Submitted:

15 April 2025

Posted:

15 April 2025

You are already at the latest version

Abstract
Background/Objectives: Intracranial macroelectrode implantation is a pivotal clinical tool in the evaluation of drug-resistant epilepsy, allowing further insights into the localization of the epileptogenic zone and the delineation of eloquent cortical regions through cortical stimulation. Additionally, it provides an avenue to study brain functions by analyzing cerebral responses during neuropsychological paradigms. By combining macroelectrodes with microelectrodes, which allow to record the activity of individual neurons or smaller neural clusters, recordings could provide deeper insights into neuronal microcircuits and the brain’s transitions in epilepsy and contribute to a better understanding of neuropsychological functions. In this study, one or two hybrid macro-micro electrodes were implanted in the anterior-inferior insular region in patients with refractory epilepsy. We report our experience and share some preliminary results; we also provide some recommendations regarding the implantation procedure of hybrid electrodes in the insular cortex. Methods: Stereoelectroencephalography was performed in 13 patients, with one or two hybrid macro-microelectrodes positioned in the insular region in each patient. Research neuropsychological paradigms could not be done in two patients for clinical reasons. In total, 23 hybrid macro-microelectrodes with 8 microcontacts each were implanted, of which 20 were recorded. Spiking activity was detected and assessed using WaveClus3. Results: No spiking neural activity was detected in the microcontacts of the first 7 patients. After iterative refinement during this process, successful recordings were obtained from 13 microcontacts in the anterior-inferior insula in the last four patients (13/64, 20.3%). Hybrid electrode implantation was uneventful with no complications. Obstacles included the absence of spiking activity signals, unsuccessful microwire dispersion, and the interference of environmental electrical noise on recordings. Conclusions: Human microelectrode recording presents a complex array of challenges; yet it holds the potential to facilitate a more comprehensive understanding of individual neuronal attributes and their specific stimulus responses.
Keywords: 
;  ;  ;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

56

Views

35

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated