]
- Dranitsaris, G.; Zhu, X.; Adunlin, G.; Vincent, M.D. Cost effectiveness vs. affordability in the age of immuno-oncology cancer drugs. Expert Rev Pharmacoeconomics Outcomes Res. 2018, 18, 351–7. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.Y.; Gau, C.S. Lessons learned from the reimbursement policy for immune checkpoint inhibitors and real-world data collection in Taiwan. Int J Technol Assess Heal Care. 2020, 37, e26. [Google Scholar] [CrossRef]
- Fokas, E.; Appelt, A.; Glynne-Jones, R.; Beets, G.; Perez, R.; Garcia-Aguilar, J.; et al. International consensus recommendations on key outcome measures for organ preservation after (chemo)radiotherapy in patients with rectal cancer. Nat Rev Clin Oncol. 2021, 18, 805–16. [Google Scholar] [CrossRef]
- Sung, P.S. Crosstalk between tumor-associated macrophages and neighboring cells in hepatocellular carcinoma. Clin Mol Hepatol. 2022, 28, 333–50. [Google Scholar] [CrossRef]
- Twomey, J.D.; Zhang, B. Cancer Immunotherapy Update: FDA-Approved Checkpoint Inhibitors and Companion Diagnostics. AAPS J. 2021, 23, 39. [Google Scholar] [CrossRef]
- Roberts, N.A.; Dhillon, H.M.; Paterson, C.; Schubach, K.; McJannett, M.; Group, A. ; NZU; PCT The impact of coronavirus disease 2019 on genitourinary and prostate cancer care and clinical trials: A qualitative exploration of the Australian and New Zealand experience. AsiaPac J Clin Oncol. 2022, 19, 337–46. [Google Scholar]
- Li, L.; Sivasankaran, G.; Wijayawardena, B.K. Heterogeneity in untreated, stressed and drug-tolerant cells: insights into the evolution of cancer resistance. Int J Comput Biol Drug Des.
- Wang, Q.; Guldner, I.H.; Golomb, S.M.; Sun, L.; Harris, J.; Lu, X.; et al. Single-cell profiling guided combinatorial immunotherapy for fast-evolving CDK4/6 inhibitor resistant HER2-positive breast cancer. bioRxiv. 1198. [Google Scholar]
- Emert, B.L.; Cote, C.; Torre, E.A.; Dardani, I.P.; Jiang, C.L.; Jain, N.; et al. Variability within rare cell states enables multiple paths towards drug resistance. bioRxiv. 9966. [Google Scholar]
- Boolchandani, M.; D’Souza, A.W.; Dantas, G. Sequencing-based methods and resources to study antimicrobial resistance. Nat Rev Genet. 2019, 20, 356–70. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Liu, M.; Bai, Y.; Liu, H. Multi-Dimensional Organic Mass Cytometry: Simultaneous Analysis of Proteins and Metabolites on Single Cells. Angew Chem Int Ed. 2020, 60, 1806–12. [Google Scholar] [CrossRef]
- Fan, X.X.; Wu, Q. Decoding Lung Cancer at Single-Cell Level. Front Immunol. 2022, 13, 883758. [Google Scholar] [CrossRef]
- Lawson, D.A.; Kessenbrock, K.; Davis, R.T.; Pervolarakis, N.; Werb, Z. Tumour heterogeneity and metastasis at single-cell resolution. Nat Cell Biol. 2018, 20, 1349–60. [Google Scholar] [CrossRef]
- Schnepp, P.M.; Shelley, G.; Dai, J.; Wakim, N.; Jiang, H.; Mizokami, A.; et al. Single-Cell Transcriptomics Analysis Identifies Nuclear Protein 1 as a Regulator of Docetaxel Resistance in Prostate Cancer Cells. Mol Cancer Res. 2020, 18, 1290–301. [Google Scholar] [CrossRef]
- Lin, P.; Cheng, W.; Qi, X.; Zhang, P.; Xiong, J.; Li, J. Bioinformatics and Experimental Validation for Identifying Biomarkers Associated with AMG510 (Sotorasib) Resistance in KRASG12C-Mutated Lung Adenocarcinoma. Int J Mol Sci. 2024, 25, 1555. [Google Scholar] [CrossRef]
- Chiribau, C.B.; Schmedes, S.; Dong, Y.; Tarigopula, N.; Tekin, O.; Cannons, A.; et al. Detection of resistance to macrolides and fluoroquinolones in Mycoplasma genitalium by targeted next-generation sequencing. Microbiol Spectr. 2024, 12, e03845–23. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Sun, D.; Li, K.; Dai, Q.; Geng, S.; Yang, Y.; et al. Metabolic Labeling and Digital Microfluidic Single-Cell Sequencing for Single Bacterial Genotypic-Phenotypic Analysis. Small. 2024, 20, e2402177. [Google Scholar] [CrossRef] [PubMed]
- Gomes, B.C.; Honrado, M.; Armada, A.; Viveiros, M.; Rueff, J.; Rodrigues, A.S. ABC Efflux Transporters and the Circuitry of miRNAs: Kinetics of Expression in Cancer Drug Resistance. Int J Mol Sci. 2020, 21, 2985. [Google Scholar] [CrossRef]
- Zhu, G.; Zhang, W.; Zhao, Y.; Wang, G.; Yuan, H.; Guo, G.; et al. Single-Cell Mass Spectrometry Studies of Secondary Drug Resistance of Tumor Cells. Anal Chem. 2024, 97, 337–44. [Google Scholar] [CrossRef]
- Sun, M.; Chen, X.; Yang, Z. Single cell mass spectrometry studies reveal metabolomic features and potential mechanisms of drug-resistant cancer cell lines. Anal Chim Acta. 2022, 1206, 339761. [Google Scholar] [CrossRef]
- Champagne, A.; Jain, P.; Vélot, L.; Riopel, J.; Lefebvre, V.; Neveu, B.; et al. A transcriptional biosensor to monitor single cancer cell therapeutic responses by bioluminescence microscopy. Theranostics. 2022, 12, 474–92. [Google Scholar] [CrossRef] [PubMed]
- Toth, R.; Schiffmann, H.; Hube-Magg, C.; Büscheck, F.; Höflmayer, D.; Weidemann, S.; et al. Random forest-based modelling to detect biomarkers for prostate cancer progression. Clin Epigenetics. 2019, 11, 148. [Google Scholar] [CrossRef]
- Alghafees, M.; Seyam, R.M.; Al-Hussain, T.; Amin, T.M.; Altaweel, W.; Sabbah, B.N.; et al. Using machine learning models to predict synchronous genitourinary cancers among gastrointestinal stromal tumor patients. Urol Ann. 2024, 16, 94–7. [Google Scholar] [CrossRef] [PubMed]
- Khagi, Y.; Goodman, A.M.; Daniels, G.A.; Patel, S.P.; Sacco, A.G.; Randall, J.M.; et al. Hypermutated Circulating Tumor DNA: Correlation with Response to Checkpoint Inhibitor–Based Immunotherapy. Clin Cancer Res. 2017, 23, 5729–36. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, E.; Asadullina, D.; Gilyazova, G.; Rakhimov, R.; Izmailov, A.; Pavlov, V.; et al. Exosomal MicroRNA Levels Associated with Immune Checkpoint Inhibitor Therapy in Clear Cell Renal Cell Carcinoma. Biomedicines. 2023, 11, 801. [Google Scholar] [CrossRef]
- Kelloff, G.J.; Sigman, C.C.; Scher, H.I. Biomarker development in the context of urologic cancers. Urol Oncol: Semin Orig Investig. 2015, 33, 295–301. [Google Scholar] [CrossRef]
- Hugen, C.M.; Zainfeld, D.E.; Goldkorn, A. Circulating Tumor Cells in Genitourinary Malignancies: An Evolving Path to Precision Medicine. Front Oncol. 2017, 7, 6. [Google Scholar] [CrossRef]
- Polley, M.Y.C.; Cheung, Y.K. Early-Phase Platform Trials: A New Paradigm for Dose Finding and Treatment Screening in the Era of Precision Oncology. JCO Precis Oncol. 2019, 3, 1–8. [Google Scholar] [CrossRef]
- Hu, C.; Dignam, J.J. Biomarker-Driven Oncology Clinical Trials: Key Design Elements, Types, Features, and Practical Considerations. JCO Precis Oncol. 2019, 3, 1–12. [Google Scholar] [CrossRef]
- Zhou, Q.; Chen, H.J.; Wang, B.C.; Wang, Z.; Tu, H.Y.; Xu, C.; et al. CLUSTER: A biomarker-integrated targeted therapy study in patients with advanced non-small cell lung cancer. 2022. [Google Scholar]
- Lee Ckun Kim, H.S.; Jung, M.; Kim, H.; Bae, W.K.; Koo, D.H.; et al. Open-Label, Multicenter, Randomized, Biomarker-Integrated Umbrella Trial for Second-Line Treatment of Advanced Gastric Cancer: K-Umbrella Gastric Cancer Study. J Clin Oncol. 2024, 42, 348–57. [Google Scholar]
- Wu, S.; Thawani, R. Tumor-Agnostic Therapies in Practice: Challenges, Innovations, and Future Perspectives. Cancers. 2025, 17, 801. [Google Scholar] [CrossRef]
- Burd, A.; Schilsky, R.L.; Byrd, J.C.; Levine, R.L.; Papadimitrakopoulou, V.A.; Herbst, R.S.; et al. Challenges and approaches to implementing master/basket trials in oncology. Blood Adv. 2019, 3, 2237–43. [Google Scholar] [CrossRef]
- van de Wetering, M.; Francies, H.E.; Francis, J.M.; Bounova, G.; Iorio, F.; Pronk, A.; et al. Prospective Derivation of a Living Organoid Biobank of Colorectal Cancer Patients . Cell 2015, 161, 933–45. [Google Scholar] [CrossRef]
- Pappas, K.J.; Choi, D.; Sawyers, C.L.; Karthaus, W.R. Prostate Organoid Cultures as Tools to Translate Genotypes and Mutational Profiles to Pharmacological Responses. J Vis Exp.
- Kijima, T.; Nakagawa, H.; Shimonosono, M.; Chandramouleeswaran, P.M.; Hara, T.; Sahu, V.; et al. Three-Dimensional Organoids Reveal Therapy Resistance of Esophageal and Oropharyngeal Squamous Cell Carcinoma Cells. Cell Mol Gastroenterol Hepatol. 2019, 7, 73–91. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Hu, W.; Matulay, J.T.; Silva, M.V.; Owczarek, T.B.; Kim, K.; et al. Tumor Evolution and Drug Response in Patient-Derived Organoid Models of Bladder Cancer. Cell. 2018, 173, 515–528. [Google Scholar] [CrossRef]
- Beshiri, M.L.; Tice, C.M.; Tran, C.; Nguyen, H.M.; Sowalsky, A.G.; Agarwal, S.; et al. A PDX/organoid biobank of advanced prostate cancers captures genomic and phenotypic heterogeneity for disease modeling and therapeutic screening. Clin Cancer Res. 2018, 24, clincanres. [Google Scholar] [CrossRef]
- Cao, Q.; Li, L.; Zhao, Y.; Wang, C.; Shi, Y.; Tao, X.; et al. PARPi Decreased Primary Ovarian Cancer Organoid Growth Through Early Apoptosis and Base Excision Repair Pathway. Cell Transplant. 2023, 32, 09636897231187996. [Google Scholar] [CrossRef] [PubMed]
- Vlachogiannis, G.; Hedayat, S.; Vatsiou, A.; Jamin, Y.; Fernández-Mateos, J.; Khan, K.; et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 2018, 359, 920–6. [Google Scholar] [CrossRef]
- Ziani, L.; Buart, S.; Chouaib, S.; Thiery, J. Hypoxia increases melanoma-associated fibroblasts immunosuppressive potential and inhibitory effect on T cell-mediated cytotoxicity. OncoImmunology. 2021, 10, 1950953. [Google Scholar] [CrossRef]
- Wang, Z.; Liang, X.; Zhang, H.; Wang, Z.; Zhang, X.; Dai, Z.; et al. Identification of a Hypoxia-Angiogenesis lncRNA Signature Participating in Immunosuppression in Gastric Cancer. J Immunol Res. 2022, 2022, 5209607. [Google Scholar] [CrossRef] [PubMed]
- Gnanamony, M.; Demirkhanyan, L.; Ge, L.; Sojitra, P.; Bapana, S.; Norton, J.A.; et al. Circular dumbbell miR-34a-3p and −5p suppresses pancreatic tumor cell-induced angiogenesis and activates macrophages. Oncol Lett. 2020, 21, 75. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; He, L.; Zhu, J.; Zhang, P.; Liang, S. Targeting tumor-associated macrophages for cancer treatment. Cell Biosci. 2022, 12, 85. [Google Scholar] [CrossRef]
- Takahashi, H.; Rokudai, S.; Kawabata-Iwakawa, R.; Sakakura, K.; Oyama, T.; Nishiyama, M.; et al. AKT3 Is a Novel Regulator of Cancer-Associated Fibroblasts in Head and Neck Squamous Cell Carcinoma. Cancers. 2021, 13, 1233. [Google Scholar] [CrossRef]
- Fukumura, D.; Kloepper, J.; Amoozgar, Z.; Duda, D.G.; Jain, R.K. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat Rev Clin Oncol. 2018, 15, 325–40. [Google Scholar] [CrossRef]
- Lopes-Coelho, F.; Martins, F.; Pereira, S.A.; Serpa, J. Anti-Angiogenic Therapy: Current Challenges and Future Perspectives. Int J Mol Sci. 2021, 22, 3765. [Google Scholar] [CrossRef]
- Song, Y.; Fu, Y.; Xie, Q.; Zhu, B.; Wang, J.; Zhang, B. Anti-angiogenic Agents in Combination With Immune Checkpoint Inhibitors: A Promising Strategy for Cancer Treatment. Front Immunol. 2020, 11, 1956. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.S.; Yang, H.; Chon, H.J.; Kim, C. Combination of anti-angiogenic therapy and immune checkpoint blockade normalizes vascular-immune crosstalk to potentiate cancer immunity. Exp Mol Med. 2020, 52, 1475–85. [Google Scholar] [CrossRef]
- Chang, C.C.; Dinh, T.K.; Lee, Y.A.; Wang, F.N.; Sung, Y.C.; Yu, P.L.; et al. Nanoparticle Delivery of MnO2 and Antiangiogenic Therapy to Overcome Hypoxia-Driven Tumor Escape and Suppress Hepatocellular Carcinoma. ACS Appl Mater Interfaces. 2020, 12, 44407–19. [Google Scholar] [CrossRef]
- Shamshiripour, P.; Hajiahmadi, F.; Lotfi, S.; Esmaeili, N.R.; Zare, A.; Akbarpour, M.; et al. Next-Generation Anti-Angiogenic Therapies as a Future Prospect for Glioma Immunotherapy; From Bench to Bedside. Front Immunol. 2022, 13, 859633. [Google Scholar] [CrossRef]
- Hang, R.; Tian, X.; Qu, G.; Zhao, Y.; Yao, R.; Zhang, Y.; et al. Exosomes derived from magnesium ion—stimulated macrophages inhibit angiogenesis. Biomed Mater. 2022, 17, 045008. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Xu, J.; Gu, J.; Shi, H.; Zhang, J.; Zhang, J.; et al. Extracellular Vesicles in Cancer Drug Resistance: Roles, Mechanisms, and Implications. Adv Sci. 2022, 9, 2201609. [Google Scholar] [CrossRef] [PubMed]
- Mir, R.; Baba, S.K.; Elfaki, I.; Algehainy, N.; Alanazi, M.A.; Altemani, F.H.; et al. Unlocking the Secrets of Extracellular Vesicles: Orchestrating Tumor Microenvironment Dynamics in Metastasis, Drug Resistance, and Immune Evasion. J Cancer. 2024, 15, 6383–415. [Google Scholar] [CrossRef] [PubMed]
- Li, I.; Nabet, B.Y. Exosomes in the tumor microenvironment as mediators of cancer therapy resistance. Mol Cancer. 2019, 18, 32. [Google Scholar] [CrossRef]
- Trentham-Dietz, A.; Bird, J.E.; Gangnon, R.E.; Lindberg, S.M.; Madison, T.; Malecki, K.M.C.; et al. Coordinating Centers as a Strategy for Accelerating Cancer Epidemiology Consortia: Best Practices. Curr Epidemiology Rep. 2022, 9, 1–9. [Google Scholar] [CrossRef]
- Harris, J.K.; Provan, K.G.; Johnson, K.J.; Leischow, S.J. Drawbacks and benefits associated with inter-organizational collaboration along the discovery-development-delivery continuum: a cancer research network case study. Implement Sci. 2012, 7, 69. [Google Scholar] [CrossRef]
- Varmus, H.; Kumar, H.S. Addressing the Growing International Challenge of Cancer: A Multinational Perspective. Sci Transl Med. 2013, 5, 175cm2. [Google Scholar] [CrossRef]
- Rowland, J.H.; Kent, E.E.; Forsythe, L.P.; Loge, J.H.; Hjorth, L.; Glaser, A.; et al. Cancer survivorship research in Europe and the United States: Where have we been, where are we going, and what can we learn from each other? Cancer. 2013;119(S11):2094–108.
- Froggatt, K.; Preston, N.; Turner, M.; Kerr, C. Patient and public involvement in research and the Cancer Experiences Collaborative: benefits and challenges. BMJ Support Palliat Care. 2014, 5, 518. [Google Scholar] [CrossRef]
- Vogel, A.L.; Perin, D.M.P.; Lu, Y.L.; Taplin, S.H. Understanding the Value of International Research Networks: An Evaluation of the International Cancer Screening Network of the US National Cancer Institute. J Glob Oncol. 2019, 5, JGO. [Google Scholar] [CrossRef]
- Pal, T.; Suiter, S.V.; Moses, H.L.; Smoot, D.T.; Richmond, A.; Tiriveedhi, V.; et al. The Meharry-Vanderbilt-Tennessee State University Cancer Partnership (MVTCP): History and Highlights of 20 Years of Accomplishments. J Heal Care Poor Underserved. 2022, 33, 419–36. [Google Scholar] [CrossRef]
- Banydeen, R.; Rose, A.M.C.; Martin, D.; Aiken, W.; Alexis, C.; Andall-Brereton, G.; et al. Advancing Cancer Control through Research and Cancer Registry Collaborations in the Caribbean. Cancer Control. 2015, 22, 520–30. [Google Scholar] [CrossRef] [PubMed]
- Celis, J.E.; Heitor, M. Towards a mission-oriented approach to cancer in Europe: an unmet need in cancer research policy. Mol Oncol. 2019, 13, 502–10. [Google Scholar] [CrossRef]
- Berns, A. Quality-assured research environments for translational cancer research. Mol Oncol. 2019, 13, 543–8. [Google Scholar] [CrossRef]
- Brokowski, C.; Adli, M. CRISPR Ethics: Moral Considerations for Applications of a Powerful Tool. J Mol Biol. 2019, 431, 88–101. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, A.T.; Akhtar, D. Gene Therapy and Modification as a Therapeutic Strategy for Cancer. Univ Ott J Med. 2016, 6, 44–8. [Google Scholar] [CrossRef]
- Kolanu, N.D. CRISPR–Cas9 Gene Editing: Curing Genetic Diseases by Inherited Epigenetic Modifications. Glob Méd Genet. 2024, 11, 113–22. [Google Scholar] [CrossRef]
- Ikwuka, A.O.; Musa, S.; Udeh, F.C.; Musa, A.A.; Chukwuezie, U.C. CRISPR-Cas9 Genomic Editing as an Innovation in the Management of Sickle Cell Disease: A Systematic Review. Am J Méd Sci Innov. 2023, 2, 36–48. [Google Scholar] [CrossRef]
- Schweikart, S.J. What Is Prudent Governance of Human Genome Editing? AMA J Ethics. 2019, 21, E1042–1048. [Google Scholar]
- SRK; Kotian, H.; Chatterjee, P.K.; Yuguda, Y.M.; Rochmat, A.; To, T.T.H. SRK; Kotian, H.; Chatterjee, P.K.; Yuguda, Y.M.; Rochmat, A.; To, T.T.H.; et al. Ethical Implications And Molecular Mechanisms Of CRISPR-Cas9 In Modern Biology. Afr J Biomed Res. 1520. [Google Scholar]
- Guo, N.; Liu, J.B.; Li, W.; Ma, Y.S.; Fu, D. The power and the promise of CRISPR/Cas9 genome editing for clinical application with gene therapy. J Adv Res. 2022, 40, 135–52. [Google Scholar] [CrossRef]
- Dzilic, E.; Lahm, H.; Dreßen, M.; Deutsch, M.A.; Lange, R.; Wu, S.M.; et al. Genome Editing Redefines Precision Medicine in the Cardiovascular Field. Stem Cells Int. 2018, 2018, 4136473. [Google Scholar] [CrossRef]
- Ledzewicz, U.; Schättler, H.; Wang, S. On the role of tumor heterogeneity for optimal cancer chemotherapy. Netw Heterog Media. 2019, 14, 131–47. [Google Scholar] [CrossRef]
- Karai, E.; Szebényi, K.; Windt, T.; Fehér, S.; Szendi, E.; Dékay, V.; et al. Celecoxib Prevents Doxorubicin-Induced Multidrug Resistance in Canine and Mouse Lymphoma Cell Lines. Cancers. 2020, 12, 1117. [Google Scholar] [CrossRef]
- Thomas, D.S.; Cisneros, L.H.; Anderson, A.R.A.; Maley, C.C. In Silico Investigations of Multi-Drug Adaptive Therapy Protocols. Cancers. 2022, 14, 2699. [Google Scholar] [CrossRef]
- Piretto, E.; Delitala, M.; Ferraro, M. How Combination Therapies Shape Drug Resistance in Heterogeneous Tumoral Populations. Lett Biomath.
- Pan, Y.; Shu, G.; Fu, L.; Huang, K.; Zhou, X.; Gui, C.; et al. EHBP1L1 Drives Immune Evasion in Renal Cell Carcinoma through Binding and Stabilizing JAK1. Adv Sci. 2023, 10, 2206792. [Google Scholar] [CrossRef]
- Baghy, K.; Ladányi, A.; Reszegi, A.; Kovalszky, I. Insights into the Tumor Microenvironment—Components, Functions and Therapeutics. Int J Mol Sci. 2023, 24, 17536. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Wu, C.; Mao, Y.; Qi, X.; Wang, X.; Li, P.; et al. Tracking interactions between TAMs and CAFs mediated by arginase-induced proline production during immune evasion of HCC. 2024. [Google Scholar]
- Tanaka, M.; Siemann, D.W. Gas6/Axl Signaling Pathway in the Tumor Immune Microenvironment. Cancers. 2020, 12, 1850. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.J.M.; Theodoropoulos, G.; Li, Y.Y.; Wu, C.; Sha, W.; Feun, L.G.; et al. Targeting the Kynurenine Pathway for the Treatment of Cisplatin-Resistant Lung Cancer. Mol Cancer Res. 2020, 18, 105–17. [Google Scholar] [CrossRef]
- Xu, Y.; He, L.; Fu, Q.; Hu, J. Metabolic Reprogramming in the Tumor Microenvironment With Immunocytes and Immune Checkpoints. Front Oncol. 2021, 11, 759015. [Google Scholar] [CrossRef]
- Jiang, M.; Wang, Y.; Zhao, X.; Yu, J. From metabolic byproduct to immune modulator: the role of lactate in tumor immune escape. Front Immunol. 2024, 15, 1492050. [Google Scholar] [CrossRef]
- Khan, T.; Nagarajan, M.; Kang, I.; Wu, C.; Wangpaichitr, M. Targeting Metabolic Vulnerabilities to Combat Drug Resistance in Cancer Therapy. J Pers Med. 2025, 15, 50. [Google Scholar] [CrossRef]
- George, J.T.; Levine, H. Optimal Cancer Evasion in a Dynamic Immune Microenvironment. bioRxiv. 5027. [Google Scholar]
- Dhanasekaran, R.; Hansen, A.S.; Park, J.; Lai, I.; Adeniji, N.; Kuruvilla, S.; et al. MYC Overexpression Drives Immune Evasion in Human Cancer that is Reversible Through Restoration of Pro-Inflammatory Macrophages. bioRxiv. 4918. [Google Scholar]
- Jenkins, L.; Jungwirth, U.; Avgustinova, A.; Iravani, M.; Mills, A.P.; Haider, S.; et al. Cancer-associated fibroblasts suppress CD8+ T cell infiltration and confer resistance to immune checkpoint blockade. Cancer Res. 2022, 82, 2904–17. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Ma, L.; Li, J.; Sun, L.; Yang, Y.; Liu, T.; et al. Trop2-targeted therapies in solid tumors: advances and future directions. Theranostics. 2024, 14, 3674–92. [Google Scholar] [CrossRef]
- Bian, X.; Liu, W.; Yang, K.; Sun, C. Therapeutic targeting of PARP with immunotherapy in acute myeloid leukemia. Front Pharmacol. 2024, 15, 1421816. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Yin, J.; Fang, Y.; Chen, J.; Jeong, K.J.; Chen, X.; et al. BRD4 Inhibition Is Synthetic Lethal with PARP Inhibitors through the Induction of Homologous Recombination Deficiency. Cancer Cell. 2018, 33, 401–416. [Google Scholar] [CrossRef]
- Bhatt, A.P.; Pellock, S.J.; Biernat, K.A.; Walton, W.G.; Wallace, B.D.; Creekmore, B.C.; et al. Targeted inhibition of gut bacterial β-glucuronidase activity enhances anticancer drug efficacy. Proc Natl Acad Sci. 2020, 117, 7374–81. [Google Scholar] [CrossRef]
- Hillege, L.E.; Stevens, M.A.M.; Kristen, P.A.J.; Vos-Geelen Jde Penders, J.; Redinbo, M.R.; et al. The role of gut microbial β-glucuronidases in carcinogenesis and cancer treatment: a scoping review. J Cancer Res Clin Oncol. 2024, 150, 495. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Deng, Y.; Han, J.; Ma, L.; Zhu, Y.; Zhang, H.; et al. CircMALAT1 promotes cancer stem-like properties and chemoresistance via regulating Musashi-2/c-Myc axis in esophageal squamous cell carcinoma. MedComm. 2024, 5, e612. [Google Scholar] [CrossRef]
- Serna, N.; Álamo, P.; Ramesh, P.; Vinokurova, D.; Sánchez-García, L.; Unzueta, U.; et al. Nanostructured toxins for the selective destruction of drug-resistant human CXCR4+ colorectal cancer stem cells. J Control Release. 2020, 320, 96–104. [Google Scholar] [CrossRef]
- Obenauf, A.C.; Zou, Y.; Ji, A.L.; Vanharanta, S.; Shu, W.; Shi, H.; et al. Therapy-induced tumour secretomes promote resistance and tumour progression. Nature. 2015, 520, 368–72. [Google Scholar] [CrossRef]
- Wu, P.; Gao, W.; Su, M.; Nice, E.C.; Zhang, W.; Lin, J.; et al. Adaptive Mechanisms of Tumor Therapy Resistance Driven by Tumor Microenvironment. Front Cell Dev Biol. 2021, 9, 641469. [Google Scholar] [CrossRef]
- Bayle, A.; Belcaid, L.; Palmieri, L.J.; Teysonneau, D.; Cousin, S.; Spalato-Ceruso, M.; et al. Circulating tumor DNA landscape and prognostic impact of acquired resistance to targeted therapies in cancer patients: a national center for precision medicine (PRISM) study. Mol Cancer. 2023, 22, 176. [Google Scholar] [CrossRef]
- Ahronian, L.G.; Corcoran, R.B. Strategies for monitoring and combating resistance to combination kinase inhibitors for cancer therapy. Genome Med. 2017, 9, 37. [Google Scholar] [CrossRef]
- Krepler, C.; Xiao, M.; Sproesser, K.; Brafford, P.A.; Shannan, B.; Beqiri, M.; et al. Personalized Preclinical Trials in BRAF Inhibitor–Resistant Patient-Derived Xenograft Models Identify Second-Line Combination Therapies. Clin Cancer Res. 2016, 22, 1592–602. [Google Scholar] [CrossRef] [PubMed]
- Pazarentzos, E.; Bivona, T.G. Adaptive stress signaling in targeted cancer therapy resistance. Oncogene. 2015, 34, 5599–606. [Google Scholar] [CrossRef]
- Li, L.; Hu, M.; Wang, T.; Chen, H.; Xu, L. Repositioning Aspirin to Treat Lung and Breast Cancers and Overcome Acquired Resistance to Targeted Therapy. Front Oncol. 2020, 9, 1503. [Google Scholar] [CrossRef] [PubMed]
- Boe, R.H.; Triandafillou, C.G.; Lazcano, R.; Wargo, J.A.; Raj, A. Spatial transcriptomics reveals influence of microenvironment on intrinsic fates in melanoma therapy resistance. bioRxiv. 6014. [Google Scholar]
- Wang, K.; Zhang, X.; Li, A.; Qiao, X.; Xu, Y. The mechanism of action and therapeutic potential of tumor-associated macrophages in tumor immune evasion. Front Immunol. 2025, 16, 1545928. [Google Scholar] [CrossRef]
- Kaur, P.; Mohamed, N.E.; Archer, M.; Figueiro, M.G.; Kyprianou, N. Impact of Circadian Rhythms on the Development and Clinical Management of Genitourinary Cancers. Front Oncol. 2022, 12, 759153. [Google Scholar] [CrossRef] [PubMed]
- Zhou, I.; Plana, D.; Palmer, A.C. Tumor-specific activity of precision medicines in the NCI-MATCH trial. medRxiv. 2328. [Google Scholar]
- Wang, J.; Wang, B.; Chu, H.; Yao, Y. Intrinsic resistance to EGFR tyrosine kinase inhibitors in advanced non-small-cell lung cancer with activating EGFR mutations. OncoTargets Ther. 2016, 9, 3711–26. [Google Scholar] [CrossRef]
- Lopez, J.S.; Banerji, U. Combine and conquer: challenges for targeted therapy combinations in early phase trials. Nat Rev Clin Oncol. 2016, 14, 57–66. [Google Scholar] [CrossRef]
- Zou, Y.; Zheng, S.; Xie, X.; Ye, F.; Hu, X.; Tian, Z.; et al. N6-methyladenosine regulated FGFR4 attenuates ferroptotic cell death in recalcitrant HER2-positive breast cancer. Nat Commun. 2022, 13, 2672. [Google Scholar] [CrossRef]
- Hautaniemi, S.; Kozłowska, E.; Färkkilä, A.; Vallius, T.; Carpén, O.; Kemppainen, J.; et al. Mathematical modeling predicts response to chemotherapy and drug combinations in ovarian cancer. Cancer Res. 2018, 78, canres. [Google Scholar]
- Rolfo, C.; Mack, P.C.; Scagliotti, G.V.; Baas, P.; Barlesi, F.; Bivona, T.G.; et al. Liquid Biopsy for Advanced Non-Small Cell Lung Cancer (NSCLC): A Statement Paper from the IASLC. J Thorac Oncol. 2018, 13, 1248–68. [Google Scholar] [CrossRef] [PubMed]
- Schneider, L.; Stöckel, D.; Kehl, T.; Gerasch, A.; Ludwig, N.; Leidinger, P.; et al. DrugTargetInspector: An assistance tool for patient treatment stratification. Int J Cancer. 2016, 138, 1765–76. [Google Scholar] [CrossRef] [PubMed]
- Vareki, S.M.; Salim, K.Y.; Danter, W.R.; Koropatnick, J. Novel anti-cancer drug COTI-2 synergizes with therapeutic agents and does not induce resistance or exhibit cross-resistance in human cancer cell lines. PLoS ONE. 2018, 13, e0191766. [Google Scholar] [CrossRef]
- Aldea, M.; Andre, F.; Marabelle, A.; Dogan, S.; Barlesi, F.; Soria, J.C. Overcoming Resistance to Tumor-Targeted and Immune-Targeted Therapies. Cancer Discov. 2021, 11, 874–99. [Google Scholar] [CrossRef]
- Ramirez, M.; Rajaram, S.; Steininger, R.J.; Osipchuk, D.; Roth, M.A.; Morinishi, L.S.; et al. Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer persister cells. Nat Commun. 2016, 7, 10690. [Google Scholar] [CrossRef] [PubMed]
- Mead, K.H.; Wang, Y.; Cleary, S.; Arem, H.; Pratt-Chapman, M.L. Defining a patient-centered approach to cancer survivorship care: development of the patient centered survivorship care index (PC-SCI). BMC Heal Serv Res. 2021, 21, 1353. [Google Scholar] [CrossRef]
- Jayadevappa, R. Patient Centered Care - A Conceptual Model and Review of the State of the Art. Open Heal Serv Polic J. 2011, 4, 15–25. [Google Scholar] [CrossRef]
- Greenup, R.A.; Blitzblau, R.C.; Houck, K.L.; Sosa, J.A.; Horton, J.; Peppercorn, J.M.; et al. Cost Implications of an Evidence-Based Approach to Radiation Treatment After Lumpectomy for Early-Stage Breast Cancer. J Oncol Pr. 2017, 13, JOP. [Google Scholar] [CrossRef]
- Jayadevappa, R.; Chhatre, S.; Gallo, J.J.; Malkowicz, S.B.; Schwartz, J.S.; Wittink, M.N. Patient-Centered Approach to Develop the Patient’s Preferences for Prostate Cancer Care (PreProCare) Tool. MDM Polic Pr. 2019, 4, 2381468319855375. [Google Scholar] [CrossRef]
- Epstein, A.S.; Desai, A.V.; Bernal, C.; Romano, D.; Wan, P.J.; Okpako, M.; et al. Giving Voice to Patient Values Throughout Cancer: A Novel Nurse-Led Intervention. J Pain Symptom Manag. 2019, 58, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.C.; Man, S.; Xu, P.; Francia, G.; Hashimoto, K.; Emmenegger, U.; et al. Development of a Resistance-like Phenotype to Sorafenib by Human Hepatocellular Carcinoma Cells Is Reversible and Can Be Delayed by Metronomic UFT Chemotherapy. Neoplasia. 2010, 12, 928–40. [Google Scholar] [CrossRef] [PubMed]
- Viossat, Y.; Noble, R. The logic of containing tumors. bioRxiv. 9153. [Google Scholar]
- Gallaher, J.A.; Enriquez-Navas, P.M.; Luddy, K.A.; Gatenby, R.A.; Anderson, A.R.A. Data from Spatial Heterogeneity and Evolutionary Dynamics Modulate Time to Recurrence in Continuous and Adaptive Cancer Therapies. 2023. [Google Scholar]
- Daley, B.; Kortum, R. Abstract B007: Proximal RTK signaling regulates tumor initiating cell survival and therapeutic responsiveness in EGFR- and KRAS-mutated lung adenocarcinoma. Mol Cancer Res.
- Rodriguez, M.J.; Perrone, M.C.; Riggio, M.; Palafox, M.; Salinas, V.; Elia, A.; et al. Targeting mTOR to overcome resistance to hormone and CDK4/6 inhibitors in ER-positive breast cancer models. . 2022. [CrossRef] [PubMed]
- Attalla, K.; Sfakianos, J.P.; Galsky, M.D. Genitourinary Cancers. Cancer Treat Res. 2018, 175, 241–58. [Google Scholar]
- Maiorano, B.A.; Schinzari, G.; Ciardiello, D.; Rodriquenz, M.G.; Cisternino, A.; Tortora, G.; et al. Cancer Vaccines for Genitourinary Tumors: Recent Progresses and Future Possibilities. Vaccines. 2021, 9, 623. [Google Scholar] [CrossRef]
- Mathur, D.; Taylor, B.P.; Chatila, W.; Schultz, N.; Razavi, P.; Xavier, J. Abstract PO-114: Mathematical modeling of tumor heterogeneity to optimize treatment scheduling and delay the evolution of resistance. Cancer Res.
- Suresh, S.; Raghavendran, S.; Selvaraj, S. Combining Evolution and Cancer Therapy: A Review of the Mathematical Approach. Curr Cancer Ther Rev. 2022, 18, 7–13. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
