Submitted:
03 June 2025
Posted:
04 June 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Pharmaco-Nutritional Management of Clinical AP
3. Pharmacological Approaches
3.1. NSAID Therapy in Clinical AP
3.2. Antibiotics Therapy in Clinical AP
3.3. Cytokine and Immunomodulatory Therapy in Clinical AP
4. Nutritional Approaches
4.1. Nutrition Therapy in Clinical AP
| Nutrition | Study design | N | Protective role(s) in clinical AP | Conclusion |
| EEN vs. ODN[129] |
RCT | 208 | ■ infection (25% vs. 26%), ↓ death (11% vs. 7%) | EEN showed no significant advantage over ODN in ↓ infection and mortality rates |
| EEN vs. DEN[130] |
PCT, RCT | 60 | ■ IAP, ↓ IAH, beneficial for patients with an IAP <15 mmHg, ■ mortality | EEN prevents IAH and ↓ the severity of severe AP compared with DEN |
| SD vs. CLD[131] |
RIT | 60 | (*)↓ hospitalization stay, (*)↓ post-refeeding length of hospitalization | A SD as the initial meal in patients with mild AP is well tolerated and ↓ length of hospitalization |
| EEN vs. DEN[132] |
HCS | 197 | ↓ pancreatic necrosis (4 vs.18), ↓ respiratory failure and transfer to intensive care unit occurred (5 vs. 15), ↓ (9 vs. 16), ↓ surgery (7 vs. 11), (*)↓ mortality (0 vs. 9) | EEN started within 48 hrs of admission improves clinical outcomes via reducing complications |
| TEN vs. TPN[133] |
RCT | 107 | (*) ↓ MOF (21% vs. 80%), (*)↓ surgery (22% vs. 80%), (*)↓ pancreatic septic necrosis (23% vs. 72%), (*)↓ mortality (11% vs. 43%). | TEN is better than TPN in preventing pancreatic necrotic infection |
| EN vs. TPN[134] |
PCT, RCT | 50 | (*) ↓ serum CRP, (*) ↑ serum albumin, (*) ↑transferrin value, ■ surgery (56% vs. 60%), ■ infective complications (64% vs. 60%), ■ hospital stay, ■ mortality (20% vs. 16%) |
EN is comparable to PNT in terms of hospital stay, need for surgical intervention, infections and mortality |
| EIN vs. TPN[135] |
HCS | 76 | ↓ severity, ↑ intestinal permeability, ↑ clinical outcomes | Improved clinical outcomes with EIN compared to TPN |
| TEN vs. TPN[136] |
PRT | 22 | ■ APACHE II score, CRP, TNF-a, IL-6, pre-albumin and albumin levels, ↓ severe complications, ■ surgery, ■ hospital stay | TEN tends to be associated with a better outcome compared to TPN |
| TEN vs. TPN[137] |
RCT | 466 | (*)↓pancreatic infectious complications (7 vs. 16), ↓ MOF (7 vs. 17), (*)↓overall mortality 2 vs.12) | Early TEN could be used as prophylactic therapy for infected pancreatic necrosis |
| TEN +Abx vs. TPN+Abx[138] | PNR | 87 | ↓ MOF (31% vs.79%), ↓ surgery (25% vs. 88%), ↓ pancreatic necrosis infection (20% vs. 74%), (*) ↓ death rate (5% vs. 35%) | TEN could be used as a prophylactic therapy for infected pancreatic necrosis |
| EN vs. PN[139] |
RCT | 728 | ↓ CRP, ■ cholecystokinin levels, ↓ mortality, ↓ infected pancreatic necrosis, ↓ cost | EN tends to be associated with fewer septic complications, quicker inflammation reduction, and greater cost-effectiveness compared to PN |
| EN+PN vs. TPN[140] | RCT | 96 | ↑ body weight and prealbumin, ↓ APACHE II, ↓TNF-a, ↓ IL-6, ↓ serum CRP, ■ albumin, ■ pancreatic lesions, ■ endotoxin and lactulose/manicol of urine, (*)↑ CD4:CD8 T-cells and IgG | Combined therapy of EN and PN may be better than TPN as it improves nutrition status, moderates inflammation, and protects the gut integrity and immunity more effectively |
| TEN vs. TPN[141] |
RCT | 17 | ↓ fatigue, ■ oxidative stress, ■ plasma glutamine, ↓ respiratory failure, ↓ hospital stay, ↓ cost |
TEN is as safe and as efficacious as TPN |
| TEN vs. TPN[142] |
RCT | 156 | ↓ feeding duration, ↓nutrition costs, (*) ↓ nutritional requirements, (*) ↓ metabolic and septic complications | TEN seems to be safer and less expensive than TPN |
| TEN vs. TPN[143] |
RCT | 89 | (*) ↓ septic complications, ↓ MOF, ↓ mortality | EEN in combination with abx prophylaxis may prevent MOF |
4.2. Antioxidant Therapy in Clinical AP
4.3. Probiotic Therapy in Clinical AP
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
Abbreviations
References
- Lee, P.J.; Papachristou, G.I. New Insights into Acute Pancreatitis. Nat Rev Gastroenterol Hepatol 2019, 16, 479–496. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.-L.; Li, J.; Shamoon, M.; Bhatia, M.; Sun, J. Recent Advances on Nutrition in Treatment of Acute Pancreatitis. Front. Immunol. 2017, 8, 762. [Google Scholar] [CrossRef] [PubMed]
- Iannuzzi, J.P.; King, J.A.; Leong, J.H.; Quan, J.; Windsor, J.W.; Tanyingoh, D.; Coward, S.; Forbes, N.; Heitman, S.J.; Shaheen, A.-A.; et al. Global Incidence of Acute Pancreatitis Is Increasing Over Time: A Systematic Review and Meta-Analysis. Gastroenterology 2022, 162, 122–134. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Qin, C.; Zhao, B.; Li, Z.; Zhao, Y.; Lin, C.; Wang, W. Global and Regional Burden of Pancreatitis: Epidemiological Trends, Risk Factors, and Projections to 2050 from the Global Burden of Disease Study 2021. BMC Gastroenterology 2024, 24, 398. [Google Scholar] [CrossRef]
- Peery, A.F.; Murphy, C.C.; Anderson, C.; Jensen, E.T.; Deutsch-Link, S.; Egberg, M.D.; Lund, J.L.; Subramaniam, D.; Dellon, E.S.; Sperber, A.D.; et al. Burden and Cost of Gastrointestinal, Liver, and Pancreatic Diseases in the United States: Update 2024. Gastroenterology 2025, 168, 1000–1024. [Google Scholar] [CrossRef]
- Schepers, N.J.; Bakker, O.J.; Besselink, M.G.; Ahmed Ali, U.; Bollen, T.L.; Gooszen, H.G.; van Santvoort, H.C.; Bruno, M.J. Dutch Pancreatitis Study Group Impact of Characteristics of Organ Failure and Infected Necrosis on Mortality in Necrotising Pancreatitis. Gut 2019, 68, 1044–1051. [Google Scholar] [CrossRef]
- Bang, J.Y.; Wilcox, C.M.; Arnoletti, J.P.; Varadarajulu, S. Superiority of Endoscopic Interventions over Minimally Invasive Surgery for Infected Necrotizing Pancreatitis: Meta-analysis of Randomized Trials. Digestive Endoscopy 2020, 32, 298–308. [Google Scholar] [CrossRef]
- Weiss, F.U.; Laemmerhirt, F.; Lerch, M.M. Etiology and Risk Factors of Acute and Chronic Pancreatitis. Visc Med 2019, 35, 73–81. [Google Scholar] [CrossRef]
- Bradley, E.L. A Clinically Based Classification System for Acute Pancreatitis. Summary of the International Symposium on Acute Pancreatitis, Atlanta, Ga, September 11 through 13, 1992. Arch Surg 1993, 128, 586–590. [Google Scholar] [CrossRef]
- Colvin, S.D.; Smith, E.N.; Morgan, D.E.; Porter, K.K. Acute Pancreatitis: An Update on the Revised Atlanta Classification. Abdom Radiol (NY) 2020, 45, 1222–1231. [Google Scholar] [CrossRef]
- Banks, P.A.; Bollen, T.L.; Dervenis, C.; Gooszen, H.G.; Johnson, C.D.; Sarr, M.G.; Tsiotos, G.G.; Vege, S.S. Acute Pancreatitis Classification Working Group Classification of Acute Pancreatitis--2012: Revision of the Atlanta Classification and Definitions by International Consensus. Gut 2013, 62, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Dellinger, E.P.; Forsmark, C.E.; Layer, P.; Lévy, P.; Maraví-Poma, E.; Petrov, M.S.; Shimosegawa, T.; Siriwardena, A.K.; Uomo, G.; Whitcomb, D.C.; et al. Determinant-Based Classification of Acute Pancreatitis Severity: An International Multidisciplinary Consultation. Ann Surg 2012, 256, 875–880. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Liu, G.; Shi, N.; Tang, D.; Ferdek, P.E.; Jakubowska, M.A.; Liu, S.; Zhu, X.; Zhang, J.; Yao, L.; et al. A microRNA Checkpoint for Ca2+ Signaling and Overload in Acute Pancreatitis. Molecular Therapy 2022, 30, 1754–1774. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.; Voronina, S.; Javed, M.A.; Awais, M.; Szatmary, P.; Latawiec, D.; Chvanov, M.; Collier, D.; Huang, W.; Barrett, J.; et al. Inhibitors of ORAI1 Prevent Cytosolic Calcium-Associated Injury of Human Pancreatic Acinar Cells and Acute Pancreatitis in 3 Mouse Models. Gastroenterology 2015, 149, 481–492.e7. [Google Scholar] [CrossRef]
- Geisz, A.; Sahin-Tóth, M. A Preclinical Model of Chronic Pancreatitis Driven by Trypsinogen Autoactivation. Nat Commun 2018, 9, 5033. [Google Scholar] [CrossRef]
- Modenbach, J.M.; Möller, C.; Asgarbeik, S.; Geist, N.; Rimkus, N.; Dörr, M.; Wolfgramm, H.; Steil, L.; Susemihl, A.; Graf, L.; et al. Biochemical Analyses of Cystatin-C Dimers and Cathepsin-B Reveals a Trypsin-Driven Feedback Mechanism in Acute Pancreatitis. Nat Commun 2025, 16, 1702. [Google Scholar] [CrossRef]
- Sendler, M.; Weiss, F.-U.; Golchert, J.; Homuth, G.; Van Den Brandt, C.; Mahajan, U.M.; Partecke, L.-I.; Döring, P.; Gukovsky, I.; Gukovskaya, A.S.; et al. Cathepsin B-Mediated Activation of Trypsinogen in Endocytosing Macrophages Increases Severity of Pancreatitis in Mice. Gastroenterology 2018, 154, 704–718.e10. [Google Scholar] [CrossRef]
- Yan, C.; Ma, Y.; Li, H.; Cui, J.; Guo, X.; Wang, G.; Ji, L. Endoplasmic Reticulum Stress Promotes Caspase-1-Dependent Acinar Cell Pyroptosis through the PERK Pathway to Aggravate Acute Pancreatitis. International Immunopharmacology 2023, 120, 110293. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, C.; Ji, L.; Zhang, H. Endoplasmic Reticulum Stress in Acute Pancreatitis: Exploring the Molecular Mechanisms and Therapeutic Targets. Cell Stress Chaperones 2025, 30, 119–129. [Google Scholar] [CrossRef]
- Mukherjee, R.; Mareninova, O.A.; Odinokova, I.V.; Huang, W.; Murphy, J.; Chvanov, M.; Javed, M.A.; Wen, L.; Booth, D.M.; Cane, M.C.; et al. Mechanism of Mitochondrial Permeability Transition Pore Induction and Damage in the Pancreas: Inhibition Prevents Acute Pancreatitis by Protecting Production of ATP. Gut 2016, 65, 1333–1346. [Google Scholar] [CrossRef]
- Javed, M.A.; Wen, L.; Awais, M.; Latawiec, D.; Huang, W.; Chvanov, M.; Schaller, S.; Bordet, T.; Michaud, M.; Pruss, R.; et al. TRO40303 Ameliorates Alcohol-Induced Pancreatitis Through Reduction of Fatty Acid Ethyl Ester-Induced Mitochondrial Injury and Necrotic Cell Death. Pancreas 2018, 47, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Ren, Y.; Wang, T.; Wang, M.; Xu, Y.; Zhang, J.; Bi, J.; Wu, Z.; Zhang, Y.; Wu, R. Blocking CIRP Protects against Acute Pancreatitis by Improving Mitochondrial Function and Suppressing Pyroptosis in Acinar Cells. Cell Death Discov. 2024, 10, 156. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, T.; Ergashev, A.; Bo, Z.; Wang, J.; Shi, F.; Pan, Z.; Xie, H.; Chen, G.; Ma, F.; et al. CIP2A Inhibitors TD52 and Ethoxysanguinarine Promote Macrophage Autophagy and Alleviates Acute Pancreatitis by Modulating the AKT-mTOR Pathway. Phytomedicine 2025, 136, 156263. [Google Scholar] [CrossRef] [PubMed]
- Machado, M.C.C.; Koike, M.K.; Barbeiro, D.F.; Soriano, F.G. Fasting-Induced Autophagy Reduces the Severity of Acute Pancreatitis in a Rodent Model. Journal of Gastrointestinal Surgery 2024, 28, 2116–2117. [Google Scholar] [CrossRef]
- Kong, L.; Deng, J.; Zhou, X.; Cai, B.; Zhang, B.; Chen, X.; Chen, Z.; Wang, W. Sitagliptin Activates the P62–Keap1–Nrf2 Signalling Pathway to Alleviate Oxidative Stress and Excessive Autophagy in Severe Acute Pancreatitis-Related Acute Lung Injury. Cell Death Dis 2021, 12, 928. [Google Scholar] [CrossRef]
- Ji, L.; Wang, Z.; Zhang, Y.; Zhou, Y.; Tang, D.; Yan, C.; Ma, J.; Fang, K.; Gao, L.; Ren, N.; et al. ATG7-Enhanced Impaired Autophagy Exacerbates Acute Pancreatitis by Promoting Regulated Necrosis via the miR-30b-5p/CAMKII Pathway. Cell Death Dis 2022, 13, 211. [Google Scholar] [CrossRef]
- Chen, X.; Chen, X.; Yan, D.; Zhang, N.; Fu, W.; Wu, M.; Ge, F.; Wang, J.; Li, X.; Geng, M.; et al. GV-971 Prevents Severe Acute Pancreatitis by Remodeling the Microbiota-Metabolic-Immune Axis. Nat Commun 2024, 15, 8278. [Google Scholar] [CrossRef]
- Liu, J.; Yan, Q.; Li, S.; Jiao, J.; Hao, Y.; Zhang, G.; Zhang, Q.; Luo, F.; Zhang, Y.; Lv, Q.; et al. Integrative Metagenomic and Metabolomic Analyses Reveal the Potential of Gut Microbiota to Exacerbate Acute Pancreatitis. npj Biofilms Microbiomes 2024, 10, 29. [Google Scholar] [CrossRef]
- Shamoon, M.; Deng, Y.; Chen, Y.Q.; Bhatia, M.; Sun, J. Therapeutic Implications of Innate Immune System in Acute Pancreatitis. Expert Opinion on Therapeutic Targets 2016, 20, 73–87. [Google Scholar] [CrossRef]
- Watanabe, T.; Kudo, M.; Strober, W. Immunopathogenesis of Pancreatitis. Mucosal Immunology 2017, 10, 283–298. [Google Scholar] [CrossRef]
- Liu, R.; Wang, K.; Guo, X.; Wang, Q.; Zhang, X.; Peng, K.; Lu, W.; Chen, Z.; Cao, F.; Wang, Z.; et al. A Causal Relationship between Distinct Immune Features and Acute or Chronic Pancreatitis: Results from a Mendelian Randomization Analysis. Pancreatology 2024, 24, 1219–1228. [Google Scholar] [CrossRef] [PubMed]
- Mahapatra, S.J.; Garg, P.K. Organ Failure and Prediction of Severity in Acute Pancreatitis. Gastroenterology Clinics of North America 2025, 54, 1–19. [Google Scholar] [CrossRef]
- Liu, W.; Wu, D.H.; Wang, T.; Wang, M.; Xu, Y.; Ren, Y.; Lyu, Y.; Wu, R. CIRP Contributes to Multiple Organ Damage in Acute Pancreatitis by Increasing Endothelial Permeability. Commun Biol 2025, 8, 403. [Google Scholar] [CrossRef] [PubMed]
- Mofidi, R.; Duff, M.D.; Wigmore, S.J.; Madhavan, K.K.; Garden, O.J.; Parks, R.W. Association between Early Systemic Inflammatory Response, Severity of Multiorgan Dysfunction and Death in Acute Pancreatitis. British Journal of Surgery 2006, 93, 738–744. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Liang, F.; Chen, C.; Lin, J.; Wu, Y.; Hou, Z.; Huang, H.; Fang, H.; Pan, Y. Annexin A1 Regulates Inflammatory-Immune Response and Reduces Pancreatic and Extra- Pancreatic Injury during Severe Acute Pancreatitis. Genes Immun 2025, 26, 124–136. [Google Scholar] [CrossRef]
- Zhang, R.; Zhu, S.; Shi, L.; Zhang, H.; Xu, X.; Xiang, B.; Wang, M. Automated Machine Learning for Early Prediction of Systemic Inflammatory Response Syndrome in Acute Pancreatitis. BMC Med Inform Decis Mak 2025, 25, 167. [Google Scholar] [CrossRef]
- Bhatia, M. Acute Pancreatitis as a Model of SIRS. Front Biosci (Landmark Ed) 2009, 14, 2042–2050. [Google Scholar] [CrossRef]
- Machicado, J.D.; Gougol, A.; Tan, X.; Gao, X.; Paragomi, P.; Pothoulakis, I.; Talukdar, R.; Kochhar, R.; Goenka, M.K.; Gulla, A.; et al. Mortality in Acute Pancreatitis with Persistent Organ Failure Is Determined by the Number, Type, and Sequence of Organ Systems Affected. United European Gastroenterol J 2021, 9, 139–149. [Google Scholar] [CrossRef]
- Ding, L.; Jian, L.; Xu, J.; He, Q.; Wang, Y.; Sun, C.; Wang, W.; Sun, X. Pharmacological Interventions for Acute Pancreatitis in Adults: An Overview of Systematic Reviews. J Evid Based Med 2025, 18, e70007. [Google Scholar] [CrossRef]
- Marik, P.E. What Is the Best Way to Feed Patients with Pancreatitis? Curr Opin Crit Care 2009, 15, 131–138. [Google Scholar] [CrossRef]
- Carnevale, S.; Vitale, A.; Razzi, M.; Onori, C.; Cornacchia, G.; Grispo, O.; Corsinovi, E.; Rossl, L.; Spinetti, E.; Tosi, M.; et al. Non-Evidence-Based Dietary Restrictions in Hospital Nutrition and Their Impact on Malnutrition: A Narrative Review of International and National Guidelines. Dietetics 2024, 3, 568–587. [Google Scholar] [CrossRef]
- Liu, H.; Wang, S.; Wang, J.; Guo, X.; Song, Y.; Fu, K.; Gao, Z.; Liu, D.; He, W.; Yang, L.-L. Energy Metabolism in Health and Diseases. Sig Transduct Target Ther 2025, 10, 1–71. [Google Scholar] [CrossRef]
- Li, X.-Y.; He, C.; Zhu, Y.; Lu, N.-H. Role of Gut Microbiota on Intestinal Barrier Function in Acute Pancreatitis. World J Gastroenterol 2020, 26, 2187–2193. [Google Scholar] [CrossRef] [PubMed]
- Ge, P.; Luo, Y.; Okoye, C.S.; Chen, H.; Liu, J.; Zhang, G.; Xu, C.; Chen, H. Intestinal Barrier Damage, Systemic Inflammatory Response Syndrome, and Acute Lung Injury: A Troublesome Trio for Acute Pancreatitis. Biomedicine & Pharmacotherapy 2020, 132, 110770. [Google Scholar] [CrossRef]
- Du, B.; Yan, R.; Hu, X.; Lou, J.; Zhu, Y.; Shao, Y.; Jiang, H.; Hao, Y.; Lv, L. Role of Bifidobacterium Animalis Subsp. Lactis BB-12 in Mice with Acute Pancreatitis. AMB Express 2025, 15, 62. [Google Scholar] [CrossRef]
- Werawatganon, D.; Vivatvakin, S.; Somanawat, K.; Tumwasorn, S.; Klaikeaw, N.; Siriviriyakul, P.; Chayanupatkul, M. Effects of Probiotics on Pancreatic Inflammation and Intestinal Integrity in Mice with Acute Pancreatitis. BMC Complement Med Ther 2023, 23, 166. [Google Scholar] [CrossRef]
- Wan, Y.-D.; Zhu, R.-X.; Bian, Z.-Z.; Sun, T.-W. Effect of Probiotics on Length of Hospitalization in Mild Acute Pancreatitis: A Randomized, Double-Blind, Placebo-Controlled Trial. World J Gastroenterol 2021, 27, 224–232. [Google Scholar] [CrossRef]
- Sohail, R.; Mathew, M.; Patel, K.K.; Reddy, S.A.; Haider, Z.; Naria, M.; Habib, A.; Abdin, Z.U.; Razzaq Chaudhry, W.; Akbar, A. Effects of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) and Gastroprotective NSAIDs on the Gastrointestinal Tract: A Narrative Review. Cureus 2023, 15, e37080. [Google Scholar] [CrossRef]
- Huang, Z.; Ma, X.; Jia, X.; Wang, R.; Liu, L.; Zhang, M.; Wan, X.; Tang, C.; Huang, L. Prevention of Severe Acute Pancreatitis With Cyclooxygenase-2 Inhibitors: A Randomized Controlled Clinical Trial. Am J Gastroenterol 2020, 115, 473–480. [Google Scholar] [CrossRef]
- Memis, D.; Akalin, E.; Yücel, T. Indomethacin-Induced Pancreatitis: A Case Report. JOP 2005, 6, 344–347. [Google Scholar]
- Montaño Loza, A.; García Correa, J.; González Ojeda, A.; Fuentes Orozco, C.; Dávalos Cobián, C.; Rodríguez Lomelí, X. Prevention of hyperamilasemia and pancreatitis after endoscopic retrograde cholangiopancreatography with rectal administration of indomethacin. Rev Gastroenterol Mex 2006, 71, 262–268. [Google Scholar] [PubMed]
- Sotoudehmanesh, R.; Khatibian, M.; Kolahdoozan, S.; Ainechi, S.; Malboosbaf, R.; Nouraie, M. Indomethacin May Reduce the Incidence and Severity of Acute Pancreatitis after ERCP. Am J Gastroenterol 2007, 102, 978–983. [Google Scholar] [CrossRef] [PubMed]
- Elmunzer, B.J.; Scheiman, J.M.; Lehman, G.A.; Chak, A.; Mosler, P.; Higgins, P.D.R.; Hayward, R.A.; Romagnuolo, J.; Elta, G.H.; Sherman, S.; et al. A Randomized Trial of Rectal Indomethacin to Prevent Post-ERCP Pancreatitis. N Engl J Med 2012, 366, 1414–1422. [Google Scholar] [CrossRef] [PubMed]
- Murray, B.; Carter, R.; Imrie, C.; Evans, S.; O’Suilleabhain, C. Diclofenac Reduces the Incidence of Acute Pancreatitis after Endoscopic Retrograde Cholangiopancreatography. Gastroenterology 2003, 124, 1786–1791. [Google Scholar] [CrossRef]
- Otsuka, T.; Kawazoe, S.; Nakashita, S.; Kamachi, S.; Oeda, S.; Sumida, C.; Akiyama, T.; Ario, K.; Fujimoto, M.; Tabuchi, M.; et al. Low-Dose Rectal Diclofenac for Prevention of Post-Endoscopic Retrograde Cholangiopancreatography Pancreatitis: A Randomized Controlled Trial. J Gastroenterol 2012, 47, 912–917. [Google Scholar] [CrossRef]
- Zhao, X.; Bao, J.; Hu, C.; Ding, H.; Liu, X.; Mei, Q.; Xu, J. Effect of Diclofenac on the Levels of Lipoxin A4 and Resolvin D1 and E1 in the Post-ERCP Pancreatitis. Dig Dis Sci 2014, 59, 2992–2996. [Google Scholar] [CrossRef]
- Tomoda, T.; Kato, H.; Miyamoto, K.; Matsumi, A.; Ueta, E.; Fujii, Y.; Saragai, Y.; Yamazaki, T.; Uchida, D.; Matsumoto, K.; et al. Efficacy of Low Dose Rectal Diclofenac for Preventing Post-Endoscopic Retrograde Cholangiopancreatography Pancreatitis: Propensity Score-Matched Analysis. Dig Endosc 2021, 33, 656–662. [Google Scholar] [CrossRef]
- Werge, M.; Novovic, S.; Schmidt, P.N.; Gluud, L.L. Infection Increases Mortality in Necrotizing Pancreatitis: A Systematic Review and Meta-Analysis. Pancreatology 2016, 16, 698–707. [Google Scholar] [CrossRef]
- De Campos, T.; Assef, J.C.; Rasslan, S. Questions about the Use of Antibiotics in Acute Pancreatitis. World J Emerg Surg 2006, 1, 20. [Google Scholar] [CrossRef]
- Sun, E.; Tharakan, M.; Kapoor, S.; Chakravarty, R.; Salhab, A.; Buscaglia, J.M.; Nagula, S. Poor Compliance with ACG Guidelines for Nutrition and Antibiotics in the Management of Acute Pancreatitis: A North American Survey of Gastrointestinal Specialists and Primary Care Physicians. JOP 2013, 14, 221–227. [Google Scholar] [CrossRef]
- Vlada, A.C.; Schmit, B.; Perry, A.; Trevino, J.G.; Behrns, K.E.; Hughes, S.J. Failure to Follow Evidence-Based Best Practice Guidelines in the Treatment of Severe Acute Pancreatitis. HPB (Oxford) 2013, 15, 822–827. [Google Scholar] [CrossRef] [PubMed]
- Raraty, M.G.T.; Connor, S.; Criddle, D.N.; Sutton, R.; Neoptolemos, J.P. Acute Pancreatitis and Organ Failure: Pathophysiology, Natural History, and Management Strategies. Curr Gastroenterol Rep 2004, 6, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Isenmann, R.; Rünzi, M.; Kron, M.; Kahl, S.; Kraus, D.; Jung, N.; Maier, L.; Malfertheiner, P.; Goebell, H.; Beger, H.G.; et al. Prophylactic Antibiotic Treatment in Patients with Predicted Severe Acute Pancreatitis: A Placebo-Controlled, Double-Blind Trial. Gastroenterology 2004, 126, 997–1004. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Xu, L.; Zhang, D.; Sun, W.; Che, Z.; Zhao, B.; Chen, Y.; Yang, Z.; Chen, E.; Ni, T.; et al. Effect of Early Antibiotic Treatment Strategy on Prognosis of Acute Pancreatitis. BMC Gastroenterol 2023, 23, 431. [Google Scholar] [CrossRef]
- Guo, D.; Dai, W.; Shen, J.; Zhang, M.; Shi, Y.; Jiang, K.; Guo, L. Assessment of Prophylactic Carbapenem Antibiotics Administration for Severe Acute Pancreatitis: An Updated Systematic Review and Meta-Analysis. Digestion 2022, 103, 183–191. [Google Scholar] [CrossRef]
- de-Madaria, E.; Buxbaum, J.L. Advances in the Management of Acute Pancreatitis. Nat Rev Gastroenterol Hepatol 2023, 20, 691–692. [Google Scholar] [CrossRef]
- Bassi, C.; Falconi, C.; Casetti, L.; Valerio, A.; Caldiron, E.; Butturini, G.; Pederzoli, P. Antibiotics in Severe Pancreatitis: The Current Status. HPB 1999, 1, 57–60. [Google Scholar] [CrossRef]
- Røkke, O.; Bache Harbitz, T.; Liljedal, J.; Pettersen, T.; Fetvedt, T.; Øystein Heen, L.; Skreden, K.; Viste, A. Early Treatment of Severe Pancreatitis with Imipenem: A Prospective Randomized Clinical Trial. Scandinavian Journal of Gastroenterology 2007, 42, 771–776. [Google Scholar] [CrossRef]
- Villatoro, E.; Bassi, C.; Larvin, M. Antibiotic Therapy for Prophylaxis against Infection of Pancreatic Necrosis in Acute Pancreatitis. Cochrane Database Syst Rev 2006, CD002941. [Google Scholar] [CrossRef]
- Villatoro, E.; Mulla, M.; Larvin, M. Antibiotic Therapy for Prophylaxis against Infection of Pancreatic Necrosis in Acute Pancreatitis. Cochrane Database Syst Rev 2010, 2010, CD002941. [Google Scholar] [CrossRef]
- Nordback, I.; Sand, J.; Saaristo, R.; Paajanen, H. Early Treatment with Antibiotics Reduces the Need for Surgery in Acute Necrotizing Pancreatitis--a Single-Center Randomized Study. J Gastrointest Surg 2001, 5, 113–118; discussion 118-120. [Google Scholar] [CrossRef] [PubMed]
- Räty, S.; Sand, J.; Pulkkinen, M.; Matikainen, M.; Nordback, I. Post-ERCP Pancreatitis: Reduction by Routine Antibiotics. J Gastrointest Surg 2001, 5, 339–345; discussion 345. [Google Scholar] [CrossRef] [PubMed]
- Mishra, B.; Bachu, M.; Yuan, R.; Wingert, C.; Chaudhary, V.; Brauner, C.; Bell, R.; Ivashkiv, L.B. IL-10 Targets IRF Transcription Factors to Suppress IFN and Inflammatory Response Genes by Epigenetic Mechanisms. Nat Immunol 2025, 26, 748–759. [Google Scholar] [CrossRef]
- Saraiva, M.; O’Garra, A. The Regulation of IL-10 Production by Immune Cells. Nat Rev Immunol 2010, 10, 170–181. [Google Scholar] [CrossRef]
- Berney, T.; Gasche, Y.; Robert, J.; Jenny, A.; Mensi, N.; Grau, G.; Vermeulen, B.; Morel, P. Serum Profiles of Interleukin-6, Interleukin-8, and Interleukin-10 in Patients with Severe and Mild Acute Pancreatitis. Pancreas 1999, 18, 371–377. [Google Scholar] [CrossRef]
- Pezzilli, R.; Billi, P.; Miniero, R.; Barakat, B. Serum Interleukin-10 in Human Acute Pancreatitis. Dig Dis Sci 1997, 42, 1469–1472. [Google Scholar] [CrossRef]
- Devière, J.; Le Moine, O.; Van Laethem, J.L.; Eisendrath, P.; Ghilain, A.; Severs, N.; Cohard, M. Interleukin 10 Reduces the Incidence of Pancreatitis after Therapeutic Endoscopic Retrograde Cholangiopancreatography. Gastroenterology 2001, 120, 498–505. [Google Scholar] [CrossRef]
- Oruc, N.; Ozutemiz, A.O.; Yukselen, V.; Nart, D.; Celik, H.A.; Yuce, G.; Batur, Y. Infliximab: A New Therapeutic Agent in Acute Pancreatitis? Pancreas 2004, 28, e1–8. [Google Scholar] [CrossRef]
- Tekin, S.O.; Teksoz, S.; Terzioglu, D.; Arikan, A.E.; Ozcevik, H.; Uslu, E. Use of Infliximab in Treatment of Acute Pancreatitis. Bratisl Lek Listy 2015, 116, 167–172. [Google Scholar] [CrossRef]
- Bishehsari, F.; Sharma, A.; Stello, K.; Toth, C.; O’Connell, M.R.; Evans, A.C.; LaRusch, J.; Muddana, V.; Papachristou, G.I.; Whitcomb, D.C. TNF-Alpha Gene (TNFA) Variants Increase Risk for Multi-Organ Dysfunction Syndrome (MODS) in Acute Pancreatitis. Pancreatology 2012, 12, 113–118. [Google Scholar] [CrossRef]
- Malleo, G.; Mazzon, E.; Siriwardena, A.K.; Cuzzocrea, S. Role of Tumor Necrosis Factor-Alpha in Acute Pancreatitis: From Biological Basis to Clinical Evidence. Shock 2007, 28, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Malleo, G.; Mazzon, E.; Genovese, T.; Di Paola, R.; Muià, C.; Centorrino, T.; Siriwardena, A.K.; Cuzzocrea, S. Etanercept Attenuates the Development of Cerulein-Induced Acute Pancreatitis in Mice: A Comparison with TNF-Alpha Genetic Deletion. Shock 2007, 27, 542–551. [Google Scholar] [CrossRef] [PubMed]
- Ohwada, S.; Ishigami, K.; Yokoyama, Y.; Kazama, T.; Masaki, Y.; Takahashi, M.; Yoshii, S.; Yamano, H.; Chiba, H.; Nakase, H. Immune-Related Colitis and Pancreatitis Treated with Infliximab. Clin J Gastroenterol 2023, 16, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Triantafillidis, J.K.; Cheracakis, P.; Hereti, I.A.; Argyros, N.; Karra, E. Acute Idiopathic Pancreatitis Complicating Active Crohn’s Disease: Favorable Response to Infliximab Treatment. Am J Gastroenterol 2000, 95, 3334–3336. [Google Scholar] [CrossRef]
- Randomised Treatment of Acute Pancreatitis With Infliximab: Double-Blind, Placebo-Controlled, Multi-Centre Trial (RAPID-I). Available online: https://www.centerwatch.com (accessed on 18 May 2025).
- Ashraf, M.A.; Nookala, V. Biochemistry of Platelet Activating Factor. In StatPearls; StatPearls Publishing: Treasure Island (FL), 2025. [Google Scholar]
- Stafforini, D.M.; McIntyre, T.M.; Zimmerman, G.A.; Prescott, S.M. Platelet-Activating Factor, a Pleiotrophic Mediator of Physiological and Pathological Processes. Crit Rev Clin Lab Sci 2003, 40, 643–672. [Google Scholar] [CrossRef]
- Chen, C.; Xia, S.-H.; Chen, H.; Li, X.-H. Therapy for Acute Pancreatitis with Platelet-Activating Factor Receptor Antagonists. World J Gastroenterol 2008, 14, 4735–4738. [Google Scholar] [CrossRef]
- Konturek, S.J.; Dembinski, A.; Konturek, P.J.; Warzecha, Z.; Jaworek, J.; Gustaw, P.; Tomaszewska, R.; Stachura, J. Role of Platelet Activating Factor in Pathogenesis of Acute Pancreatitis in Rats. Gut 1992, 33, 1268–1274. [Google Scholar] [CrossRef]
- Emanuelli, G.; Montrucchio, G.; Dughera, L.; Gaia, E.; Lupia, E.; Battaglia, E.; De Martino, A.; De Giuli, P.; Gubetta, L.; Camussi, G. Role of Platelet Activating Factor in Acute Pancreatitis Induced by Lipopolysaccharides in Rabbits. European Journal of Pharmacology 1994, 261, 265–272. [Google Scholar] [CrossRef]
- Lane, J.S.; Todd, K.E.; Gloor, B.; Chandler, C.F.; Kau, A.W.; Ashley, S.W.; Reber, H.A.; McFadden, D.W. Platelet Activating Factor Antagonism Reduces the Systemic Inflammatory Response in a Murine Model of Acute Pancreatitis. Journal of Surgical Research 2001, 99, 365–370. [Google Scholar] [CrossRef]
- Abu-Zidan, F.M.; Windsor, J.A. Lexipafant and Acute Pancreatitis: A Critical Appraisal of the Clinical Trials. The European Journal of Surgery 2002, 168, 215–219. [Google Scholar] [CrossRef]
- Johnson, C.D. Platelet-Activating Factor and Platelet-Activating Factor Antagonists in Acute Pancreatitis. Dig Surg 1999, 16, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Kingsnorth, A.N.; Galloway, S.W.; Formela, L.J. Randomized, Double-Blind Phase II Trial of Lexipafant, a Platelet-Activating Factor Antagonist, in Human Acute Pancreatitis. Journal of British Surgery 1995, 82, 1414–1420. [Google Scholar] [CrossRef] [PubMed]
- McKay, C.J.; Curran, F.; Sharples, C.; Baxter, J.N.; Imrie, C.W. Prospective Placebo-Controlled Randomized Trial of Lexipafant in Predicted Severe Acute Pancreatitis. Br J Surg 1997, 84, 1239–1243. [Google Scholar] [PubMed]
- Johnson, C.D. Double Blind, Randomised, Placebo Controlled Study of a Platelet Activating Factor Antagonist, Lexipafant, in the Treatment and Prevention of Organ Failure in Predicted Severe Acute. Gut 2001, 48, 62–69. [Google Scholar] [CrossRef]
- McCoy, C.; Matthews, S.J. Drotrecogin Alfa (Recombinant Human Activated Protein C) for the Treatment of Severe Sepsis. Clinical Therapeutics 2003, 25, 396–421. [Google Scholar] [CrossRef]
- Raggio, M.J.; Morris, P.E. Drotrecogin Alfa. Drugs of Today 2004, 40, 517. [Google Scholar] [CrossRef]
- Xu, J.; Ji, Y.; Zhang, X.; Drake, M.; Esmon, C.T. Endogenous Activated Protein C Signaling Is Critical to Protection of Mice from Lipopolysaccaride-Induced Septic Shock. J Thromb Haemost 2009, 7, 851–856. [Google Scholar] [CrossRef]
- Lindstrom, O.; Kylanpaa, L.; Mentula, P.; Puolakkainen, P.; Kemppainen, E.; Haapiainen, R.; Fernandez, J.A.; Griffin, J.H.; Repo, H.; Petaja, J. Upregulated but Insufficient Generation of Activated Protein C Is Associated with Development of Multiorgan Failure in Severe Acute Pancreatitis. Crit Care 2006, 10, R16. [Google Scholar] [CrossRef]
- Chen, P.; Zhang, Y.; Qiao, M.; Yuan, Y. Activated Protein C, an Anticoagulant Polypeptide, Ameliorates Severe Acute Pancreatitis via Regulation of Mitogen-Activated Protein Kinases. J Gastroenterol 2007, 42, 887–896. [Google Scholar] [CrossRef]
- Jamdar, S.; Babu, B.I.; Nirmalan, M.; Jeziorska, M.; McMahon, R.F.; Siriwardena, K. Activated Protein c in L-Arginine-Induced Experimental Acute Pancreatitis. Pancreas 2008, 37, 476. [Google Scholar] [CrossRef]
- Alsfasser, G. Decreased Inflammation and Improved Survival With Recombinant Human Activated Protein C Treatment in Experimental Acute Pancreatitis. Arch Surg 2006, 141, 670. [Google Scholar] [CrossRef] [PubMed]
- Yamanel, L.; Mas, M.R.; Comert, B.; Isik, A.T.; Aydin, S.; Mas, N.; Deveci, S.; Ozyurt, M.; Tasci, I.; Unal, T. The Effect of Activated Protein C on Experimental Acute Necrotizing Pancreatitis. Crit Care 2005, 9, R184–190. [Google Scholar] [CrossRef] [PubMed]
- Machała, W.; Wachowicz, N.; Komorowska, A.; Gaszyński, W. The Use of Drotrecogin Alfa (Activated) in Severe Sepsis during Acute Pancreatitis - Two Case Studies. Med Sci Monit 2004, 10, CS31–36. [Google Scholar] [PubMed]
- Miranda, C.J.; Mason, J.M.; Babu, B.I.; Sheen, A.J.; Eddleston, J.M.; Parker, M.J.; Pemberton, P.; Siriwardena, A.K. Twenty-Four Hour Infusion of Human Recombinant Activated Protein C (Xigris) Early in Severe Acute Pancreatitis: The XIG-AP 1 Trial. Pancreatology 2015, 15, 635–641. [Google Scholar] [CrossRef]
- Bernard, G.R.; Vincent, J.-L.; Laterre, P.-F.; LaRosa, S.P.; Dhainaut, J.-F.; Lopez-Rodriguez, A.; Steingrub, J.S.; Garber, G.E.; Helterbrand, J.D.; Ely, E.W.; et al. Efficacy and Safety of Recombinant Human Activated Protein C for Severe Sepsis. N Engl J Med 2001, 344, 699–709. [Google Scholar] [CrossRef]
- Steinberg, W.; Tenner, S. Acute Pancreatitis. N Engl J Med 1994, 330, 1198–1210. [Google Scholar] [CrossRef]
- Leppäniemi, A.; Tolonen, M.; Tarasconi, A.; Segovia-Lohse, H.; Gamberini, E.; Kirkpatrick, A.W.; Ball, C.G.; Parry, N.; Sartelli, M.; Wolbrink, D.; et al. 2019 WSES Guidelines for the Management of Severe Acute Pancreatitis. World J Emerg Surg 2019, 14, 27. [Google Scholar] [CrossRef]
- Crockett, S.D.; Wani, S.; Gardner, T.B.; Falck-Ytter, Y.; Barkun, A.N.; Crockett, S.; Falck-Ytter, Y.; Feuerstein, J.; Flamm, S.; Gellad, Z.; et al. American Gastroenterological Association Institute Guideline on Initial Management of Acute Pancreatitis. Gastroenterology 2018, 154, 1096–1101. [Google Scholar] [CrossRef]
- Tenner, S.; Vege, S.S.; Sheth, S.G.; Sauer, B.; Yang, A.; Conwell, D.L.; Yadlapati, R.H.; Gardner, T.B. American College of Gastroenterology Guidelines: Management of Acute Pancreatitis. Am J Gastroenterol 2024, 119, 419–437. [Google Scholar] [CrossRef]
- De Lucia, S.S.; Candelli, M.; Polito, G.; Maresca, R.; Mezza, T.; Schepis, T.; Pellegrino, A.; Zileri Dal Verme, L.; Nicoletti, A.; Franceschi, F.; et al. Nutrition in Acute Pancreatitis: From the Old Paradigm to the New Evidence. Nutrients 2023, 15, 1939. [Google Scholar] [CrossRef]
- Petrov, M.S. Moving beyond the “pancreatic Rest” in Severe and Critical Acute Pancreatitis. Crit Care 2013, 17, 161. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Goswami, P.; Poudel, S.; Gunjan, D.; Singh, N.; Yadav, R.; Kumar, U.; Pandey, G.; Saraya, A. Acute Pancreatitis Is Characterized by Generalized Intestinal Barrier Dysfunction in Early Stage. Pancreatology 2023, 23, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhao, H.-X.; Bai, C.; Zhou, X.-Y. Blockade of High-Mobility Group Box 1 Attenuates Intestinal Mucosal Barrier Dysfunction in Experimental Acute Pancreatitis. Sci Rep 2017, 7, 6799. [Google Scholar] [CrossRef] [PubMed]
- Mei, Q.; Hu, J.; Huang, Z.; Fan, J.; Huang, C.; Lu, Y.; Wang, X.; Zeng, Y. Pretreatment with Chitosan Oligosaccharides Attenuate Experimental Severe Acute Pancreatitis via Inhibiting Oxidative Stress and Modulating Intestinal Homeostasis. Acta Pharmacol Sin 2021, 42, 942–953. [Google Scholar] [CrossRef]
- Lakananurak, N.; Gramlich, L. Nutrition Management in Acute Pancreatitis: Clinical Practice Consideration. World J Clin Cases 2020, 8, 1561–1573. [Google Scholar] [CrossRef]
- Dancu, G.; Tarta, C.; Socaciu, C.; Bende, F.; Danila, M.; Sirli, R.; Sporea, I.; Miutescu, B.; Popescu, A. Unraveling the Metabolic Changes in Acute Pancreatitis: A Metabolomics-Based Approach for Etiological Differentiation and Acute Biomarker Discovery. Biomolecules 2023, 13, 1558. [Google Scholar] [CrossRef]
- Mahajan, U.M.; Weiss, F.U.; Lerch, M.M.; Mayerle, J. Molecular, Biochemical, and Metabolic Abnormalities of Acute Pancreatitis. In The Pancreas; Beger, H.G., Büchler, M.W., Hruban, R.H., Mayerle, J., Neoptolemos, J.P., Shimosegawa, T., Warshaw, A.L., Whitcomb, D.C., Zhao, Y., Groß, C., Eds.; Wiley, 2023; pp. 155–163 ISBN 978-1-119-87597-0.
- Gou, Y.; Lv, B.-H.; Zhang, J.-F.; Li, S.-M.; Hei, X.-P.; Liu, J.-J.; Li, L.; Yang, J.-Z.; Feng, K. Identifying Early Predictive and Diagnostic Biomarkers and Exploring Metabolic Pathways for Sepsis after Trauma Based on an Untargeted Metabolomics Approach. Sci Rep 2025, 15, 12068. [Google Scholar] [CrossRef]
- Wasyluk, W.; Zwolak, A. Metabolic Alterations in Sepsis. J Clin Med 2021, 10, 2412. [Google Scholar] [CrossRef]
- Gianotti, L.; Meier, R.; Lobo, D.N.; Bassi, C.; Dejong, C.H.C.; Ockenga, J.; Irtun, O.; MacFie, J. ESPEN ESPEN Guidelines on Parenteral Nutrition: Pancreas. Clin Nutr 2009, 28, 428–435. [Google Scholar] [CrossRef]
- Windsor, A.C.; Kanwar, S.; Li, A.G.; Barnes, E.; Guthrie, J.A.; Spark, J.I.; Welsh, F.; Guillou, P.J.; Reynolds, J.V. Compared with Parenteral Nutrition, Enteral Feeding Attenuates the Acute Phase Response and Improves Disease Severity in Acute Pancreatitis. Gut 1998, 42, 431–435. [Google Scholar] [CrossRef]
- Feng, P.; He, C.; Liao, G.; Chen, Y. Early Enteral Nutrition versus Delayed Enteral Nutrition in Acute Pancreatitis: A PRISMA-Compliant Systematic Review and Meta-Analysis. Medicine (Baltimore) 2017, 96, e8648. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, M.; Aadam, A.A. Nutrition Management in Acute Pancreatitis. Nut in Clin Prac 2019, 34. [Google Scholar] [CrossRef] [PubMed]
- Dunbar, R.L.; Gaudet, D.; Davidson, M.; Rensfeldt, M.; Yang, H.; Nilsson, C.; Kvarnström, M.; Oscarsson, J. Omega-3 Fatty Acid Exposure with a Low-Fat Diet in Patients with Past Hypertriglyceridemia-Induced Acute Pancreatitis; an Exploratory, Randomized, Open-Label Crossover Study. Lipids Health Dis 2020, 19, 117. [Google Scholar] [CrossRef]
- Al-Leswas, D.; Eltweri, A.M.; Chung, W.-Y.; Arshad, A.; Stephenson, J.A.; Al-Taan, O.; Pollard, C.; Fisk, H.L.; Calder, P.C.; Garcea, G.; et al. Intravenous Omega-3 Fatty Acids Are Associated with Better Clinical Outcome and Less Inflammation in Patients with Predicted Severe Acute Pancreatitis: A Randomised Double Blind Controlled Trial. Clinical Nutrition 2020, 39, 2711–2719. [Google Scholar] [CrossRef]
- Lei, Q.C.; Wang, X.Y.; Xia, X.F.; Zheng, H.Z.; Bi, J.C.; Tian, F.; Li, N. The Role of Omega-3 Fatty Acids in Acute Pancreatitis: A Meta-Analysis of Randomized Controlled Trials. Nutrients 2015, 7, 2261–2273. [Google Scholar] [CrossRef]
- Bakker, O.J.; Van Brunschot, S.; Van Santvoort, H.C.; Besselink, M.G.; Bollen, T.L.; Boermeester, M.A.; Dejong, C.H.; Van Goor, H.; Bosscha, K.; Ali, U.A.; et al. Early versus On-Demand Nasoenteric Tube Feeding in Acute Pancreatitis. N Engl J Med 2014, 371, 1983–1993. [Google Scholar] [CrossRef]
- Sun, J.; Li, W.; Ke, L.; Tong, Z.; Ni, H.; Li, G.; Zhang, L.; Nie, Y.; Wang, X.; Ye, X.; et al. Early Enteral Nutrition Prevents Intra-abdominal Hypertension and Reduces the Severity of Severe Acute Pancreatitis Compared with Delayed Enteral Nutrition: A Prospective Pilot Study. World j. surg. 2013, 37, 2053–2060. [Google Scholar] [CrossRef]
- Rajkumar, N.; Karthikeyan, V.S.; Ali, S.M.; Sistla, S.C.; Kate, V. Clear Liquid Diet vs Soft Diet as the Initial Meal in Patients With Mild Acute Pancreatitis: A Randomized Interventional Trial. Nut in Clin Prac 2013, 28, 365–370. [Google Scholar] [CrossRef]
- Wereszczynska-Siemiatkowska, U.; Swidnicka-Siergiejko, A.; Siemiatkowski, A.; Dabrowski, A. Early Enteral Nutrition Is Superior to Delayed Enteral Nutrition for the Prevention of Infected Necrosis and Mortality in Acute Pancreatitis. Pancreas 2013, 42, 640–646. [Google Scholar] [CrossRef]
- Wu, X.-M.; Ji, K.-Q.; Wang, H.-Y.; Li, G.-F.; Zang, B.; Chen, W.-M. Total Enteral Nutrition in Prevention of Pancreatic Necrotic Infection in Severe Acute Pancreatitis. Pancreas 2010, 39, 248–251. [Google Scholar] [CrossRef]
- Doley, R.P.; Yadav, T.D.; Wig, J.D.; Kochhar, R.; Singh, G.; Bharathy, K.G.S.; Kudari, A.; Gupta, R.; Gupta, V.; Poornachandra, K.S.; et al. Enteral Nutrition in Severe Acute Pancreatitis. JOP 2009, 10, 157–162. [Google Scholar] [PubMed]
- Qin, H.-L.; Zheng, J.-J.; Tong, D.-N.; Chen, W.-X.; Fan, X.-B.; Hang, X.-M.; Jiang, Y.-Q. Effect of Lactobacillus Plantarum Enteral Feeding on the Gut Permeability and Septic Complications in the Patients with Acute Pancreatitis. Eur J Clin Nutr 2008, 62, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Casas, M.; Mora, J.; Fort, E.; Aracil, C.; Busquets, D.; Galter, S.; Jáuregui, C.E.; Ayala, E.; Cardona, D.; Gich, I.; et al. Total enteral nutrition vs. total parenteral nutrition in patients with severe acute pancreatitis. Rev Esp Enferm Dig 2007, 99, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Petrov, M.S.; Kukosh, M.V.; Emelyanov, N.V. A Randomized Controlled Trial of Enteral versus Parenteral Feeding in Patients with Predicted Severe Acute Pancreatitis Shows a Significant Reduction in Mortality and in Infected Pancreatic Complications with Total Enteral Nutrition. Dig Surg 2006, 23, 336–344; discussion 344-345. [Google Scholar] [CrossRef]
- Targarona Modena, J.; Barreda Cevasco, L.; Arroyo Basto, C.; Orellana Vicuna, A.; Portanova Ramirez, M. Total Enteral Nutrition as Prophylactic Therapy for Pancreatic Necrosis Infection in Severe Acute Pancreatitis. Pancreatology 2006, 6, 58–64. [Google Scholar] [CrossRef]
- Louie, B.E.; Noseworthy, T.; Hailey, D.; Gramlich, L.M.; Jacobs, P.; Warnock, G.L. 2004 MacLean-Mueller Prize Enteral or Parenteral Nutrition for Severe Pancreatitis: A Randomized Controlled Trial and Health Technology Assessment. Can J Surg 2005, 48, 298–306. [Google Scholar]
- Zhao, G.; Wang, C.-Y.; Wang, F.; Xiong, J.-X. Clinical Study on Nutrition Support in Patients with Severe Acute Pancreatitis. World J Gastroenterol 2003, 9, 2105–2108. [Google Scholar] [CrossRef]
- Gupta, R.; Patel, K.; Calder, P.C.; Yaqoob, P.; Primrose, J.N.; Johnson, C.D. A Randomised Clinical Trial to Assess the Effect of Total Enteral and Total Parenteral Nutritional Support on Metabolic, Inflammatory and Oxidative Markers in Patients with Predicted Severe Acute Pancreatitis (APACHE II > or =6). Pancreatology 2003, 3, 406–413. [Google Scholar] [CrossRef]
- Abou-Assi, S.; Craig, K.; O’Keefe, S.J.D. Hypocaloric Jejunal Feeding Is Better than Total Parenteral Nutrition in Acute Pancreatitis: Results of a Randomized Comparative Study. Am J Gastroenterol 2002, 97, 2255–2262. [Google Scholar] [CrossRef]
- Oláh, A.; Pardavi, G.; Belágyi, T.; Nagy, A.; Issekutz, A.; Mohamed, G.E. Early Nasojejunal Feeding in Acute Pancreatitis Is Associated with a Lower Complication Rate. Nutrition 2002, 18, 259–262. [Google Scholar] [CrossRef]
- Robles, L.; Vaziri, N.D.; Ichii, H. Role of Oxidative Stress in the Pathogenesis of Pancreatitis: Effect of Antioxidant Therapy. Pancreat Disord Ther 2013, 3, 112. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.-C.; Chen, H.-T.; Deng, H.; Huang, Y.-T.; Xu, G.-Q. Reactive Oxygen Species and Oxidative Stress in Acute Pancreatitis: Pathogenesis and New Therapeutic Interventions. World J Gastroenterol 2024, 30, 4771–4780. [Google Scholar] [CrossRef] [PubMed]
- Curran, F.J.; Sattar, N.; Talwar, D.; Baxter, J.N.; Imrie, C.W. Relationship of Carotenoid and Vitamins A and E with the Acute Inflammatory Response in Acute Pancreatitis. Br J Surg 2000, 87, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Morris-Stiff, G.J.; Bowrey, D.J.; Oleesky, D.; Davies, M.; Clark, G.W.B.; Puntis, M.C.A. The Antioxidant Profiles of Patients with Recurrent Acute and Chronic Pancreatitis. The American Journal of Gastroenterology 1999, 94, 2135–2140. [Google Scholar] [CrossRef]
- Firdous, S.M.; Pal, S.; Mandal, S.; Sindhu, R.K. Antioxidants in Inflammatory Diseases. In Antioxidants; John Wiley & Sons, Ltd, 2025; pp. 83–126 ISBN 978-1-394-27057-6.
- Bhol, N.K.; Bhanjadeo, M.M.; Singh, A.K.; Dash, U.C.; Ojha, R.R.; Majhi, S.; Duttaroy, A.K.; Jena, A.B. The Interplay between Cytokines, Inflammation, and Antioxidants: Mechanistic Insights and Therapeutic Potentials of Various Antioxidants and Anti-Cytokine Compounds. Biomedicine & Pharmacotherapy 2024, 178, 117177. [Google Scholar] [CrossRef]
- Blagov, A.V.; Summerhill, V.I.; Sukhorukov, V.N.; Zhigmitova, E.B.; Postnov, A.Y.; Orekhov, A.N. Potential Use of Antioxidants for the Treatment of Chronic Inflammatory Diseases. Front. Pharmacol. 2024, 15. [Google Scholar] [CrossRef]
- Sateesh, J.; Bhardwaj, P.; Singh, N.; Saraya, A. Effect of Antioxidant Therapy on Hospital Stay and Complications in Patients with Early Acute Pancreatitis: A Randomised Controlled Trial. Trop Gastroenterol 2009, 30, 201–206. [Google Scholar]
- Antunes, D.; Gonçalves, S.M.; Matzaraki, V.; Rodrigues, C.S.; Gonçales, R.A.; Rocha, J.; Sáiz, J.; Marques, A.; Torrado, E.; Silvestre, R.; et al. Glutamine Metabolism Supports the Functional Activity of Immune Cells against Aspergillus Fumigatus. Microbiol Spectr 2023, 11, e02256–22. [Google Scholar] [CrossRef]
- Guo, C.; You, Z.; Shi, H.; Sun, Y.; Du, X.; Palacios, G.; Guy, C.; Yuan, S.; Chapman, N.M.; Lim, S.A.; et al. SLC38A2 and Glutamine Signalling in cDC1s Dictate Anti-Tumour Immunity. Nature 2023, 620, 200–208. [Google Scholar] [CrossRef]
- Stehle, P.; Kuhn, K.S. Glutamine: An Obligatory Parenteral Nutrition Substrate in Critical Care Therapy. BioMed Research International 2015, 2015, 1–7. [Google Scholar] [CrossRef]
- Asrani, V.; Chang, W.K.; Dong, Z.; Hardy, G.; Windsor, J.A.; Petrov, M.S. Glutamine Supplementation in Acute Pancreatitis: A Meta-Analysis of Randomized Controlled Trials. Pancreatology 2013, 13, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Jeurnink, S.M.; Nijs, M.M.; Prins, H. a. B.; Greving, J.P.; Siersema, P.D. Antioxidants as a Treatment for Acute Pancreatitis: A Meta-Analysis. Pancreatology 2015, 15, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Xue, P.; Deng, L.-H.; Xia, Q.; Zhang, Z.-D.; Hu, W.-M.; Yang, X.-N.; Song, B.; Huang, Z.-W. Impact of Alanyl-Glutamine Dipeptide on Severe Acute Pancreatitis in Early Stage. World J Gastroenterol 2008, 14, 474–478. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Huang, L.; Luo, M.; Xia, X. Bacterial Translocation in Acute Pancreatitis. Crit Rev Microbiol 2019, 45, 539–547. [Google Scholar] [CrossRef]
- Glaubitz, J.; Wilden, A.; Frost, F.; Ameling, S.; Homuth, G.; Mazloum, H.; Rühlemann, M.C.; Bang, C.; Aghdassi, A.A.; Budde, C.; et al. Activated Regulatory T-Cells Promote Duodenal Bacterial Translocation into Necrotic Areas in Severe Acute Pancreatitis. Gut 2023, 72, 1355–1369. [Google Scholar] [CrossRef]
- Zhang, C.; Chen ,Shiyin; Wang ,Zhien; Zhang ,Jian; Yu ,Wenqiao; Wang ,Yanshuai; Si ,Weiwei; Zhang ,Yuwei; Zhang ,Yun; and Liang, T. Exploring the Mechanism of Intestinal Bacterial Translocation after Severe Acute Pancreatitis: The Role of Toll-like Receptor 5. Gut Microbes 2025, 17, 2489768. [CrossRef]
- Sanders, M.E.; Merenstein, D.J.; Reid, G.; Gibson, G.R.; Rastall, R.A. Probiotics and Prebiotics in Intestinal Health and Disease: From Biology to the Clinic. Nat Rev Gastroenterol Hepatol 2019, 16, 605–616. [Google Scholar] [CrossRef]
- Suez, J.; Zmora, N.; Segal, E.; Elinav, E. The Pros, Cons, and Many Unknowns of Probiotics. Nat Med 2019, 25, 716–729. [Google Scholar] [CrossRef]
- Qin, W.; Wang, G.; Xia, Y.; Song, X.; Xiong, Z.; Huang, C.; Gong, C.; Zeng, Y.; Ai, L. The Role of Probiotic Foods in Acute Pancreatitis: Current Status and Future Directions. Current Opinion in Food Science 2024, 60, 101231. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, R.; Wang, S.; Yang, C.; Wang, Y.; Fan, H.; Yang, M. Observation on the Therapeutic Effect of Probiotics on Early Oral Feeding in the Treatment of Severe Acute Pancreatitis. Front. Med. 2024, 11. [Google Scholar] [CrossRef]
- Oláh, A.; Belágyi, T.; Issekutz, A.; Gamal, M.E.; Bengmark, S. Randomized Clinical Trial of Specific Lactobacillus and Fibre Supplement to Early Enteral Nutrition in Patients with Acute Pancreatitis. Br J Surg 2002, 89, 1103–1107. [Google Scholar] [CrossRef] [PubMed]
- Oláh, A.; Belágyi, T.; Pótó, L.; Romics, L.; Bengmark, S. Synbiotic Control of Inflammation and Infection in Severe Acute Pancreatitis: A Prospective, Randomized, Double Blind Study. Hepatogastroenterology 2007, 54, 590–594. [Google Scholar] [PubMed]
- Timmerman, H.M.; Niers, L.E.M.; Ridwan, B.U.; Koning, C.J.M.; Mulder, L.; Akkermans, L.M.A.; Rombouts, F.M.; Rijkers, G.T. Design of a Multispecies Probiotic Mixture to Prevent Infectious Complications in Critically Ill Patients. Clin Nutr 2007, 26, 450–459. [Google Scholar] [CrossRef] [PubMed]
- Plaudis, H.; Pupelis, G.; Zeiza, K.; Boka, V. Early Low Volume Oral Synbiotic/Prebiotic Supplemented Enteral Stimulation of the Gut in Patients with Severe Acute Pancreatitis: A Prospective Feasibility Study. Acta Chir Belg 2012, 112, 131–138. [Google Scholar] [CrossRef]

| AP classification | Degree of severity | Complications | |||
| Local | Systemic | ||||
| TOF | POF | EPC | |||
| Atlanta 1992[9] | Mild | × | × | × | N/A |
| Severe | √ | √ | √ | N/A | |
| *Revised Atlanta 2012[10,11] | Mild | × | × | × | × |
| Moderate | √ | √ | × | √ | |
| Severe | √ | × | √ | √ or × | |
| #Determinant-based[12] | Mild | × | × | × | N/A |
| Moderate | Sterile | √ | × | N/A | |
| Severe | Infected | √ | √ | N/A | |
| Critical | Infected | × | √ | N/A | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
