Submitted:
15 May 2025
Posted:
16 May 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Unconscious Processes as the Foundation of Projective Diagnostics
1.2. Freud's Death Drive as a Theoretical Basis for Self-Destructiveness
1.3. Neurobiological Basis of Unconscious Processes
1.4. Suicide Risk Factors
1.5. Protective Factors of Suicide
1.6. The Role of Artificial Intelligence in the Diagnostic Process
1.7. Aim of the Study
2. Methodology
2.1. Study Design and Setting
2.1.1. Competent Judges Procedure
2.2. Study Population
2.3. Ethical Considerations
2.4. Data Analysis
3. Results
3.1. Factor Extraction
3.2. Exploratory Analyses
|
Variable |
Spearman BD rank order correlation removed in pairs Tagged wsp. correlations are significant with p <.05000 | |||||||||
| P1 | P2 | P3 | P4a | P4b | P5 | P6 | P7 | Age | Number of children |
|
| P1 | 1,000000 | -0,058535 | 0,387499 | 0,482755 | 0,088370 | 0,052134 | -0,031750 | 0,309309 | -0,075765 | -0,019890 |
| P2 | -0,058535 | 1,000000 | 0,115889 | -0,064020 | 0,764871 | 0,562732 | 0,649300 | 0,068333 | 0,110310 | -0,012671 |
| P3 | 0,387499 | 0,115889 | 1,000000 | 0,438977 | 0,276512 | 0,066142 | 0,086215 | 0,571672 | -0,048134 | -0,019135 |
| P4a | 0,482755 | -0,064020 | 0,438977 | 1,000000 | 0,051944 | 0,090922 | -0,024448 | 0,246764 | -0,196011 | -0,083470 |
| P4b | 0,088370 | 0,764871 | 0,276512 | 0,051944 | 1,000000 | 0,548530 | 0,602709 | 0,172824 | 0,082679 | -0,005097 |
| P5 | 0,052134 | 0,562732 | 0,066142 | 0,090922 | 0,548530 | 1,000000 | 0,397669 | 0,033504 | -0,016179 | -0,077119 |
| P6 | -0,031750 | 0,649300 | 0,086215 | -0,024448 | 0,602709 | 0,397669 | 1,000000 | 0,051111 | 0,025818 | 0,099400 |
| P7 | 0,309309 | 0,068333 | 0,571672 | 0,246764 | 0,172824 | 0,033504 | 0,051111 | 1,000000 | 0,036608 | 0,029394 |
| Age | -0,075765 | 0,110310 | -0,048134 | -0,196011 | 0,082679 | -0,016179 | 0,025818 | 0,036608 | 1,000000 | 0,595009 |
| Number of children | -0,019890 | -0,012671 | -0,019135 | -0,083470 | -0,005097 | -0,077119 | 0,099400 | 0,029394 | 0,595009 | 1,000000 |
4. Discussion
5. Conclusions
- The satisfactory psychometric properties of the tool indicate that it can provide effective support in clinical diagnosis, especially in the assessment of people at high risk of self-aggressive behaviour.
- The tendency to destroy and the tendency to sublimate it should be diagnosed on the basis of unconscious processes.
- Interest and curiosity, pleasure and fun, and closeness and love support the mechanisms of sublimation of destruction, suggesting the need to develop therapeutic strategies based on positive motivation rather than just reducing risky behaviors.
- The results of the presented research are a point of contact between the psychoanalytic approach and modern neurobiological knowledge, which opens up the possibility of integrative therapeutic methods.
- The next step in the presented study is to assess the external validity of the Morana Scale in order to determine its usefulness in clinical practice, including the assessment of suicidal risk. It is also advisable to investigate the possibility of adapting the tool to different clinical groups in order to improve the effectiveness of interventions in different therapeutic contexts.
References
- Ajluni, V.; Amarasinghe, D. Youth suicide crisis: Identifying at-risk individuals and prevention strategies. Child and Adolescent Psychiatry and Mental Health 2024, 18, 58. [Google Scholar] [CrossRef] [PubMed]
- Barak-Corren, Y.; Castro, V.M.; Javitt, S.; Nock, M.K.; Smoller, J.W.; Reis, B.Y. Improving risk prediction for target subpopulations: Predicting suicidal behaviors among multiple sclerosis patients. PLOS ONE 2023, 18, e0277483. [Google Scholar] [CrossRef]
- Beck, A.T.; Steer, R.A.; Ranieri, W.F. Scale for suicide ideation: Psychometric properties of a self-report instrument for measuring suicidal ideation. Journal of Consulting and Clinical Psychology 1979, 47, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Boateng, G.O.; Neilands, T.B.; Frongillo, E.A.; Melgar-Quinonez, H.R.; Young, S.L. Best practices for developing and validating scales for health, social, and behavioral research: A primer. Frontiers in Public Health 2018, 6, 149. [Google Scholar] [CrossRef] [PubMed]
- Bolton, J.M.; Gunnell, D.; Turecki, G. Suicide risk assessment and intervention in people with mental illness. BMJ 2015, 351, h4978. [Google Scholar] [CrossRef]
- Bresin, K.; Hunt, R.A. The downside of being open-minded: The positive relation between openness to experience and nonsuicidal self-injury. Suicide and Life-Threatening Behavior 2023, 53, 282–288. [Google Scholar] [CrossRef]
- Breton, J.J.; Labelle, R.; Berthiaume, C.; Royer, C.; St-Georges, M.; Ricard, D.; Abadie, P.; Gérardin, P.; Cohen, D. ; Guilé; JM Protective factors against depression and suicidal behaviour in adolescence. Canadian journal of psychiatry. Revue canadienne de psychiatrie 2015, 60(2 Suppl 1), S5–S15. [Google Scholar]
- Busby Grant, J.; Batterham, P.J.; McCallum, S.M.; Werner-Seidler, A.; Calear, A.L. Specific anxiety and depression symptoms are risk factors for the onset of suicidal ideation and suicide attempts in youth. Journal of Affective Disorders 2023, 327, 299–305. [Google Scholar] [CrossRef]
- Cai, H.; Xie, X.M.; Zhang, Q.; Cui, X.; Lin, J.X.; Sim, K.; Ungvari, G.S.; Zhang, L.; Xiang, Y.T. Prevalence of suicidality in major depressive disorder: A systematic review and meta-analysis of comparative studies. Frontiers in Psychiatry 2021, 12, 690130. [Google Scholar] [CrossRef]
- Campisi, S.C.; Carducci, B.; Akseer, N.; et al. Suicidal behaviours among adolescents from 90 countries: A pooled analysis of the global school-based student health survey. BMC Public Health 2020, 20, 1102. [Google Scholar] [CrossRef]
- Casanova, M.P.; Nelson, M.C.; Pickering, M.A.; et al. Measuring psychological pain: Psychometric analysis of the Orbach and Mikulincer Mental Pain Scale. Measurement Instruments for the Social Sciences 2021, 3, 7. [Google Scholar] [CrossRef]
- Casey, P.R.; Dunn, G.; Kelly, B.D.; et al. Factors associated with suicidal ideation in the general population. British Journal of Psychiatry 2006, 189, 410–415. [Google Scholar] [CrossRef]
- Chapman, J.; Jamil, R.T.; Fleisher, C.; Torrico, T.J. (2024). Borderline personality disorder. In StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing.
- Chodkiewicz, J.; Miniszewska, J.; Strzelczyk, D.; Gąsior, K. Polish adaptation of the Psychache Scale by Ronald Holden and co-workers. Psychiatria Polska 2017, 51, 369–381. [Google Scholar] [CrossRef]
- Clark, L.A.; Watson, D. Constructing validity: Basic issues in objective scale development. Psychological Assessment 1995, 7, 309–319. [Google Scholar] [CrossRef]
- Conner, K.R.; Meldrum, S.; Wieczorek, W.F.; et al. The association of irritability and impulsivity with suicidal ideation among 15- to 20-year-old males. Suicide and Life-Threatening Behavior 2004, 34, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Cramer, P. (2006). Protecting the self: Defense mechanisms in action. New York: Guilford Press.
- Cummins, N.; Scherer, S.; Krajewski, J.; Schnieder, S.; Epps, J.; Quatieri, T.F. A review of depression and suicide risk assessment using speech analysis. Speech Communication 2015, 71, 10–49. [Google Scholar] [CrossRef]
- Davidson, L.; Shahar, G.; Lawless, M.S.; Sells, D.; Tondora, J. Play, pleasure, and other positive life events: "Non-specific" factors in recovery from mental illness? Psychiatry 2006, 69, 151–163. [Google Scholar] [CrossRef]
- Davis, K.L.; Montag, C. Selected principles of Pankseppian affective neuroscience. Frontiers in Neuroscience 2019, 12, 1025. [Google Scholar] [CrossRef]
- DeVellis, R.F. Scale development: Theory and applications, 4th ed.; Sage Publications: Thousand Oaks, CA, 2016. [Google Scholar]
- Dougherty, D.M.; Mathias, C.W.; Marsh-Richard, D.M.; Prevette, K.N.; Dawes, M.A.; Hatzis, E.S.; Palmes, G.; Nouvion, S.O. Impulsivity and clinical symptoms among adolescents with non-suicidal self-injury with or without attempted suicide. Psychiatry Research 2009, 169, 22–27. [Google Scholar] [CrossRef]
- Doupnik, S.K.; Rudd, B.; Schmutte, T.; Worsley, D.; Bowden, C.F.; McCarthy, E.; Eggan, E.; Bridge, J.A.; Marcus, S.C. Association of suicide prevention interventions with subsequent suicide attempts, linkage to follow-up care, and depression symptoms for acute care settings: A systematic review and meta-analysis. JAMA Psychiatry 2020, 77, 1021–1030. [Google Scholar] [CrossRef]
- Duberstein, P.R. Openness to experience and completed suicide across the second half of life. International Psychogeriatrics 1995, 7, 183–198. [Google Scholar] [CrossRef]
- Ehtemam, H.; Sadeghi Esfahlani, S.; Sanaei, A.; Ghaemi, M.M.; Hajesmaeel-Gohari, S.; Rahimisadegh, R.; Bahaadinbeigy, K.; Ghasemian, F.; Shirvani, H. Role of machine learning algorithms in suicide risk prediction: A systematic review-meta analysis of clinical studies. BMC Medical Informatics and Decision Making 2024, 24, 138. [Google Scholar] [CrossRef]
- Eikelenboom, M.; Smit, J.H.; Beekman, A.T.; Penninx, B.W. Do depression and anxiety converge or diverge in their association with suicidality? Journal of Psychiatric Research 2012, 46, 608–615. [Google Scholar] [CrossRef] [PubMed]
- Esch, T.; Stefano, G.B. The neurobiology of pleasure, reward processes, addiction and their health implications. Neuro Endocrinology Letters 2004, 25, 235–251. [Google Scholar] [PubMed]
- Ferguson, E.; Bibby, P.A. Openness to experience and all-cause mortality: A meta-analysis and r(equivalent) from risk ratios and odds ratios. British Journal of Health Psychology 2012, 17, 85–102. [Google Scholar] [CrossRef] [PubMed]
- Fowler, J.C. Suicide risk assessment in clinical practice: pragmatic guidelines for imperfect assessments. Psychotherapy (Chicago Ill.) 2012, 49, 81–90. [Google Scholar] [CrossRef]
- Franklin, J.C.; Ribeiro, J.D.; Fox, K.R.; et al. Risk factors for suicidal thoughts and behaviors: A meta-analysis of 50 years of research. Psychological Bulletin 2017, 143, 187–232. [Google Scholar] [CrossRef]
- Freud, A. (2007). The ego and the mechanisms of defense. International Universities Press.
- Freud, S. (2018). The ego and the id. W. W. Norton & Company.
- Fuchshuber, J.; Prandstätter, T.; Andres, D.; Roithmeier, L.; Schmautz, B.; Freund, A.; Schwerdtfeger, A.; Unterrainer, H.F. The German version of the brief affective neuroscience personality scales including a LUST scale (BANPS-GL). Frontiers in Human Neuroscience 2023, 17, 1213156. [Google Scholar] [CrossRef]
- Glover, E. Sublimation, substitution and social anxiety. Essaim 2019, 36, 7–14. [Google Scholar] [CrossRef]
- Grace, K.; Salvatier, J.; Dafoe, A.; Zhang, B.; Evans, O. When will AI exceed human performance? Evidence from AI experts. Journal of Artificial Intelligence Research 2018, 62, 729–754. [Google Scholar] [CrossRef]
- Gupta, M.; Esang, M.; Moll, J.; Gupta, N. Inpatient suicide: Epidemiology, risks, and evidence-based strategies. CNS Spectrums 2023, 28, 395–400. [Google Scholar] [CrossRef] [PubMed]
- Harris, K.M.; Wang, L.; Mu, G.M.; et al. Measuring the suicidal mind: The ‘open source’ Suicidality Scale, for adolescents and adults. PLOS ONE 2023, 18, e0282009. [Google Scholar] [CrossRef]
- Institute of Medicine (US) and National Research Council (US) Committee on the Science of Adolescence. (2011). The science of adolescent risk-taking: Workshop report. Washington, DC: National Academies Press. Available from: https://www.ncbi.nlm.nih.gov/books/NBK53414/.
- Iwaszuk, M. Between thought and action: Symbolization in depressive position and its external expressions. Journal of Education Culture and Society 2021, 12, 13–25. [Google Scholar] [CrossRef]
- Jaccard, J.; Jacoby, J. (2010). Theory construction and model-building skills: A practical guide for social scientists. New York: Guilford Press.
- Jaroszewski, A.C.; Morris, R.R.; Nock, M.K. Randomized controlled trial of an online machine learning-driven risk assessment and intervention platform for increasing the use of crisis services. Journal of Consulting and Clinical Psychology 2019, 87, 370–379. [Google Scholar] [CrossRef]
- Kautzky, A.; Dold, M.; Bartova, L.; Spies, M.; Vanicek, T.; Souery, D.; Montgomery, S.; Mendlewicz, J.; Zohar, J.; Fabbri, C.; Serretti, A.; Lanzenberger, R.; Kasper, S. Refining prediction in treatment-resistant depression: Results of machine learning analyses in the TRD III sample. The Journal of Clinical Psychiatry 2018, 79, 16m11385. [Google Scholar] [CrossRef]
- Kempiński, A.M. (2000). Encyklopedia mitologii ludów indoeuropejskich (in Polish). Warszawa: Iskry.
- Komenda Główna Policji (2024) Statystyki zamachów samobójczych i wypadków drogowych. Warszawa: KGP Available from: https://statystyka.policja.pl/st/wybrane-statystyki/zamachy-samobojcze; https://statystyka.policja.pl/st/ruch-drogowy/76562,Wypadki-drogowe-raporty-roczne.html.
- Larsen, A.; Tele, A.; Kumar, M. Mental health service preferences of patients and providers: A scoping review of conjoint analysis and discrete choice experiments from global public health literature over the last 20 years (1999–2019). BMC Health Services Research 2021, 21, 589. [Google Scholar] [CrossRef]
- Lilienfeld, S.O.; Wood, J.M.; Garb, H.N. The scientific status of projective techniques. Psychological Science in the Public Interest 2000, 1, 27–66. [Google Scholar] [CrossRef] [PubMed]
- McGrath, R.E.; Twibell, A.; Carroll, E.J. (2023). The current status of “projective” tests. In H. Cooper, M.N. Coutanche, L.M. McMullen, A.T. Panter, D. Rindskopf, & K. J. Sher (Eds.), APA handbook of research methods in psychology: Foundations, planning, measures, and psychometrics (2nd ed., pp. 433–450). Washington, DC: American Psychological Association. [CrossRef]
- McWilliams, N. (2011). Psychoanalytic diagnosis: Understanding personality structure in the clinical process (2nd ed.). New York: Guilford Press.
- Moini, J.; Avgeropoulos, N.; Samsam, M. (2021). Epidemiology of brain and spinal tumors (1st ed.). Academic Press.
- Montag, C.; Davis, K.L. Affective neuroscience theory and personality: An update. Personal Neuroscience 2018, 1, e12. [Google Scholar] [CrossRef] [PubMed]
- Moore, F.R.; Doughty, H.; Neumann, T.; McClelland, H.; Allott, C.; O'Connor, R.C. Impulsivity, aggression, and suicidality relationship in adults: A systematic review and meta-analysis. EClinicalMedicine. 2022. [Google Scholar] [CrossRef]
- Murawiec, S. The primary-process emotional brain systems, according to Jaak Panksepp’s conceptualization, can serve as a component enabling the understanding of psychiatric pharmacotherapy. Psychiatria Spersonalizowana 2023, 2, 46–54. [Google Scholar] [CrossRef]
- Nobus, D. (2022). Lacan’s clinical artistry: On sublimation, sublation and the sublime. In Critique of Psychoanalytic Reason (1st ed., pp. 25–54). Routledge.
- Nowak, M.P.; Pawelczyk, T. Skale oceny ryzyka samobójstwa dorosłych w praktyce psychologa klinicznego i psychiatry: Przegląd dostępnych narzędzi. Psychiatria Psychologii Klinicznej 2018, 18, 180–187. [Google Scholar] [CrossRef]
- Orbach, I.; Mikulincer, M.; Gilboa-Schechtman, E.; Sirota, P. Mental pain and its relationship to suicidality and life meaning. Suicide and Life-Threatening Behavior 2003, 33, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Orsolini, L.; Latini, R.; Pompili, M.; Serafini, G.; Volpe, U.; Vellante, F.; Fornaro, M.; Valchera, A.; Tomasetti, C.; Fraticelli, S.; Alessandrini, M.; La Rovere, R.; Trotta, S.; Martinotti, G.; Di Giannantonio, M.; De Berardis, D. Understanding the complex of suicide in depression: From research to clinics. Psychiatry Investigation 2020, 17, 207–221. [Google Scholar] [CrossRef] [PubMed]
- Pestian, J.P.; Grupp-Phelan, J.; Bretonnel Cohen, K.; Meyers, G.; Richey, L.A.; Matykiewicz, P.; Sorter, M.T. A controlled trial using natural language processing to examine the language of suicidal adolescents in the emergency department. Suicide & Life-Threatening Behavior 2016, 46, 154–159. [Google Scholar] [CrossRef]
- Posner, K.; Brown, G.K.; Stanley, B.; Brent, D.A.; Yershova, K.V.; Oquendo, M.A.; Currier, G.W.; Melvin, G.A.; Greenhill, L.; Shen, S.; Mann, J.J. The Columbia-Suicide Severity Rating Scale: initial validity and internal consistency findings from three multisite studies with adolescents and adults. The American journal of psychiatry 2011, 168, 1266–1277. [Google Scholar] [CrossRef]
- Posner, K.; Subramany, R.; Amira, L.; Mann, J.J. (2014). From uniform definitions to prediction of risk: The Columbia Suicide Severity Rating Scale approach to suicide risk assessment. In K. Cannon & T. Hudzik (Eds.), Suicide: Phenomenology and Neurobiology (pp. 59–84). Springer, Cham. [CrossRef]
- Rozek, D.C.; Andres, W.C.; Smith, N.B.; Leifker, F.R.; Arne, K.; Jennings, G.; Dartnell, N.; Bryan, C.J.; Rudd, M.D. Using machine learning to predict suicide attempts in military personnel. Psychiatry Research 2020, 294, 113515. [Google Scholar] [CrossRef] [PubMed]
- Saint-Cyr, V.M. Creating a void or sublimation in Lacan. Recherches en psychanalyse 2012, 13, 15–21. [Google Scholar] [CrossRef]
- Santillo, G.; Morra, R.C.; Esposito, D.; Romani, M. Projective in time: A systematic review on the use of construction projective techniques in the digital era—beyond inkblots. Children 2025, 12, 406. [Google Scholar] [CrossRef]
- Sareen, J.; Cox, B.J.; Afifi, T.O.; et, al. Anxiety disorders and risk for suicidal ideation and suicide attempts: A population-based longitudinal study of adults. Archives of General Psychiatry 2005, 62, 1249–1257. [Google Scholar] [CrossRef]
- Shean, M.; Mander, D. (2020). Building emotional safety for students in school environments: Challenges and opportunities. In R. Midford, G. Nutton, B. Hyndman, & S. Silburn (Eds.), Health and education interdependence. Springer. [CrossRef]
- Shneidman, E.S. (1993). The suicidal process. In M. Golden (Ed.), The suicidal crisis. New York: Free Press.
- Snir, S.; Gavron, T.; Maor, Y.; Haim, N.; Sharabany, R. Friends' closeness and intimacy from adolescence to adulthood: Art captures implicit relational representations in joint drawing: A longitudinal study. Frontiers in Psychology 2020, 11, 2842. [Google Scholar] [CrossRef]
- Stanford Institute for Human-Centered Artificial Intelligence. (2023). AI key terms glossary & definition [Internet]. Stanford University. Available from: https://hai.stanford.edu/sites/default/files/2023-03/AI-Key-Terms-Glossary-Definition.pdf.
- Stanley, B.; Brown, G.K.; Brenner, L.A.; Galfalvy, H.C.; Currier, G.W.; Knox, K.L.; Chaudhury, S.R.; Bush, A.L.; Green, K.L. Comparison of the Safety Planning Intervention With Follow-up vs Usual Care of Suicidal Patients Treated in the Emergency Department. JAMA psychiatry 2018, 75, 894–900. [Google Scholar] [CrossRef]
- Stemplewska-Żakowicz, K.; Paluchowski, W.J. The reliability of projective techniques as tools of psychological assessment. Part 1: Why it is unjustified to describe some of them as projective? Problems of Forensic Sciences 2013, 93, 421–437. [Google Scholar]
- Szyjewski, A. (2003). Religia Słowian [Religion of the Slavs] (in Polish). Kraków: Wydawnictwo WAM.
- Thieberger, J. The concept of reparation in Melanie Klein's writing. Melanie Klein & Object Relations 1991, 9, 56–71. [Google Scholar]
- Uvnäs-Moberg, K.; Gross, M.M.; Calleja-Agius, J.; Turner, J.D. The yin and yang of the oxytocin and stress systems: Opposites, yet interdependent and intertwined determinants of lifelong health trajectories. Frontiers in Endocrinology (Lausanne) 2024, 15, 1272270. [Google Scholar] [CrossRef] [PubMed]
- Van Orden, K.A.; Witte, T.K.; Cukrowicz, K.C.; Braithwaite, S.R.; Selby, E.A.; Joiner, T.E. Jr. The interpersonal theory of suicide. Psychological Review 2010, 117, 575–600. [Google Scholar] [CrossRef] [PubMed]
- Werbart, A.; Bergstedt, A.; Levander, S. Love, work, and striving for the self in balance: Anaclitic and introjective patients' experiences of change in psychoanalysis. Frontiers in Psychology 2020, 11, 144. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. (2024). Suicide prevention. Geneva: WHO Available from: https://www.who.int/health-topics/suicide.
- Yan, N.; Luo, Y.; Mackay, L.E.; et al. Global patterns and trends of suicide mortality and years of life lost among adolescents and young adults from 1990 to 2021: A systematic analysis for the Global Burden of Disease Study 2021. Epidemiology and Psychiatric Sciences 2024, 33, e52. [Google Scholar] [CrossRef]
- Żechowski, C. Theory of drives and emotions - from Sigmund Freud to Jaak Panksepp. Psychiatria Polska 2017, 51, 1181–1189. [Google Scholar] [CrossRef]

| Variable | Category | N | % |
|---|---|---|---|
| Sex | Woman Man |
156 48 |
23,52 76,47 |
| Age | 18-66 | ||
| Marital status | Free Marriage Divorce Widowhood |
136 55 11 2 |
66,66 26,96 5,39 0,98 |
| Number of children | 0 1 2 3 More |
157 16 23 7 1 |
76,96 7,84 11,27 3,43 0,49 |
| Education | Basic Grammar school Essential professional Average Higher |
1 1 3 76 123 |
0,49 0,49 1,47 37,25 60,29 |
| Domicile | Village A city below 100 thousand City 100-500 thousand City over 500 thousand |
34 33 18 119 |
16,66 16,17 8,82 58,33 |
| Professional activity | Education Professional career Unemployment |
80 116 8 |
39,21 56,86 3,92 |
| Psychiatric treatment currently or in the past | No Yes |
82 122 |
40,19 59,80 |
| Psychotherapy now or in the past | No Yes |
74 130 |
36,27 63,72 |
| Psychiatric diagnosis | No How: Psychotic disorders F20-F29 Affective Disorder F30-F39 Anxiety Disorders F40-F49 Personality Disorders F60-F69 |
83 121 3 98 16 4 |
40,68 59,32 1,47 48,03 7,84 1,96 |
| The impact of the diagnosis on current well-being | Not applicable No Yes |
74 30 100 |
36,27 14,70 49,01 |
| Podskala | Number of items | Alf Cronbach |
|---|---|---|
| (1) depression and mental pain | 18 | 0,9346 |
| (2) Interests and Curiosity | 15 | 0,9569 |
| (3) aggression and impulsivity | 14 | 0,9409 |
| (4a) Destructive Strivings | 8 | 0,8900 |
| (4b) sublimation of destruction | 11 | 0,8774 |
| (5) Enjoyment and Fun | 14 | 0,9397 |
| (6) closeness and love | 7 | 0,8770 |
| (7) anxiety and a sense of danger | 9 | 0,8985 |
| Striving for Destruction | ||||
| Factor | Single-variate model (B, SE, Wald χ², p, OR, 95% CI) | Effect size | Multivariate model (B, SE, Wald χ², p, OR, 95% CI) | Effect size |
| Depression and mental pain | B=0.326, SE=0.047, Wald χ²=47.569, p=0.000, OR=1.385, CI=[1.262–1.520] | Big impact | B=0.288, SE=0.050, Forest χ²=32.770, p=0.000, OR=1.333, CI=[1.208–1.472] | Big impact |
| Interest and curiosity | B=-0.048, SE=0.047, Forest χ²=1.022, p=0.312, OR=0.953, CI=[0.869–1.046] | Lack | B=-0.291, SE=0.137, Wald χ²=4.473, p=0.034, OR=0.748, CI=[0.571–0.980] | Medium (protective) effect |
| Aggression and impulsivity | B=0.516, SE=0.106, Wald χ²=23.808, p=0.000, OR=1.676, CI=[1.361–2.063] | Big impact | B=0.250, SE=0.136, Wald χ²=3.360, p=0.067, OR=1.284, CI=[0.982–1.679] | Small effect |
| Sublimation of destruction | B=0.101, SE=0.066, forest χ²=2.350, p=0.125, OR=1.106, CI=[0.972–1.259] | Lack | B=0.132, SE=0.131, Wald χ²=1.015, p=0.314, OR=1.142, CI=[0.881–1.479] | Lack |
| Fun and enjoyment | B=0.136, SE=0.071, Wald χ²=3.672, p=0.055, OR=1.146, CI=[0.996–1.317] | Lack | B=0.191, SE=0.131, Wald χ²=2.138, p=0.144, OR=1.210, CI=[0.936–1.565] | Small effect |
| Closeness and love | B=-0.114, SE=0.099, Wald χ²=1.323, p=0.250, OR=0.892, CI=[0.734–1.084] | Low (protective) effect | B=-0.207, SE=0.144, Forest χ²=2.073, p=0.150, OR=0.813, CI=[0.612–1.079] | Low (protective) effect |
| Anxiety and a sense of threat | B=0.441, SE=0.104, Wald χ²=18.066, p=0.000, OR=1.554, CI=[1.267–1.906] | Big impact | B=0.114, SE=0.142, Wald χ²=0.648, p=0.421, OR=1.121, CI=[0.848–1.481] | No effect |
| Sublimation of destruction | ||||
| Factor | Single-variate model (B, SE, Wald χ², p, OR, 95% CI) | Effect size | Multivariate model (B, SE, Wald χ², p, OR, 95% CI) | Effect size |
| Depression and mental pain | B=0.069, SE=0.032, Forest χ²=4.739, p=0.029, OR=1.071, CI=[1.007–1.140] | Lack | B=0.026, SE=0.067, forest χ²=0.143, p=0.705, OR=1.026, CI=[0.898–1.171] | Lack |
| Interest and curiosity | B=1.148, SE=0.132, Wald χ²=75.974, p=0.000, OR=3.152, CI=[2.432–4.085] | Big impact | B=0.888, SE=0.154, Wald χ²=33.242, p=0.000, OR=2.431, CI=[1.795–3.291] | Big impact |
| Aggression and impulsivity | B=0.299, SE=0.080, Wald χ²=13.865, p=0.000, OR=1.348, CI=[1.151–1.579] | Medium effect | B=0.322, SE=0.157, Wald χ²=4.195, p=0.041, OR=1.380, CI=[1.013–1.882] | Medium effect |
| Striving for destruction | B=0.118, SE=0.068, Forest χ²=3.061, p=0.080, OR=1.126, CI=[0.985–1.286] | Lack | B=-0.214, SE=0.164, Forest χ²=1.710, p=0.191, OR=0.807, CI=[0.585–1.114] | Small effect |
| Fun and enjoyment | B=1.125, SE=0.157, Wald χ²=51.543, p=0.000, OR=3.081, CI=[2.263–4.195] | Big impact | B=0.728, SE=0.199, Forest χ²=13.411, p=0.000, OR=2.072, CI=[1.401–3.064] | Big impact |
| Closeness and love | B=1.233, SE=0.166, Wald χ²=55.317, p=0.000, OR=3.432, CI=[2.476–4.755] | Big impact | B=0.402, SE=0.191, Wald χ²=4.414, p=0.036, OR=1.494, CI=[1.026–2.177] | Medium effect |
| Anxiety and a sense of threat | B=0.360, SE=0.094, Wald χ²=14.655, p=0.000, OR=1.433, CI=[1.191–1.725] | Medium effect | B=0.293, SE=0.203, Forest χ²=2.081, p=0.149, OR=1.340, CI=[0.899–1.998] | Small effect |
| Striving for destruction | ||||
| Variable | Single-variate model (B, SE, Wald χ², p, OR, 95% CI) | Effect size | Multivariate model (B, SE, Wald χ², p, OR, 95% CI) | Effect size |
| Age | B=-0.042, SE=0.012, Forest χ²=11.860, p=0.000, OR=0.959, CI=[0.937–0.982] | Poor | B=-0.054, SE=0.015, Forest χ²=13.680, p=0.000, OR=0.947, CI=[0.921–0.975] | Poor |
| Number of children | B=0.007, SE=0.100, Forest χ²=0.005, p=0.943, OR=1.007, CI=[0.827–1.227] | Lack | B=0.244, SE=0.152, Forest χ²=2.581, p=0.108, OR=1.277, CI=[0.947–1.722] | Lack |
| Sublimation of destruction | ||||
| Variable | Single-variate model (B, SE, Wald χ², p, OR, 95% CI) | Effect size | Multivariate model (B, SE, Wald χ², p, OR, 95% CI) | Effect size |
| Age | B=0.011, SE=0.010, Forest χ²=1.101, p=0.294, OR=1.011, CI=[0.990–1.032] | Lack | B=0.007, SE=0.012, Forest χ²=0.375, p=0.540, OR=1.007, CI=[0.984–1.030] | Lack |
| Number of children | B=0.119, SE=0.104, Wald χ²=1.322, p=0.251, OR=1.127, CI=[0.918–1.383] | Lack | B=0.090, SE=0.112, Forest χ²=0.643, p=0.423, OR=1.094, CI=[0.878–1.363] | Lack |
| Striving for destruction | |||||||||||
| Variables | AUC | SE | Cl 95% | Cut-off point | Sensitivity | Specificity | Accuracy | Positive predictive value | Negative predictive value | Youden Index | |
| Depression and mental pain | 0,783* | 0,036 | [0,712; 0,855] | 3 | 0,750 | 0,647 | 0,672 | 0,396 | 0,894 | 0,397 | |
| Aggression and impulsivity | 0,715* | 0,44 | [0,629; 0,802] | 1 | 0,688 | 0,724 | 0,716 | 0,434 | 0,883 | 0,41 | |
| Anxiety and a sense of threat | 0,618** | 0,051 | [0,519; 0,717] | 2 | 0,396 | 0,904 | 0,784 | 0,559 | 0,829 | 0,30 | |
| Sublimation of destruction | |||||||||||
| Variables | AUC | HERSELF | Cl 95% | Cut-off point | Sensitivity | Specificity | Accuracy | Positive predictive value | Negative predictive value | Youden Index | |
| Interest and curiosity | 0,900* | 0,026 | [0,848; 0,951] | 2 | 0,837 | 0,871 | 0,863 | 0,672 | 0,944 | 0,71 | |
| Fun and enjoyment | 0,793* | 0,041 | [0,713; 0,873] | 1 | 0,755 | 0,761 | 0,760 | 0,500 | 0,908 | 0,52 | |
| Closeness and love | 0,836* | 0,035 | [0,767; 0,905] | 1 | 0,837 | 0,800 | 0,809 | 0,569 | 0,939 | 0,64 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
