Submitted:
22 April 2025
Posted:
23 April 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Results and Disscussion
2.1. Peptide Therapeutic to Study

2.2. Mass-Spectrum
2.3. Derivatizing Agent Selection
2.4. Sample Preparation Selection

3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Apparatus and HPLC Condition
| Time, min | Eluent B, % |
|---|---|
| 0,00 – 0,50 | 5 |
| 0,50 – 2,50 | 5 → 30 |
| 2,50 – 2,60 | 30 → 100 |
| 2,60 – 3,60 | 100 |
| 3,60 – 4,10 | 100 → 5 |
| 4,10 – 5,00 | 5 |
3.3. Preparation of Stock Solution and Working Solutions
3.4. Preparation of Analytical Samples
3.4.1. Preparation of Dansyl, Tosyl, and PITC Derivative Samples of TDP
3.4.2. Preparation of Fmoc-Osu, Boc Anhydride, Cbz-Osu Derivative Samples of TDP
3.4.3. Preparation of Benzoic Anhydride Derivative Samples of TDP
3.4.4. Preparation of Propionic Anhydride Derivative Samples of TDP in Blood Plasma
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| ELISA | enzyme-linked immunosorbent assay |
| MS | mass spectrometry |
| HPLC-MS/MS | high performance liquid chromatography with tandem mass spectrometry |
| MALDI | matrix-assisted laser desorption ionization source |
| CPP | cell-penetrating peptide |
| RP | reversed-phase |
| HILIC | hydrophilic interaction liquid chromatography |
| ICAT | isotope-coded affinity tag |
| ICPL | isotope-coded protein label |
| iTRAQ | isobaric tag for relative and absolute quantitation |
| TMT | tandem mass tag |
| TDP | tetradecapeptide |
| MRM | multiple reaction monitoring |
| MS | mass spectrometry |
| CID | collision-induced dissociation |
| dansyl chloride | dimethylaminonapthalene-5-sulfonyl chloride |
| tosyl chloride | 4-Toluenesulfonyl chloride |
| PITC | phenylisothiocyanate |
| Fmoc-OSu | N-(9H-fluorene-2-ylmethoxy)succinimide |
| Boc anhydride | Di-tert-butyl dicarbonate |
| Cbz-OSu | N-(Benzyloxycarbonyloxy)succinimide |
| ESI | electrospray ionization |
| TFA | trifluoroacetic acid |
| ACN | acetonitrile |
Appendix A

| Dansyl group monoisotopic mass, Da | 234,1 | ||||||
| Derivatized groups | Charge | ||||||
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
| 1 | 2051,0 | 1026,0 | 684,3 | 513,5 | 411,0 | 342,7 | 293,9 |
| 2 | 2284,1 | 1142,5 | 762,0 | 571,8 | 457,6 | 381,5 | 327,2 |
| 3 | 2517,1 | 1259,1 | 839,7 | 630,0 | 504,2 | 420,4 | 360,5 |
| 4 | 2750,2 | 1375,6 | 917,4 | 688,3 | 550,8 | 459,2 | 393,7 |
| 5 | 2983,2 | 1492,1 | 995,1 | 746,6 | 597,5 | 498,0 | 427,0 |
| 6 | 3216,3 | 1608,6 | 1072,8 | 804,8 | 644,1 | 536,9 | 460,3 |
| 7 | 3449,3 | 1725,2 | 1150,4 | 863,1 | 690,7 | 575,7 | 493,6 |
| Tosyl group monoisotopic mass, Da | 155,0 | ||||||
| Derivatized groups | Charge | ||||||
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
| 1 | 1972,0 | 986,5 | 658,0 | 493,8 | 395,2 | 329,5 | 282,6 |
| 2 | 2126,0 | 1063,5 | 709,3 | 532,3 | 426,0 | 355,2 | 304,6 |
| 3 | 2280,0 | 1140,5 | 760,7 | 570,8 | 456,8 | 380,8 | 326,6 |
| 4 | 2434,0 | 1217,5 | 812,0 | 609,3 | 487,6 | 406,5 | 348,6 |
| 5 | 2588,0 | 1294,5 | 863,3 | 647,8 | 518,4 | 432,2 | 370,6 |
| 6 | 2742,0 | 1371,5 | 914,7 | 686,3 | 549,2 | 457,8 | 392,6 |
| 7 | 2896,0 | 1448,5 | 966,0 | 724,8 | 580,0 | 483,5 | 414,6 |
| PITC group monoisotopic mass, Da | 135,0 | ||||||
| Derivatized groups | Charge | ||||||
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
| 1 | 1952,0 | 976,5 | 651,3 | 488,8 | 391,2 | 326,2 | 279,7 |
| 2 | 2086,0 | 1043,5 | 696,0 | 522,3 | 418,0 | 348,5 | 298,9 |
| 3 | 2220,0 | 1110,5 | 740,7 | 555,8 | 444,8 | 370,8 | 318,0 |
| 4 | 2354,0 | 1177,5 | 785,3 | 589,3 | 471,6 | 393,2 | 337,1 |
| 5 | 2488,0 | 1244,5 | 830,0 | 622,8 | 498,4 | 415,5 | 356,3 |
| 6 | 2622,0 | 1311,5 | 874,7 | 656,3 | 525,2 | 437,8 | 375,4 |
| 7 | 2756,0 | 1378,5 | 919,3 | 689,8 | 552,0 | 460,2 | 394,6 |
| (fluoren-9-ylmethoxy)carbonyl (Fmoc) group monoisotopic mass, Da | 223,1 | ||||||
| Derivatized groups | Charge | ||||||
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
| 1 | 2040,0 | 1020,5 | 680,7 | 510,8 | 408,8 | 340,8 | 292,3 |
| 2 | 2262,1 | 1131,6 | 754,7 | 566,3 | 453,2 | 377,9 | 324,0 |
| 3 | 2484,2 | 1242,6 | 828,7 | 621,8 | 497,6 | 414,9 | 355,7 |
| 4 | 2706,2 | 1353,6 | 902,8 | 677,3 | 542,1 | 451,9 | 387,5 |
| 5 | 2928,3 | 1464,7 | 976,8 | 732,8 | 586,5 | 488,9 | 419,2 |
| 6 | 3150,4 | 1575,7 | 1050,8 | 788,4 | 630,9 | 525,9 | 450,9 |
| 7 | 3372,4 | 1686,7 | 1124,8 | 843,9 | 675,3 | 562,9 | 482,6 |
| Trert-butoxycarbonyl (Boc) group monoisotopic mass, Da | 101,1 | ||||||
| Derivatized groups | Charge | ||||||
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
| 1 | 1918,0 | 959,5 | 640,0 | 480,3 | 384,4 | 320,5 | 274,9 |
| 2 | 2018,1 | 1009,5 | 673,4 | 505,3 | 404,4 | 337,2 | 289,2 |
| 3 | 2118,1 | 1059,6 | 706,7 | 530,3 | 424,4 | 353,9 | 303,5 |
| 4 | 2218,2 | 1109,6 | 740,1 | 555,3 | 444,4 | 370,5 | 317,7 |
| 5 | 2318,2 | 1159,6 | 773,4 | 580,3 | 464,5 | 387,2 | 332,0 |
| 6 | 2418,3 | 1209,6 | 806,8 | 605,3 | 484,5 | 403,9 | 346,3 |
| 7 | 2518,3 | 1259,7 | 840,1 | 630,3 | 504,5 | 420,6 | 360,6 |
| Benzyloxycarbonyl (Cbz) group monoisotopic mass, Da | 135,0 | ||||||
| Derivatized groups | Charge | ||||||
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
| 1 | 1952,0 | 976,5 | 651,3 | 488,8 | 391,2 | 326,2 | 279,7 |
| 2 | 2086,0 | 1043,5 | 696,0 | 522,3 | 418,0 | 348,5 | 298,9 |
| 3 | 2220,1 | 1110,5 | 740,7 | 555,8 | 444,8 | 370,9 | 318,0 |
| 4 | 2354,1 | 1177,6 | 785,4 | 589,3 | 471,6 | 393,2 | 337,2 |
| 5 | 2488,2 | 1244,6 | 830,1 | 622,8 | 498,4 | 415,5 | 356,3 |
| 6 | 2622,2 | 1311,6 | 874,7 | 656,3 | 525,2 | 437,9 | 375,5 |
| 7 | 2756,2 | 1378,6 | 919,4 | 689,8 | 552,1 | 460,2 | 394,6 |
| Benzoyl group (from benzoic anhydride) monoisotopic mass, Da | 105,0 | ||||||
| Derivatized groups | Charge | ||||||
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
| 1 | 1922,0 | 961,5 | 641,3 | 481,3 | 385,2 | 321,2 | 275,4 |
| 2 | 2026,0 | 1013,5 | 676,0 | 507,3 | 406,0 | 338,5 | 290,3 |
| 3 | 2130,1 | 1065,5 | 710,7 | 533,3 | 426,8 | 355,8 | 305,2 |
| 4 | 2234,1 | 1117,5 | 745,4 | 559,3 | 447,6 | 373,2 | 320,0 |
| 5 | 2338,1 | 1169,6 | 780,0 | 585,3 | 468,4 | 390,5 | 334,9 |
| 6 | 2442,1 | 1221,6 | 814,7 | 611,3 | 489,2 | 407,9 | 349,7 |
| 7 | 2546,2 | 1273,6 | 849,4 | 637,3 | 510,0 | 425,2 | 364,6 |
| Propionyl group (from propionic anhydride) monoisotopic mass, Da | 57,0 | ||||||
| Derivatized groups | Charge | ||||||
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
| 1 | 1874,0 | 937,5 | 625,3 | 469,3 | 375,6 | 313,2 | 268,6 |
| 2 | 1930,0 | 965,5 | 644,0 | 483,3 | 386,8 | 322,5 | 276,6 |
| 3 | 1986,0 | 993,5 | 662,7 | 497,3 | 398,0 | 331,9 | 284,6 |
| 4 | 2042,1 | 1021,5 | 681,4 | 511,3 | 409,2 | 341,2 | 292,6 |
| 5 | 2098,1 | 1049,6 | 700,0 | 525,3 | 420,4 | 350,5 | 300,6 |
| 6 | 2154,1 | 1077,6 | 718,7 | 539,3 | 431,6 | 359,9 | 308,6 |
| 7 | 2210,2 | 1105,6 | 737,4 | 553,3 | 442,8 | 369,2 | 316,6 |








References
- Al-Amrani, S.; Al-Jabri, Z.; Al-Zaabi, A.; Alshekaili, J.; Al-Khabori, M. Proteomics: Concepts and Applications in Human Medicine. World J Biol Chem 2021, 12, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Porfiryeva, N.N.; Semina, I.I.; Moustafine, R.I.; Khutoryanskiy, V.V. Intranasal Administration as a Route to Deliver Drugs to the Brain (Review). Drug development & registration 2021, 10, 117–127. [Google Scholar]
- Sharma, K.; Sharma, K.K.; Sharma, A.; Jain, R. Peptide-Based Drug Discovery: Current Status and Recent Advances. Drug Discovery Today 2023, 28, 103464. [Google Scholar] [CrossRef]
- Rauh, M. LC–MS/MS for Protein and Peptide Quantification in Clinical Chemistry. Journal of Chromatography B 2012, 883–884, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Pramanik, B.N. Application of LC/MS to Proteomics Studies: Current Status and Future Prospects. Drug Discovery Today 2009, 14, 465–471. [Google Scholar] [CrossRef]
- Campbell, J.L.; Blanc, J.Y.L. Peptide and Protein Drug Analysis by MS: Challenges and Opportunities for The Discovery Environment. Bioanalysis 2011. [Google Scholar] [CrossRef]
- Neagu, A.-N.; Jayathirtha, M.; Baxter, E.; Donnelly, M.; Petre, B.A.; Darie, C.C. Applications of Tandem Mass Spectrometry (MS/MS) in Protein Analysis for Biomedical Research. Molecules 2022, 27, 2411. [Google Scholar] [CrossRef]
- Duong, V.-A.; Lee, H. Bottom-Up Proteomics: Advancements in Sample Preparation. International Journal of Molecular Sciences 2023, 24, 5350. [Google Scholar] [CrossRef]
- Zeng, K.; Geerlof-Vidavisky, I.; Gucinski, A.; Jiang, X.; Boyne, M.T. Liquid Chromatography-High Resolution Mass Spectrometry for Peptide Drug Quality Control. AAPS J 2015, 17, 643–651. [Google Scholar] [CrossRef]
- Kang, L.; Weng, N.; Jian, W. LC–MS Bioanalysis of Intact Proteins and Peptides. Biomedical Chromatography 2020, 34. [Google Scholar] [CrossRef]
- Fisher, E.N.; Melnikov, E.S.; Shohin, I.Е. Development and Validation of HPLC-MS/MS Method for Busereline Quantitation in Animal Blood Plasma. Drug development & registration 2019, 8, 79–84. [Google Scholar] [CrossRef]
- Apostolopoulos, V.; Bojarska, J.; Chai, T.-T.; Elnagdy, S.; Kaczmarek, K.; Matsoukas, J.; New, R.; Parang, K.; Lopez, O.P.; Parhiz, H.; et al. A Global Review on Short Peptides: Frontiers and Perspectives. Molecules 2021, 26, 430. [Google Scholar] [CrossRef]
- Böttger, R.; Hoffmann, R.; Knappe, D. Differential Stability of Therapeutic Peptides with Different Proteolytic Cleavage Sites in Blood, Plasma and Serum. PLOS ONE 2017, 12, e0178943. [Google Scholar] [CrossRef]
- John, H.; Walden, M.; Schäfer, S.; Genz, S.; Forssmann, W.-G. Analytical Procedures for Quantification of Peptides in Pharmaceutical Research by Liquid Chromatography–Mass Spectrometry. Anal Bioanal Chem 2004, 378, 883–897. [Google Scholar] [CrossRef] [PubMed]
- Adermann, K.; John, H.; Ständker, L.; Forssmann, W.-G. Exploiting Natural Peptide Diversity: Novel Research Tools and Drug Leads. Current Opinion in Biotechnology 2004, 15, 599–606. [Google Scholar] [CrossRef]
- Allen, J.; Pellois, J.-P. Hydrophobicity Is a Key Determinant in the Activity of Arginine-Rich Cell Penetrating Peptides. Sci Rep 2022, 12, 15981. [Google Scholar] [CrossRef]
- Sunar, S.Z.; Acar, T.; Sahin, F. Chemically Peptide Synthesis and Role of Arginine and Lysine in the Antimicrobial and Antiviral Activity of Synthetic Peptides: A Comprehensive Review. 2024, 116. [CrossRef]
- Shatilov, A.A.; Shatilova, A.V.; Saprygina, L.V.; Babikhina, M.O.; Timotievich, E.D.; Kovchina, V.I.; Andreev, S.M.; Smirnov, V.V.; Kudlay, D.A.; Shilovsky, I.P.; et al. New synthetic antiviral peptides. Design, preparation, physicochemical analysis, and activity studies. Immunology 2024, 45, 162–170. [Google Scholar] [CrossRef]
- Dongré, A.R.; Jones, J.L.; Somogyi, Á.; Wysocki, V.H. Influence of Peptide Composition, Gas-Phase Basicity, and Chemical Modification on Fragmentation Efficiency: Evidence for the Mobile Proton Model. J. Am. Chem. Soc. 1996, 118, 8365–8374. [Google Scholar] [CrossRef]
- Yoshida, T. Peptide Separation by Hydrophilic-Interaction Chromatography: A Review. Journal of Biochemical and Biophysical Methods 2004, 60, 265–280. [Google Scholar] [CrossRef]
- Yeung, D.; Spicer, V.; Krokhin, O.V. Peptide Retention Time Prediction for Hydrophilic Interaction Liquid Chromatography at Acidic pH in Formic-Acid Based Eluents. Journal of Chromatography A 2024, 1736, 465355. [Google Scholar] [CrossRef]
- Yao, X. Derivatization or Not: A Choice in Quantitative Proteomics. Anal. Chem. 2011, 83, 4427–4439. [Google Scholar] [CrossRef] [PubMed]
- Qi, B.-L.; Liu, P.; Wang, Q.-Y.; Cai, W.-J.; Yuan, B.-F.; Feng, Y.-Q. Derivatization for Liquid Chromatography-Mass Spectrometry. TrAC Trends in Analytical Chemistry 2014, 59, 121–132. [Google Scholar] [CrossRef]
- Srinivas, N.R. New Thinking in the Development of Novel Derivatization Reagents for Liquid Chromatography-Mass Spectrometric Detection. Biomed Chromatogr 2009, 23, 107–108. [Google Scholar] [CrossRef]
- Timms, M.; Hall, N.; Levina, V.; Vine, J.; Steel, R. A High-throughput LC-MS/MS Screen for GHRP in Equine and Human Urine, Featuring Peptide Derivatization for Improved Chromatography. 2014, 6, 985–995. [CrossRef]
- Yang, J.Z.; Bastian, K.C.; Moore, R.D.; Stobaugh, J.F.; Borchardt, R.T. Quantitative Analysis of a Model Opioid Peptide and Its Cyclic Prodrugs in Rat Plasma Using High-Performance Liquid Chromatography with Fluorescence and Tandem Mass Spectrometric Detection. Journal of Chromatography B 2002, 780, 269–281. [Google Scholar] [CrossRef]
- Pan, G.; Wang, X.; Huang, Y.; Gao, X.; Wang, Y. Development and Validation of a LC–MS/MS Method for Determination of Bivalirudin in Human Plasma: Application to a Clinical Pharmacokinetic Study. Journal of Pharmaceutical and Biomedical Analysis 2010, 52, 105–109. [Google Scholar] [CrossRef]
- Hering, A.; Jieu, B.; Jones, A.; Muttenthaler, M. Approaches to Improve the Quantitation of Oxytocin in Human Serum by Mass Spectrometry. Front. Chem. 2022, 10. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, Z.; Wang, X.; Qiu, C. Sample Preparation. Journal of Chromatography A 2008, 1184, 191–219. [Google Scholar] [CrossRef] [PubMed]
- Ataullakhanov, R.I.; Holms, R.D.; Katlinskiĭ, A.V.; Deriabin, P.G.; Narovlianskiĭ, A.N.; Mezentseva, M.V.; Ershov, F.I. [Ani immunomodulator Hepon inhibits hepatitis C virus replication in human cell cultures in vitro]. Antibiot Khimioter 2002, 47, 9–11. [Google Scholar]
- Peptide Mass Calculator - Peptide Protein Research (PPR Ltd). Available online: https://www.peptidesynthetics.co.uk/tools/ (accessed on 8 April 2025).
- Gray, W.R. [12] Dansyl Chloride Procedure. In Methods in Enzymology; Enzyme Structure; Academic Press, 1967; Vol. 11, pp. 139–151.
- Theodoropoulos, D.; Gazopoulos, J. Peptide Synthesis. I. The Use of p-Toluenesulfonyl Chloride for Carboxyl Activation 1. J. Org. Chem. 1962, 27, 2091–2093. [Google Scholar] [CrossRef]
- Jullian, M.; Hernandez, A.; Maurras, A.; Puget, K.; Amblard, M.; Martinez, J.; Subra, G. N-Terminus FITC Labeling of Peptides on Solid Support: The Truth behind the Spacer. Tetrahedron Letters 2009, 50, 260–263. [Google Scholar] [CrossRef]
- Koller, M.; Eckert, H. Derivatization of Peptides for Their Determination by Chromatographic Methods. Analytica Chimica Acta 1997, 352, 31–59. [Google Scholar] [CrossRef]
- Chhanikar, P.T.; Gupta, K.R.; Umekar, M.J. Derivatizing Reagents for Detection of Organic Compounds By HPLC. Asian Journal of Applied Chemistry Research 2021, 9, 1–13. [Google Scholar] [CrossRef]
- El-Faham, A.; Albericio, F. Carpino’s Protecting Groups, beyond the Boc and the Fmoc. Peptide Science 2020, 112. [Google Scholar] [CrossRef]
- Gartenmann, K.; Kochhar, S. Short-Chain Peptide Analysis by High-Performance Liquid Chromatography Coupled to Electrospray Ionization Mass Spectrometer after Derivatization with 9-Fluorenylmethyl Chloroformate. J. Agric. Food Chem. 1999, 47, 5068–5071. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.K.; Ravi, R.; Maurya, I.K.; Kapadia, A.; Khan, S.I.; Kumar, V.; Tikoo, K.; Jain, R. Modified Histidine Containing Amphipathic Ultrashort Antifungal Peptide, His[2-p-(n-Butyl)Phenyl]-Trp-Arg-OMe Exhibits Potent Anticryptococcal Activity. European Journal of Medicinal Chemistry 2021, 223, 113635. [Google Scholar] [CrossRef]
- Nguyen, D.P.; Alai, M.M.G.; Virdee, S.; Chin, J.W. Genetically Directing Ɛ-N, N-Dimethyl-l-Lysine in Recombinant Histones. Chemistry & Biology 2010, 17, 1072–1076. [Google Scholar] [CrossRef]
- Sidoli, S.; Yuan, Z.-F.; Lin, S.; Karch, K.; Wang, X.; Bhanu, N.; Arnaudo, A.M.; Britton, L.-M.; Cao, X.-J.; Gonzales-Cope, M.; et al. Drawbacks in the Use of Unconventional Hydrophobic Anhydrides for Histone Derivatization in Bottom-up Proteomics PTM Analysis. Proteomics 2015, 15, 1459–1469. [Google Scholar] [CrossRef]
- van Faassen, M.; Bischoff, R.; Eijkelenkamp, K.; de Jong, W.H.A.; van der Ley, C.P.; Kema, I.P. In Matrix Derivatization Combined with LC-MS/MS Results in Ultrasensitive Quantification of Plasma Free Metanephrines and Catecholamines. Anal. Chem. 2020, 92, 9072–9078. [Google Scholar] [CrossRef]
- Garcia, B.A.; Mollah, S.; Ueberheide, B.M.; Busby, S.A.; Muratore, T.L.; Shabanowitz, J.; Hunt, D.F. Chemical Derivatization of Histones for Facilitated Analysis by Mass Spectrometry. Nat Protoc 2007, 2, 933–938. [Google Scholar] [CrossRef]
- Grundler, V.; Gademann, K. Direct Arginine Modification in Native Peptides and Application to Chemical Probe Development. ACS Med Chem Lett 2014, 5, 1290–1295. [Google Scholar] [CrossRef]
- Aydoğmuş, Z.; Sarı, F.; Ulu, S.T. Spectrofluorimetric Determination of Aliskiren in Tablets and Spiked Human Plasma through Derivatization with Dansyl Chloride. J Fluoresc 2012, 22, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Onisko, B.; Dynin, I.; Requena, J.R.; Silva, C.J.; Erickson, M.; Carter, J.M. Mass Spectrometric Detection of Attomole Amounts of the Prion Protein by nanoLC/MS/MS. J Am Soc Mass Spectrom 2007, 18, 1070–1079. [Google Scholar] [CrossRef] [PubMed]
- Kole, P.L.; Venkatesh, G.; Kotecha, J.; Sheshala, R. Recent Advances in Sample Preparation Techniques for Effective Bioanalytical Methods. Biomedical Chromatography 2011, 25, 199–217. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L. Sample Preparation for LC-MS Bioanalysis of Peptides. In Sample Preparation in LC-MS Bioanalysis; Li, W., Jian, W., Fu, Y., Eds.; Wiley, 2019; pp. 284–303. ISBN 978-1-119-27429-2.
- Chen, G.; Liu, H.; Wang, X.; Li, Z. In Vitro Methylation by Methanol: Proteomic Screening and Prevalence Investigation. Analytica Chimica Acta 2010, 661, 67–75. [Google Scholar] [CrossRef]
- Tokareva, M.A.; Melnikov, E.S.; Belova, M.V.; Fisher, E.N.; Rodina, T.A.; Shohin, I.E. HPLC-MS/MS method development and validation for the determination of tetradecapeptide in human plasma. Drug development & registration 2024, 13, 171–180. [Google Scholar] [CrossRef]
| n (H+) | m/z calculated | m/z obtained |
|---|---|---|
| 1 | 1818,0 | - |
| 2 | 909,5 | 909,6 |
| 3 | 606,7 | 607,1 |
| 4 | 455,3 | 455,5 |
| 5 | 364,4 | 364,6 |
| Derivatizing agent | Reaction condition | Derivative product mass spectra | Informative product ion scan | MRM developed | Controlled yield reaction | Applied in plasma | Achieved high sensetivity |
|---|---|---|---|---|---|---|---|
| Dansyl chloride | 50°C for 30 minutes in a carbonate buffer (pH 9) with a mixed solvent (water-acetonitrile, 1:1) | + | - | - | - | - | - |
| Tosyl chloride | + | + | + | - | - | - | |
| PITC | + | - | - | - | - | - | |
| Fmoc-OSu | room temperature in the dark for 30 minutes in triethylamine at pH 9 | + | + | + | - | - | - |
| Boc anhydride | + | + | + | - | - | - | |
| Cbz-OSu | + | + | + | - | - | - | |
| Benzoic anhydride | room temperature overnight | + | + | - | + | - | - |
| Propionic anhydride | 50°C for 30 minutes in a propionic acid solution | + | + | + | + | + | + |
| Stage | Precipitant | ||
|---|---|---|---|
| Methanol | Acetonitrile | 50% solution of TFA in water | |
| Derivatization in plasma | |||
| Preparation of the test sample | 10 µl of 1 TDP stock solution + 190 µl of intact blood plasma | 20 µl of 1 TDP stock solution + 380 µl of intact blood plasma | |
| Stirring | Vortex shaker, 10 seconds | ||
| Derivatization | 50 µl propionic anhydride→ stirring on a Vortex shaker, 10 seconds → ultrasonic bath, 50°C, 30 minutes | ||
| Addition of precipitant | 600 µl | 600 µl | 200 µl |
| Stirring | Vortex shaker, 10 seconds | ||
| Centrifugation | 15 min with relative centrifugal acceleration 15294 g | ||
| Derivatization in the supernatant after protein precipitation | |||
| Preparation of the test sample | 10 µl of 1 TDP stock solution + 190 µl of intact blood plasma | 20 µl of 1 TDP stock solution + 380 µl of intact blood plasma | |
| Stirring | Vortex shaker, 10 seconds | ||
| Addition of precipitant | 600 µl | 600 µl | 200 µl |
| Stirring | Vortex shaker, 10 seconds | ||
| Centrifugation | 15 min with relative centrifugal acceleration 15294 g | ||
| Derivatization | 50 µl propionic anhydride→ stirring on a Vortex shaker, 10 seconds → ultrasonic bath, 50°C, 30 minutes | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
