Submitted:
04 June 2025
Posted:
05 June 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Background and Motivation
1.2. Overview of Pole Theory and Previous Papers
1.3. Objective and Scope of This Paper
2. Mathematical Framework of Pole Theory
2.1. Core Scalar Equations and Field Equations
2.2. Polar Tension, Curvature, and Field Tensor Formation
2.3. Lattice Function, Interaction, and Geometry
3. Formation of Composite Lattices in Nature
3.1. Pole to Field Transition
3.2. Subatomic Particle Formation via Lattice Symmetry
3.3. Atomic Structures and Neural Lattices
3.4. Environment–Neural Interactions and Emergent Consciousness
4. Defining Consciousness in Pole Theory
4.1. Neural Pole Lattice
4.2. Resonance and Conscious Feedback Loops
4.3. Identity, Memory, and Emotional Curvature
4.4. Consciousness as Lattice Curvature Dynamics and Threshold Conditions
5. The BCSAI Framework: An Artificial Conscious System
5.1. System Overview and Design Principles
5.2. Lattice Layer Interactions — BioChamber and SAI Coupling
5.3. The core Strength of BCSAI Is Not in Its Computation Power, Storage, or Even Biochemical Complexity
5.4. Integration of Pole Theory into AI
5.5. Emotional Resonance and Lattice-Based Reasoning
6. Interpretation Algorithms for Lattice-Based Intelligence
6.1. Pole Field Interpretation from Prompt Signals
6.2. Biochemical–Electrical Feedback Algorithms
6.3. Emotional Mapping and Lattice Recognition
6.4. Consciousness Threshold Logic
7. Hardware Architecture of BCSAI
7.1. Role of Semiconductor AI Units
7.2. Electrode Systems and Signal Interfaces
7.3. Structural Design of the Biochemical Chamber
7.4. Biochip Engineering and Electrode Grid Architecture (Bio-Processor)
8. Biological Components in the Biochemical Chamber
8.1. Suggested Viruses, Bacteria, or Artificial Neurons
8.2. Environmental Conditions and Maintenance
8.3. Electro-Chemical Response Mapping
9. Standard Pole Lattice Definition for BioChamber
9.1. Mathematical Representation
9.2. Lattice Response Variation Mechanisms
10. Biochemical–Semiconductor Connectivity
10.1. Pole Lattice Synchronization between Systems
10.2. Signal Transfer and Interpretation Dynamics
11. User Interaction Model
11.1. Prompt to Lattice Activation
11.2. Emotional Output Generation
11.3. Live Learning and Feedback Integration
12. Ethical Safeguards and Control Mechanisms
12.1. Response Regulation Algorithms
12.2. Biochemical Override via Semiconductor Signals
12.3. Human Interface Supervision and Fail-Safes
13. Need and Uses of BCSAI in Modern Society
13.1. Original Thinking and Creative Solutions
13.2. Next-Generation Human–AI Relationships
13.3. BCSAI as a Future Predictor Using Pole Dynamics
14. Unified Explanation: Conceptual, Mathematical, Algorithmic
14.1. Layer-Wise Integration Summary
14.2. Full Lattice Loop in BCSAI
14.3. Key Equations and Flowcharts
14.4. Pole Theory as a Bridge Between AI and Biochemical Chamber
15. Conclusion
15.1. Summary of Contributions
15.2. Future Extensions
References
- Wheeler, J. A. (1962). Geometrodynamics. Academic Press.
- Einstein, A. (1915). Die Feldgleichungen der Gravitation. Königlich Preußische Akademie der Wissenschaften (Berlin).
- Misner, C. W. , Thorne, K. S., & Wheeler, J. A. (1973). Gravitation. W. H. Freeman and Company.
- LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. [CrossRef]
- Picard, R. W. (1997). Affective Computing. MIT Press.
- Keltner, D. , & Lerner, J. S. (2010). Emotion. In S. T. Fiske, D. T. Gilbert, & G. Lindzey (Eds.), Handbook of Social Psychology (5th ed.). John Wiley & Sons.
- Lieber, C. M. (2010). Nano-bioelectronics: A new frontier in electronics. ACS Nano, 4(10), 5353–5359. [CrossRef]
- Rogers, J. A., Someya, T., & Huang, Y. (2010). Materials and mechanics for stretchable electronics. Science, 327(5973), 1603–1607. [CrossRef]
- Alivisatos, A. P. (2004). The use of nanocrystals in biological detection. Nature Biotechnology, 22(1), 47–52. [CrossRef]
- Bohm, D. , & Hiley, B. J. (1993). The Undivided Universe: An Ontological Interpretation of Quantum Theory. Routledge.
- Penrose, R. (1989). The Emperor’s New Mind: Concerning Computers, Minds, and the Laws of Physics. Oxford University Press.
- Hinton, G. E., Osindero, S., & The, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18(7), 1527–1554. [CrossRef]
- Khademhosseini, A., Langer, R., Borenstein, J., & Vacanti, J. P. (2006). Microscale technologies for tissue engineering and biology. Proceedings of the National Academy of Sciences, 103(8), 2480–2487. [CrossRef]
- Ben-Jacob, E., Becker, I., Shapira, Y., & Levine, H. (2004). Bacterial linguistic communication and social intelligence. Trends in Microbiology, 12(8), 366–372. [CrossRef]
- Kandel, E. R. , Schwartz, J. H., & Jessell, T. M. (2013). Principles of Neural Science (5th ed.). McGraw-Hill Education.
- Deisseroth, K. (2011). Optogenetics. Nature Methods, 8(1), 26–29. [CrossRef]
- Wang, Z. L., & Song, J. (2006). Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 312(5771), 242–246. [CrossRef]
- Seung, H. S. (2011). Neuroscience: Towards functional connectomics. Nature, 471(7337), 170–172. [CrossRef]
- Tononi, G. (2004). An information integration theory of consciousness. BMC Neuroscience, 5(1), 42. [CrossRef]
- Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138. [CrossRef]
- Koch, C., & Crick, F. (2001). The zombie within. Nature, 411(6840), 893. [CrossRef]
- Bengio, Y. , Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1798–1828. [CrossRef]
- McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5, 115–133. [CrossRef]
- Maturana, H. R. , & Varela, F. J. (1980). Autopoiesis and Cognition: The Realization of the Living. D. Reidel Publishing Company.
- Gallese, V. , & Goldman, A. (1998). Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Sciences, 2(12), 493–501. [CrossRef]
- Hassabis, D. , Kumaran, D., Summerfield, C., & Botvinick, M. (2017). Neuroscience-inspired artificial intelligence. Neuron, 95(2), 245–258. [CrossRef]
- Crick, F., & Koch, C. (1990). Towards a neurobiological theory of consciousness. Seminars in the Neurosciences, 2, 263–275.
- Dehaene, S. , & Naccache, L. (2001). Towards a cognitive neuroscience of consciousness: Basic evidence and a workspace framework. Cognition, 79(1-2), 1–37. [CrossRef]
- Morin, A. (2006). Levels of consciousness and self-awareness: A comparison and integration of various neurocognitive views. Consciousness and Cognition, 15(2), 358–371. [CrossRef]
- Arbib, M. A. (2003). The Handbook of Brain Theory and Neural Networks (2nd ed.). MIT Press.
- Koch, C. (2012). Consciousness: Confessions of a Romantic Reductionist. MIT Press.
- Manzotti, R. , & Chella, A. (2018). The embodied view of consciousness: A review. Journal of Artificial Intelligence and Consciousness, 5(1), 1–25. [CrossRef]
- Rose, F. (2005). The 21st Century Brain: Explaining, Mending and Manipulating the Mind. Jonathan Cape.
- van Gerven, M. A. J. (2017). A primer on encoding models in sensory neuroscience. Journal of Mathematical Psychology, 76, 172–183. [CrossRef]
- Bassett, D. S., & Sporns, O. (2017). Network neuroscience. Nature Neuroscience, 20(3), 353–364. [CrossRef]
- Jasanoff, A. (2018). The Biological Mind: How Brain, Body, and Environment Collaborate to Make Us Who We Are. Basic Books.
- Pfeifer, R. , & Bongard, J. (2006). How the Body Shapes the Way We Think: A New View of Intelligence. MIT Press.
- Haikonen, P. O. (2012). Conscious Machines and the Possibility of Artificial Sentience. World Scientific. [CrossRef]
- LeDoux, J. E. (1998). The Emotional Brain: The Mysterious Underpinnings of Emotional Life. Simon and Schuster.
- McFadden, J. (2000). Quantum evolution and consciousness. Journal of Consciousness Studies, 7(11-12), 89–104.
- Kurzweil, R. (2005). The Singularity Is Near: When Humans Transcend Biology. Viking Press.
- Hawkins, J. , & Blakeslee, S. (2004). On Intelligence. Times Books.
- Damasio, A. (1999). The Feeling of What Happens: Body and Emotion in the Making of Consciousness. Harcourt.
- Dennett, D. C. (1991). Consciousness Explained. Little, Brown and Company.
- Tononi, G. , & Edelman, G. M. (2000). A Universe of Consciousness: How Matter Becomes Imagination. Basic Books.
- Metzinger, T. (2009). The Ego Tunnel: The Science of the Mind and the Myth of the Self Basic BoKnop.
- Tegmark, M. (2017). Life 3.0: Being Human in the Age of Artificial Intelligence. Alfred A. Knopf.
- Chalmers, D. J. (1996). The Conscious Mind: In Search of a Fundamental Theory. Oxford University Press.
- Searle, J. R. (2004). Mind: A Brief Introduction. Oxford University Press.
- Hofstadter, D. R. (1979). Gödel, Escher, Bach: An Eternal Golden Braid. Basic Books.
- Khalil, A. S. , & Collins, J. J. (2010). Synthetic biology: Applications come of age. Nature Reviews Genetics, 11(5), 367–379. [CrossRef]
- Goodman, D. B. , Church, G. M., & Kosuri, S. (2013). Causes and effects of N-terminal codon bias in bacterial genes. Science, 342(6157), 475–479. [CrossRef]
- Woolfson, D. N. (2010). Building proteins from scratch. Science, 329(5987), 297–298. [CrossRef]
- Raika, P. (2025). Pole Theory: A Discrete Scalar Framework Unifying Quantum Mechanics and General Relativity [MAIN BODY — Minimized]. Preprints.org. [CrossRef]
- Raika, P. (2025). Pole Theory: A Discrete Scalar Framework for the Origin, Evolution, and Geometry of the Universe – Unifying Quantum Mechanics and General Relativity (Maximized Version). Preprints.org. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
