Submitted:
15 April 2025
Posted:
15 April 2025
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
| Paper | Year | ML | DL | Generative | LLM | Algorithm |
|---|---|---|---|---|---|---|
| [19] | 2009 | ✓ | ✗ | ✗ | ✗ | LDA |
| [18] | 2012 | ✓ | ✗ | ✗ | ✗ | SVM |
| [59] | 2019 | ✓ | ✗ | ✗ | ✗ | NLP |
| [33] | 2016 | ✗ | ✓ | ✗ | ✗ | CNN |
| [35] | 2020 | ✗ | ✓ | ✗ | ✗ | CNN |
| [39] | 2020 | ✗ | ✓ | ✗ | ✗ | ResNet-50 |
| [40] | 2020 | ✗ | ✓ | ✗ | ✗ | CNN-LSTM |
| [46] | 2020 | ✗ | ✓ | ✓ | ✗ | GAN |
| [60] | 2020 | ✓ | ✗ | ✗ | ✗ | NLP |
| [34] | 2021 | ✗ | ✓ | ✗ | ✗ | CNN |
| [37] | 2021 | ✗ | ✓ | ✗ | ✗ | ResNet |
| [38] | 2021 | ✗ | ✓ | ✗ | ✗ | ResNet |
| [42] | 2021 | ✗ | ✓ | ✗ | ✗ | U-Net |
| [47] | 2021 | ✗ | ✓ | ✓ | ✗ | GAN |
| [48] | 2021 | ✗ | ✓ | ✓ | ✗ | VAE |
| [50] | 2021 | ✗ | ✓ | ✓ | ✗ | CNN-Autoencoder |
| [56] | 2021 | ✓ | ✗ | ✗ | ✗ | RNN |
| [23] | 2021 | ✓ | ✗ | ✗ | ✗ | Reinforcement |
| [41] | 2021 | ✗ | ✓ | ✓ | ✗ | cGAN + Deep Transfer |
| [57] | 2022 | ✓ | ✗ | ✗ | ✗ | LSTM |
| [58] | 2022 | ✓ | ✗ | ✗ | ✗ | LSTM |
| [20] | 2022 | ✓ | ✗ | ✗ | ✗ | Advanced ML |
| [63] | 2022 | ✓ | ✗ | ✗ | ✓ | BERT-based |
| [62] | 2023 | ✗ | ✓ | ✗ | ✓ | BERT-based |
| [64] | 2023 | ✗ | ✓ | ✗ | ✓ | ChatGPT |
| [61] | 2024 | ✗ | ✓ | ✗ | ✓ | BERT |
| [49] | 2024 | ✗ | ✓ | ✓ | ✗ | Diffusion |
| [21] | 2025 | ✓ | ✗ | ✗ | ✗ | Hybrid ML |
2. Review Design
2.1. Search Strategy
2.2. Search Selection
3. Results
3.0.1. Coronavirus Disease 2019 (COVID-19)
Influenza (flu)
Human Immunodeficiency Virus (HIV) / Immunodeficiency Syndrome (AIDS)
Tuberculosis
| Paper | Year | ML | DL | Algorithm | Complexity | Scalability |
|---|---|---|---|---|---|---|
| [111] | 1990 | ✓ | ✗ | ANN | Low | Low |
| [113] | 1997 | ✓ | ✗ | DT, RF | Low–Med | Medium |
| [112] | 1999 | ✓ | ✗ | GRNN | Low | Low |
| [114] | 2011 | ✓ | ✗ | Feed-Forward ANN | Medium | Medium |
| [115] | 2017 | ✗ | ✓ | CNN | High | High |
| [116] | 2018 | ✗ | ✓ | Deep NN | High | High |
| [117] | 2022 | ✓ | ✗ | KNN, RF, NB, LDA, SVM | Medium | Medium |
Hepatitis
| Paper | Year | ML | DL | Algorithm | Complexity | Scalability |
|---|---|---|---|---|---|---|
| [125] | 2020 | ✗ | ✓ | LSTM | High | High |
| [127] | 2020 | ✓ | ✓ | ARIMA, SVM, LSTM | Medium | High |
| [123] | 2022 | ✓ | ✗ | SVM, SMOTE | Medium | Medium |
| [126] | 2022 | ✗ | ✓ | MLP | Medium | High |
| [124] | 2023 | ✓ | ✗ | SVM, RF, Naive Bayes, KNN | Medium | High |
| [121] | 2024 | ✓ | ✗ | Predictive Analytics, NLP, ML | High | High |
| [122] | 2024 | ✓ | ✗ | SVM, DT, LR, RF | Medium | Medium |
Strength and Limitations
Discussion
Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Organization, W.H.; et al. Global report on infection prevention and control; World Health Organization: Geneva, 2022; Organization, W.H.; et al. Global report on infection prevention and control; World Health Organization: Geneva, 2022.
- Baker, R.E.; Mahmud, A.S.; Miller, I.F.; Rajeev, M.; Rasambainarivo, F.; Rice, B.L.; Takahashi, S.; Tatem, A.J.; Wagner, C.E.; Wang, L.-F.; et al. Infectious disease in an era of global change. Nat. Rev. Microbiol. 2022, 20, 193–205. [CrossRef]
- Khabbaz, R.F.; Moseley, R.R.; Steiner, R.J.; Levitt, A.M.; Bell, B.P. Challenges of infectious diseases in the USA. Lancet 2014, 384, 53–63. [CrossRef]
- Santangelo, O.E.; Gentile, V.; Pizzo, S.; Giordano, D.; Cedrone, F. Machine Learning and Prediction of Infectious Diseases: A Systematic Review. Mach. Learn. Knowl. Extr. 2023, 5, 175–198. [CrossRef]
- Liu, M.; Liu, Y.; Liu, J. Machine Learning for Infectious Disease Risk Prediction: A Survey. ACM Comput. Surv. 2025. [CrossRef]
- Weng, Y.; Wu, J. Fortifying the Global Data Fortress: A Multidimensional Examination of Cyber Security Indexes and Data Protection Measures across 193 Nations. Int. J. Front. Eng. Technol. 2024, 6. [CrossRef]
- Lu, B.; Dan, H.C.; Zhang, Y.; Huang, Z. Journey into Automation: Image-Derived Pavement Texture Extraction and Evaluation. arXiv preprint arXiv:2501.02414, arXiv:2501.02414 2025.Lu, B.; Dan, H.C.; Zhang, Y.; Huang, Z. Journey into Automation: Image-Derived Pavement Texture Extraction and Evaluation. arXiv preprint arXiv:2501.02414 2025.
- Zhang, T.; Liu, X.; Guo, Z.; Tian, Y. Adaptive Music Recommendation: Applying Machine Learning Algorithms Using Low Computing Device. J. Softw. Eng. Appl. 2024, 17, 817–831. [CrossRef]
- Weng, Y.; Wu, J. Leveraging Artificial Intelligence to Enhance Data Security and Combat Cyber Attacks. J. Artif. Intell. Gen. Sci. (JAIGS) ISSN:3006-4023 2024, 5, 392–399. [CrossRef]
- Li, K.; Liu, L.; Chen, J.; Yu, D.; Zhou, X.; Li, M.; Wang, C.; Li, Z. Research on reinforcement learning based warehouse robot navigation algorithm in complex warehouse layout. In Proceedings of the 2024 6th International Conference on Artificial Intelligence and Computer Applications (ICAICA). IEEE; 2024; pp. 296–301.
- Zhao, Y.; Chen, P.; Cao, Z.; Wang, X. NoncovANM: Gridless DOA Estimation for LPDF System. IEEE Trans. Veh. Technol. 2023, 72, 15563–15573. [CrossRef]
- Indhumathi, K.; Kumar, K.S. Seasonal Infectious Disease Prediction based on Electronic Patient Health Records using Boosted Random Forest Algorithms. In Proceedings of the 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). IEEE; 2022; pp. 2025–2032.
- Nikhil, V.; Mary, S.A.S.A.; Natarajan, B.; Bajulunisha, A.; Anuradha, R.; Venkatraman, K. Revolutionizing Influenza A Detection in Humans: Unleashing the Power of XGBoost Classification. 2024 IEEE International Conference for Women in Innovation, Technology & Entrepreneurship (ICWITE). LOCATION OF CONFERENCE, IndiaDATE OF CONFERENCE; pp. 229–234.
- Shaban, W.M.; Rabie, A.H.; Saleh, A.I.; Abo-Elsoud, M. A new COVID-19 Patients Detection Strategy (CPDS) based on hybrid feature selection and enhanced KNN classifier. Knowledge-Based Syst. 2020, 205, 106270–106270. [CrossRef]
- Yoshikawa, H. Can naive Bayes classifier predict infection in a close contact of COVID-19? A comparative test for predictability of the predictive model and healthcare workers in Japan. J. Infect. Chemother. 2022, 28, 774–779. [CrossRef]
- Shaier, S.; Raissi, M.; Seshaiyer, P. Data-Driven Approaches for Predicting Spread of Infectious Diseases Through DINNs: Disease Informed Neural Networks. 2023, 9, 71–105–71–105. [CrossRef]
- Ramón, A.; Torres, A.M.; Milara, J.; Cascón, J.; Blasco, P.; Mateo, J. eXtreme Gradient Boosting-based method to classify patients with COVID-19. J. Investig. Med. 2022, 70, 1472–1480. [CrossRef]
- Sartakhti, J.S.; Zangooei, M.H.; Mozafari, K. Hepatitis disease diagnosis using a novel hybrid method based on support vector machine and simulated annealing (SVM-SA). Comput. Methods Programs Biomed. 2011, 108, 570–579. [CrossRef]
- Dogantekin, E.; Dogantekin, A.; Avci, D. Automatic hepatitis diagnosis system based on Linear Discriminant Analysis and Adaptive Network based on Fuzzy Inference System. Expert Syst. Appl. 2009, 36, 11282–11286. [CrossRef]
- Tang, J.; Qian, W.; Song, L.; Dong, X.; Li, L.; Bai, X. Optimal boxes: boosting end-to-end scene text recognition by adjusting annotated bounding boxes via reinforcement learning. In Proceedings of the European Conference on Computer Vision. Springer; 2022; pp. 233–248.
- Mao, Y.; Tao, D.; Zhang, S.; Qi, T.; Li, K. Research and Design on Intelligent Recognition of Unordered Targets for Robots Based on Reinforcement Learning. arXiv preprint arXiv:2503.07340, arXiv:2503.07340 2025.Mao, Y.; Tao, D.; Zhang, S.; Qi, T.; Li, K. Research and Design on Intelligent Recognition of Unordered Targets for Robots Based on Reinforcement Learning. arXiv preprint arXiv:2503.07340 2025.
- Zhong, J.; Wang, Y. Enhancing Thyroid Disease Prediction Using Machine Learning: A Comparative Study of Ensemble Models and Class Balancing Techniques 2025. Zhong, J.; Wang, Y. Enhancing Thyroid Disease Prediction Using Machine Learning: A Comparative Study of Ensemble Models and Class Balancing Techniques 2025.
- Wan, R.; Zhang, X.; Song, R. Multi-objective model-based reinforcement learning for infectious disease control. In Proceedings of the Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & Wan, R.; Zhang, X.; Song, R. Multi-objective model-based reinforcement learning for infectious disease control. In Proceedings of the Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining, 2021, pp. 1634–1644.
- Mishra, S.; Kumar, R.; Tiwari, S.K.; Ranjan, P. Machine learning approaches in the diagnosis of infectious diseases: a review. Bull. Electr. Eng. Informatics 2022, 11, 3509–3520. [CrossRef]
- Li, X.; Mohammed, R.; Mangin, T.; Saha, S.; Kelly, K.; Whitaker, R.; Tasdizen, T. Joint audio-visual idling vehicle detection with streamlined input dependencies. In Proceedings of the Proceedings of the Winter Conference on Applications of Computer Vision, 2025, pp.; Li, X.; Mohammed, R.; Mangin, T.; Saha, S.; Kelly, K.; Whitaker, R.; Tasdizen, T. Joint audio-visual idling vehicle detection with streamlined input dependencies. In Proceedings of the Proceedings of the Winter Conference on Applications of Computer Vision, 2025, pp. 885–894.
- Lu, Z.; Lu, B.; Wang, F. CausalSR: Structural Causal Model-Driven Super-Resolution with Counterfactual Inference. arXiv preprint arXiv:2501.15852, arXiv:2501.15852 2025.Lu, Z.; Lu, B.; Wang, F. CausalSR: Structural Causal Model-Driven Super-Resolution with Counterfactual Inference. arXiv preprint arXiv:2501.15852 2025.
- Dan, H.-C.; Lu, B.; Li, M. Evaluation of asphalt pavement texture using multiview stereo reconstruction based on deep learning. Constr. Build. Mater. 2024, 412. [CrossRef]
- Li, X.; Mangin, T.; Saha, S.; Mohammed, R.; Blanchard, E.; Tang, D.; Poppe, H.; Choi, O.; Kelly, K.; Whitaker, R. Real-time idling vehicles detection using combined audio-visual deep learning. In Emerging Cutting-Edge Developments in Intelligent Traffic and Transportation Systems; IOS Press, 2024; pp. 142–158. Li, X.; Mangin, T.; Saha, S.; Mohammed, R.; Blanchard, E.; Tang, D.; Poppe, H.; Choi, O.; Kelly, K.; Whitaker, R. Real-time idling vehicles detection using combined audio-visual deep learning. In Emerging Cutting-Edge Developments in Intelligent Traffic and Transportation Systems; IOS Press, 2024; pp. 142–158.
- Dan, H.-C.; Huang, Z.; Lu, B.; Li, M. Image-driven prediction system: Automatic extraction of aggregate gradation of pavement core samples integrating deep learning and interactive image processing framework. Constr. Build. Mater. 2024, 453. [CrossRef]
- Zhao, Y.; Chen, P.; Cao, Z. NFLnet: A Deep Neural Network-Based Localization Method for Near-Field Vehicles. IEEE Trans. Instrum. Meas. 2024, 73, 1–12. [CrossRef]
- Li, Z.; Qiu, S.; Ke, Z. Revolutionizing Drug Discovery: Integrating Spatial Transcriptomics with Advanced Computer Vision Techniques. In Proceedings of the 1st CVPR Workshop on Computer Vision For Drug Discovery (CVDD): Where are we and What is Beyond?
- Weng, Y.; Wu, J.; Kelly, T.; Johnson, W. Comprehensive overview of artificial intelligence applications in modern industries. arXiv preprint arXiv:2409.13059, arXiv:2409.13059 2024.Weng, Y.; Wu, J.; Kelly, T.; Johnson, W. Comprehensive overview of artificial intelligence applications in modern industries. arXiv preprint arXiv:2409.13059 2024.
- Liang, Z.; Powell, A.; Ersoy, I.; Poostchi, M.; Silamut, K.; Palaniappan, K.; Guo, P.; Hossain, M.A.; Sameer, A.; Maude, R.J.; et al. CNN-based image analysis for malaria diagnosis. In Proceedings of the 2016 IEEE international conference on bioinformatics and biomedicine (BIBM). IEEE; 2016; pp. 493–496.
- Hira, S.; Bai, A.; Hira, S. An automatic approach based on CNN architecture to detect Covid-19 disease from chest X-ray images. Applied Intelligence 2021, 51, 2864–2889.
- Bukhari, S.U.K.; Bukhari, S.S.K.; Syed, A.; Shah, S.S.H. The diagnostic evaluation of Convolutional Neural Network (CNN) for the assessment of chest X-ray of patients infected with COVID-19. MedRxiv, 2020; Bukhari, S.U.K.; Bukhari, S.S.K.; Syed, A.; Shah, S.S.H. The diagnostic evaluation of Convolutional Neural Network (CNN) for the assessment of chest X-ray of patients infected with COVID-19. MedRxiv 2020, pp. 2020–03.
- Demir, F. DeepCoroNet: A deep LSTM approach for automated detection of COVID-19 cases from chest X-ray images. Appl. Soft Comput. 2021, 103, 107160–107160. [CrossRef]
- Showkat, S.; Qureshi, S. Efficacy of Transfer Learning-based ResNet models in Chest X-ray image classification for detecting COVID-19 Pneumonia. Chemom. Intell. Lab. Syst. 2022, 224, 104534–104534. [CrossRef]
- Bharati, S.; Podder, P.; Mondal, M.R.H.; Prasath, V.S. CO-ResNet: Optimized ResNet model for COVID-19 diagnosis from X-ray images. Int. J. Hybrid Intell. Syst. 2021, 17, 71–85. [CrossRef]
- Farooq, M.; Hafeez, A. Covid-resnet: A deep learning framework for screening of covid19 from radiographs. arXiv preprint arXiv:2003.14395, arXiv:2003.14395 2020.Farooq, M.; Hafeez, A. Covid-resnet: A deep learning framework for screening of covid19 from radiographs. arXiv preprint arXiv:2003.14395 2020.
- Islam, Z.; Islam, M.; Asraf, A. A combined deep CNN-LSTM network for the detection of novel coronavirus (COVID-19) using X-ray images. Informatics Med. Unlocked 2020, 20, 100412–100412. [CrossRef]
- Mehta, T.; Mehendale, N. Classification of X-ray images into COVID-19, pneumonia, and TB using cGAN and fine-tuned deep transfer learning models. Res. Biomed. Eng. 2021, 37, 803–813. [CrossRef]
- Kalane, P.; Patil, S.; Patil, B.; Sharma, D.P. Automatic detection of COVID-19 disease using U-Net architecture based fully convolutional network. Biomed. Signal Process. Control. 2021, 67, 102518–102518. [CrossRef]
- Yu, Q.; Ke, Z.; Xiong, G.; Cheng, Y.; Guo, X. Identifying money laundering risks in digital asset transactions based on ai algorithms. In Proceedings of the 2024 4th International Conference on Electronic Information Engineering and Computer Communication (EIECC). IEEE; 2024; pp. 1081–1085.
- Ke, Z.; Zhou, S.; Zhou, Y.; Chang, C.H.; Zhang, R. Detection of ai deepfake and fraud in online payments using gan-based models. arXiv preprint arXiv:2501.07033, arXiv:2501.07033 2025.Ke, Z.; Zhou, S.; Zhou, Y.; Chang, C.H.; Zhang, R. Detection of ai deepfake and fraud in online payments using gan-based models. arXiv preprint arXiv:2501.07033 2025.
- Zhao, Y.; Chen, P.; Sun, M.; Luo, T.; Cao, Z. RIS-Aided Sensing System With Localization Function: Fundamental and Practical Design. IEEE Sensors J. 2023, 24, 506–514. [CrossRef]
- Albahli, S. Efficient GAN-based Chest Radiographs (CXR) augmentation to diagnose coronavirus disease pneumonia. Int. J. Med Sci. 2020, 17, 1439–1448. [CrossRef]
- Motamed, S.; Rogalla, P.; Khalvati, F. RANDGAN: Randomized generative adversarial network for detection of COVID-19 in chest X-ray. Sci. Rep. 2021, 11, 1–10. [CrossRef]
- Mansour, R.F.; Escorcia-Gutierrez, J.; Gamarra, M.; Gupta, D.; Castillo, O.; Kumar, S. Unsupervised Deep Learning based Variational Autoencoder Model for COVID-19 Diagnosis and Classification. Pattern Recognit. Lett. 2021, 151, 267–274. [CrossRef]
- Centres, P.; Perez-Morelo, D.; Guzman, R.; Reinaudi, L.; Gimenez, M. Diffusion model for the spread of infectious diseases: SIR model with mobile agents. Phys. A: Stat. Mech. its Appl. 2023, 633. [CrossRef]
- Hanafi, H.; Pranolo, A.; Mao, Y. CAE-COVIDX: automatic covid-19 disease detection based on x-ray images using enhanced deep convolutional and autoencoder. Int. J. Adv. Intell. Informatics 2021, 7, 49. [CrossRef]
- Tang, J.; Zhang, W.; Liu, H.; Yang, M.; Jiang, B.; Hu, G.; Bai, X. Few could be better than all: Feature sampling and grouping for scene text detection. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp.; Tang, J.; Zhang, W.; Liu, H.; Yang, M.; Jiang, B.; Hu, G.; Bai, X. Few could be better than all: Feature sampling and grouping for scene text detection. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 4563–4572.
- Zhao, Z.; Tang, J.; Lin, C.; Wu, B.; Huang, C.; Liu, H.; Tan, X.; Zhang, Z.; Xie, Y. Multi-modal in-context learning makes an ego-evolving scene text recognizer. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024, pp.; Zhao, Z.; Tang, J.; Lin, C.; Wu, B.; Huang, C.; Liu, H.; Tan, X.; Zhang, Z.; Xie, Y. Multi-modal in-context learning makes an ego-evolving scene text recognizer. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024, pp. 15567–15576.
- You, W.; Hooi, B.; Wang, Y.; Wang, Y.; Ke, Z.; Yang, M.H.; Huang, Z.; Cai, Y. MIRAGE: Multimodal Immersive Reasoning and Guided Exploration for Red-Team Jailbreak Attacks. arXiv preprint arXiv:2503.19134, arXiv:2503.19134 2025.You, W.; Hooi, B.; Wang, Y.; Wang, Y.; Ke, Z.; Yang, M.H.; Huang, Z.; Cai, Y. MIRAGE: Multimodal Immersive Reasoning and Guided Exploration for Red-Team Jailbreak Attacks. arXiv preprint arXiv:2503.19134 2025.
- Tang, J.; Liu, Q.; Ye, Y.; Lu, J.; Wei, S.; Lin, C.; Li, W.; Mahmood, M.F.F.B.; Feng, H.; Zhao, Z.; et al. Mtvqa: Benchmarking multilingual text-centric visual question answering. arXiv preprint arXiv:2405.11985, arXiv:2405.11985 2024.Tang, J.; Liu, Q.; Ye, Y.; Lu, J.; Wei, S.; Lin, C.; Li, W.; Mahmood, M.F.F.B.; Feng, H.; Zhao, Z.; et al. Mtvqa: Benchmarking multilingual text-centric visual question answering. arXiv preprint arXiv:2405.11985 2024.
- Zhao, Z.; Tang, J.; Wu, B.; Lin, C.; Wei, S.; Liu, H.; Tan, X.; Zhang, Z.; Huang, C.; Xie, Y. Harmonizing visual text comprehension and generation. arXiv preprint arXiv:2407.16364, arXiv:2407.16364 2024.Zhao, Z.; Tang, J.; Wu, B.; Lin, C.; Wei, S.; Liu, H.; Tan, X.; Zhang, Z.; Huang, C.; Xie, Y. Harmonizing visual text comprehension and generation. arXiv preprint arXiv:2407.16364 2024.
- Puleio, A. Recurrent neural network ensemble, a new instrument for the prediction of infectious diseases. Eur. Phys. J. Plus 2021, 136, 1–15. [CrossRef]
- Absar, N.; Uddin, N.; Khandaker, M.U.; Ullah, H. The efficacy of deep learning based LSTM model in forecasting the outbreak of contagious diseases. Infect. Dis. Model. 2021, 7, 170–183. [CrossRef]
- Chandra, R.; Jain, A.; Chauhan, D.S. Deep learning via LSTM models for COVID-19 infection forecasting in India. PLOS ONE 2022, 17, e0262708. [CrossRef]
- Erraguntla, M.; Zapletal, J.; Lawley, M. Framework for Infectious Disease Analysis: A comprehensive and integrative multi-modeling approach to disease prediction and management. Heal. Informatics J. 2017, 25, 1170–1187. [CrossRef]
- Kim, M.; Chae, K.; Lee, S.; Jang, H.-J.; Kim, S. Automated Classification of Online Sources for Infectious Disease Occurrences Using Machine-Learning-Based Natural Language Processing Approaches. Int. J. Environ. Res. Public Heal. 2020, 17, 9467. [CrossRef]
- Barman, R.; Rajamohan, K. Detecting Infectious Disease Based on Social Media Data Using BERT Model. In Proceedings of the 2024 IEEE International Conference on Contemporary Computing and Communications (InC4). IEEE, Vol. 1; 2024; pp. 1–6.
- Su, M.; Cheng, D.; Xu, Y.; Weng, F. An improved BERT method for the evolution of network public opinion of major infectious diseases: Case Study of COVID-19. Expert Syst. Appl. 2023, 233. [CrossRef]
- Agarwal, K.; Choudhury, S.; Tipirneni, S.; Mukherjee, P.; Ham, C.; Tamang, S.; Baker, M.; Tang, S.; Kocaman, V.; Gevaert, O.; et al. Preparing for the next pandemic via transfer learning from existing diseases with hierarchical multi-modal BERT: a study on COVID-19 outcome prediction. Sci. Rep. 2022, 12, 1–13. [CrossRef]
- Cheng, K.; Li, Z.; He, Y.; Guo, Q.; Lu, Y.; Gu, S.; Wu, H. Potential Use of Artificial Intelligence in Infectious Disease: Take ChatGPT as an Example. Ann. Biomed. Eng. 2023, 51, 1130–1135. [CrossRef]
- Adams, D.A. Summary of Notifiable Infectious Diseases and Conditions — United States, 2014. MMWR. Morbidity and Mortality Weekly Report 2016, 63.
- Zhao, C.; Wu, Z.; Pan, B.; Zhang, R.; Golestani, A.; Feng, Z.; Ge, Y.; Yang, H. Functional biomacromolecules-based microneedle patch for the treatment of diabetic wound. Int. J. Biol. Macromol. 2024, 267, 131650. [CrossRef]
- Lu, Y.; Wu, C.-T.; Parker, S.J.; Cheng, Z.; Saylor, G.; E Van Eyk, J.; Yu, G.; Clarke, R.; Herrington, D.M.; Wang, Y. COT: an efficient and accurate method for detecting marker genes among many subtypes. Bioinform. Adv. 2022, 2, vbac037. [CrossRef]
- Zhao, C.; Pan, B.; Wang, T.; Yang, H.; Vance, D.; Li, X.; Zhao, H.; Hu, X.; Yang, T.; Chen, Z.; et al. Advances in NIR-Responsive Natural Macromolecular Hydrogel Assembly Drugs for Cancer Treatment. Pharmaceutics 2023, 15, 2729. [CrossRef]
- Chen, L.; Lu, Y.; Wu, C.-T.; Clarke, R.; Yu, G.; Van Eyk, J.E.; Herrington, D.M.; Wang, Y. Data-driven detection of subtype-specific differentially expressed genes. Sci. Rep. 2021, 11, 1–12. [CrossRef]
- Zhao, C.; Feng, M.; Gluchman, M.; Ma, X.; Li, J.; Wang, H. Acellular fish skin grafts in the treatment of diabetic wounds: Advantages and clinical translation. J. Diabetes 2024, 16, e13554. [CrossRef]
- Du, D.; Bhardwaj, S.; Lu, Y.; Wang, Y.; Parker, S.J.; Zhang, Z.; Van Eyk, J.E.; Yu, G.; Clarke, R.; Herrington, D.M.; et al. Embracing the informative missingness and silent gene in analyzing biologically diverse samples. Sci. Rep. 2024, 14, 1–11. [CrossRef]
- Nguyen, L.T.; Hains, A.E.; Aziz-Zanjani, M.O.; Dalsass, M.; Farooqee, S.B.; Lu, Y.; Jackson, P.K.; Van Rechem, C. Absence of SMARCB1 in rhabdoid tumor cells increases sensitivity to translation inhibition and alters translation efficiency of specific mRNAs. J. Biol. Chem. 2024, 300, 107988. [CrossRef]
- Zhao, C.; Zhang, R.; Yang, H.; Gao, Y.; Zou, Y.; Zhang, X. Antibody-drug conjugates for non-small cell lung cancer: Advantages and challenges in clinical translation. Biochem. Pharmacol. 2024, 226, 116378. [CrossRef]
- Parker, S.; Mao, C.; Wang, Y.; Seals, A.; Kim, D.-K.; Lu, Y.; Bhardwaj, S.; Du, D.; Karere, G.; Caudell, D.; et al. Abstract 4139230: Mapping the Molecular Progression of Human Coronary Atherosclerosis Confirms Key Role of Smooth Muscle Cell Phenotype and Highlights Novel Regulators of Phenotypic Fate. Circulation 2024, 150. [CrossRef]
- Zhao, C.; Fan, Z.; Zhang, R.; Sun, Y.; Li, W. The Role of the Major Histocompatibility Complex Region on Chromosome 6 in Skin Atrophy: A Mendelian Randomization Study. J. Cosmet. Dermatol. 2025, 24, e70040. [CrossRef]
- Yang, J.; Zhang, N.; Luo, T.; Yang, M.; Shen, W.; Tan, Z.; Xia, Y.; Zhang, L.; Zhou, X.; Lei, Q.; et al. TCellSI: A novel method for T cell state assessment and its applications in immune environment prediction. iMeta 2024, 3, e231. [CrossRef]
- World Health Organization. Coronavirus disease (COVID-19), 2020. Accessed: , 2025. 7 February; World Health Organization. Coronavirus disease (COVID-19), 2020. Accessed: February 7, 2025.
- Rothan, H.A.; Byrareddy, S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun. 2020, 109, 102433–102433. [CrossRef]
- World Health Organization. WHO Coronavirus (COVID-19) Dashboard: Death Toll, 2025. Accessed: , 2025. 7 February; World Health Organization. WHO Coronavirus (COVID-19) Dashboard: Death Toll, 2025. Accessed: February 7, 2025.
- Mathieu, E.; Ritchie, H.; Rodés-Guirao, L.; Appel, C.; Gavrilov, D.; Giattino, C.; Hasell, J.; Macdonald, B.; Dattani, S.; Beltekian, D.; et al. COVID-19 Pandemic. Our World in Data, Mathieu, E.; Ritchie, H.; Rodés-Guirao, L.; Appel, C.; Gavrilov, D.; Giattino, C.; Hasell, J.; Macdonald, B.; Dattani, S.; Beltekian, D.; et al. COVID-19 Pandemic. Our World in Data 2020. https://ourworldindata.org/coronavirus.
- Santosh, K.C. COVID-19 Prediction Models and Unexploited Data. J. Med Syst. 2020, 44, 1–4. [CrossRef]
- Moulaei, K.; Shanbehzadeh, M.; Mohammadi-Taghiabad, Z.; Kazemi-Arpanahi, H. Comparing machine learning algorithms for predicting COVID-19 mortality. BMC Med Informatics Decis. Mak. 2022, 22, 1–12. [CrossRef]
- Arpaci, I.; Huang, S.; Al-Emran, M.; Al-Kabi, M.N.; Peng, M. Predicting the COVID-19 infection with fourteen clinical features using machine learning classification algorithms. Multimedia Tools Appl. 2021, 80, 11943–11957. [CrossRef]
- Ardabili, S.F.; Mosavi, A.; Ghamisi, P.; Ferdinand, F.; Varkonyi-Koczy, A.R.; Reuter, U.; Rabczuk, T.; Atkinson, P.M. COVID-19 Outbreak Prediction with Machine Learning. Algorithms 2020, 13, 249. [CrossRef]
- Pinter, G.; Felde, I.; Mosavi, A.; Ghamisi, P.; Gloaguen, R. COVID-19 Pandemic Prediction for Hungary; A Hybrid Machine Learning Approach. Mathematics 2020, 8, 890. [CrossRef]
- Dairi, A.; Harrou, F.; Zeroual, A.; Hittawe, M.M.; Sun, Y. Comparative study of machine learning methods for COVID-19 transmission forecasting. J. Biomed. Informatics 2021, 118, 103791–103791. [CrossRef]
- World Health Organization. Influenza (Seasonal), 2023. Accessed: , 2025. 7 February; World Health Organization. Influenza (Seasonal), 2023. Accessed: February 7, 2025.
- Centers for Disease Control and Prevention. Influenza (Flu) Burden in the U.S., 2023. Accessed: , 2025. 7 February; Centers for Disease Control and Prevention. Influenza (Flu) Burden in the U.S., 2023. Accessed: February 7, 2025.
- Alessa, A.; Faezipour, M. Flu Outbreak Prediction Using Twitter Posts Classification and Linear Regression With Historical Centers for Disease Control and Prevention Reports: Prediction Framework Study. JMIR Public Heal. Surveill. 2019, 5, e12383–120. [CrossRef]
- Khan, M.A.; Abidi, W.U.H.; Alyas, S.S.T.; Khan, K.M.; Al Ghamdi, M.A.; Mahmood, N. Forecast the Influenza Pandemic Using Machine Learning. Comput. Mater. Contin. 2020, 66, 331–340. [CrossRef]
- Zhang, J.; Nawata, K. A comparative study on predicting influenza outbreaks. Biosci. Trends 2017, 11, 533–541. [CrossRef]
- Allen, C.; Tsou, M.-H.; Aslam, A.; Nagel, A.; Gawron, J.-M. Applying GIS and Machine Learning Methods to Twitter Data for Multiscale Surveillance of Influenza. PLOS ONE 2016, 11, e0157734. [CrossRef]
- Amin, S.; Uddin, M.I.; Alsaeed, D.H.; Khan, A.; Adnan, M. Early Detection of Seasonal Outbreaks from Twitter Data Using Machine Learning Approaches. Complexity 2021, 2021. [CrossRef]
- World Health Organization. Influenza A (H1N1) outbreak, 2009. Accessed: , 2025. 7 February; World Health Organization. Influenza A (H1N1) outbreak, 2009. Accessed: February 7, 2025.
- Inampudi, S.; Johnson, G.; Jhaveri, J.; Niranjan, S.; Chaurasia, K.; Dixit, M. Machine learning based prediction of h1n1 and seasonal flu vaccination. In Proceedings of the Advanced Computing: 10th International Conference, IACC 2020, Panaji, Goa, India, 2020, Revised Selected Papers, Part I 10. Springer, 2021, December 5–6; pp. 139–150.
- Ayachit, S.S.; Kumar, T.; Deshpande, S.; Sharma, N.; Chaurasia, K.; Dixit, M. Predicting H1N1 and Seasonal Flu : Vaccine Cases using Ensemble Learning approach. 2020 2nd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN). LOCATION OF CONFERENCE, IndiaDATE OF CONFERENCE; pp. 172–176.
- World Health Organization. HIV/AIDS 2024. Accessed: , 2025. 5 February; World Health Organization. HIV/AIDS 2024. Accessed: February 5, 2025.
- World Health Organization. HIV/AIDS Key Facts, 2024. Accessed: , 2025. 11 February; World Health Organization. HIV/AIDS Key Facts, 2024. Accessed: February 11, 2025.
- Centers for Disease Control and Prevention. HIV Diagnoses, Deaths, and Prevalence, 2023. Accessed: , 2025. 11 February; Centers for Disease Control and Prevention. HIV Diagnoses, Deaths, and Prevalence, 2023. Accessed: February 11, 2025.
- Wang, B.; Liu, F.; Deveaux, L.; Ash, A.; Gosh, S.; Li, X.; Rundensteiner, E.; Cottrell, L.; Adderley, R.; Stanton, B. Adolescent HIV-related behavioural prediction using machine learning: a foundation for precision HIV prevention. AIDS 2021, 35, S75–S84. [CrossRef]
- Pan, Y.; Liu, H.; Metsch, L.R.; Feaster, D.J. Factors Associated with HIV Testing Among Participants from Substance Use Disorder Treatment Programs in the US: A Machine Learning Approach. AIDS Behav. 2016, 21, 534–546. [CrossRef]
- Nisa, S.U.; Mahmood, A.; Ujager, F.S.; Malik, M. HIV/AIDS predictive model using random forest based on socio-demographical, biological and behavioral data. Egypt. Informatics J. 2022, 24, 107–115. [CrossRef]
- Centers for Disease Control and Prevention. HIV Surveillance Report, 2020 2022. Accessed: 2025-02-11. Centers for Disease Control and Prevention. HIV Surveillance Report, 2020 2022. Accessed: 2025-02-11.
- Bao, Y.; Medland, N.A.; Fairley, C.K.; Wu, J.; Shang, X.; Chow, E.P.; Xu, X.; Ge, Z.; Zhuang, X.; Zhang, L. Predicting the diagnosis of HIV and sexually transmitted infections among men who have sex with men using machine learning approaches. J. Infect. 2021, 82, 48–59. [CrossRef]
- Chingombe, I.; Dzinamarira, T.; Cuadros, D.; Mapingure, M.P.; Mbunge, E.; Chaputsira, S.; Madziva, R.; Chiurunge, P.; Samba, C.; Herrera, H.; et al. Predicting HIV status among men who have sex with men in Bulawayo & Harare, Zimbabwe using bio-behavioural data, recurrent neural networks, and machine learning techniques. Tropical Medicine and Infectious Disease 2022, 7, 231.
- Turbé, V.; Herbst, C.; Mngomezulu, T.; Meshkinfamfard, S.; Dlamini, N.; Mhlongo, T.; Smit, T.; Cherepanova, V.; Shimada, K.; Budd, J.; et al. Deep learning of HIV field-based rapid tests. Nat. Med. 2021, 27, 1165–1170. [CrossRef]
- Wang, G.; Wei, W.; Jiang, J.; Ning, C.; Chen, H.; Huang, J.; Liang, B.; Zang, N.; Liao, Y.; Chen, R.; et al. Application of a long short-term memory neural network: a burgeoning method of deep learning in forecasting HIV incidence in Guangxi, China. Epidemiology Infect. 2019, 147, e194. [CrossRef]
- Bhirud, P.; Joshi, A.; Hirani, N.; Chowdhary, A. Rapid laboratory diagnosis of pulmonary tuberculosis. Int. J. Mycobacteriology 2017, 6, 296–301. [CrossRef]
- Singh, M.; Pujar, G.V.; Kumar, S.A.; Bhagyalalitha, M.; Akshatha, H.S.; Abuhaija, B.; Alsoud, A.R.; Abualigah, L.; Beeraka, N.M.; Gandomi, A.H. Evolution of Machine Learning in Tuberculosis Diagnosis: A Review of Deep Learning-Based Medical Applications. Electronics 2022, 11, 2634. [CrossRef]
- Rabehi, A.; Kumar, P. Improving tuberculosis diagnosis and forecasting through machine learning techniques: A systematic review. Metaheuristic Optim. Rev. 2024, 1, 35–44.
- Asada, N.; Doi, K.; MacMahon, H.; Montner, S.M.; Giger, M.L.; Abe, C.; Wu, Y. Potential usefulness of an artificial neural network for differential diagnosis of interstitial lung diseases: pilot study.. Radiology 1990, 177, 857–860. [CrossRef]
- El-Solh, A.A.; Hsiao, C.-B.; Goodnough, S.; Serghani, J.; Grant, B.J. Predicting Active Pulmonary Tuberculosis Using an Artificial Neural Network. Chest 1999, 116, 968–973. [CrossRef]
- El-Solh, A.; Mylotte, J.; Sherif, S.; Serghani, J.; Grant, B.J. Validity of a decision tree for predicting active pulmonary tuberculosis.. Am. J. Respir. Crit. Care Med. 1997, 155, 1711–1716. [CrossRef]
- Elveren, E.; Yumuşak, N. Tuberculosis Disease Diagnosis Using Artificial Neural Network Trained with Genetic Algorithm. J. Med Syst. 2009, 35, 329–332. [CrossRef]
- Hooda, R.; Sofat, S.; Kaur, S.; Mittal, A.; Meriaudeau, F. Deep-learning: A potential method for tuberculosis detection using chest radiography. In Proceedings of the 2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA); 2017; pp. 497–502.
- Kant, S.; Srivastava, M.M. Towards Automated Tuberculosis detection using Deep Learning. In Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence (SSCI); 2018; pp. 1250–1253.
- Hrizi, O.; Gasmi, K.; Ben Ltaifa, I.; Alshammari, H.; Karamti, H.; Krichen, M.; Ben Ammar, L.; Mahmood, M.A. Tuberculosis Disease Diagnosis Based on an Optimized Machine Learning Model. J. Heal. Eng. 2022, 2022, 1–13. [CrossRef]
- Hansun, S.; Argha, A.; Liaw, S.-T.; Celler, B.G.; Marks, G.B. Machine and Deep Learning for Tuberculosis Detection on Chest X-Rays: Systematic Literature Review. J. Med Internet Res. 2023, 25, e43154. [CrossRef]
- Ramrakhiani, N.S.; Chen, V.L.; Le, M.; Yeo, Y.H.; Barnett, S.D.; Waljee, A.K.; Zhu, J.; Nguyen, M.H. Optimizing hepatitis B virus screening in the United States using a simple demographics-based model. Hepatology 2021, 75, 430–437. [CrossRef]
- Saleem, H. Hepatitis Diagnosis: A Comprehensive Review of Machine Learning Classification Algorithms. Indones. J. Comput. Sci. 2024, 13. [CrossRef]
- Ali, G.; Mijwil, M.M.; Adamopoulos, I.; Buruga, B.A.; Gök, M.; Sallam, M. Harnessing the Potential of Artificial Intelligence in Managing Viral Hepatitis. Mesopotamian J. Big Data 2024, 2024, 128–163. [CrossRef]
- Bharathi, P.T.; Bindu, S.N.; Deepthi, S.G.; Gunakeerthi, H.U.; Harshitha, K.U. AI based solution for Predicting Hepatitis C Virus from Blood Samples. In Proceedings of the 2024 International Conference on Smart Systems for applications in Electrical Sciences (ICSSES); 2024; pp. 1–6.
- Yağanoğlu, M. Hepatitis C virus data analysis and prediction using machine learning. Data Knowl. Eng. 2022, 142. [CrossRef]
- Harabor, V.; Mogos, R.; Nechita, A.; Adam, A.-M.; Adam, G.; Melinte-Popescu, A.-S.; Melinte-Popescu, M.; Stuparu-Cretu, M.; Vasilache, I.-A.; Mihalceanu, E.; et al. Machine Learning Approaches for the Prediction of Hepatitis B and C Seropositivity. Int. J. Environ. Res. Public Heal. 2023, 20, 2380. [CrossRef]
- Wang, X.; Tian, S.; Yu, L.; Lv, X.; Zhang, Z. Rapid screening of hepatitis B using Raman spectroscopy and long short-term memory neural network. Lasers Med Sci. 2020, 35, 1791–1799. [CrossRef]
- Chen, L.; Ji, P.; Ma, Y. Machine Learning Model for Hepatitis C Diagnosis Customized to Each Patient. IEEE Access 2022, 10, 106655–106672. [CrossRef]
- Guo, Y.; Feng, Y.; Qu, F.; Zhang, L.; Yan, B.; Lv, J. Prediction of hepatitis E using machine learning models. PLOS ONE 2020, 15, e0237750. [CrossRef]
| Paper | Year | ML | DL | Algorithm | Complexity | Scalability |
|---|---|---|---|---|---|---|
| [81] | 2020 | ✓ | ✗ | SEIR, SIR, ABM, CF | Low–Med | High |
| [84] | 2020 | ✓ | ✗ | MLP, ANFIS | Medium | Medium |
| [85] | 2020 | ✓ | ✗ | MLP-ICA, ANFIS | Med–High | Medium |
| [83] | 2021 | ✓ | ✗ | BayesNet, IBk, J48 | Low–Med | Medium |
| [86] | 2021 | ✓ | ✓ | LSTM-CNN, GAN-GRU | High | High |
| [82] | 2022 | ✓ | ✗ | J48, XGBoost, kNN, RF | Medium | Med–High |
| Paper | Year | ML | DL | Algorithm | Complexity | Scalability |
|---|---|---|---|---|---|---|
| [92] | 2016 | ✓ | ✗ | SVM, GIS | Medium | Medium |
| [91] | 2017 | ✗ | ✓ | LSTM | High | Medium |
| [89] | 2019 | ✓ | ✗ | FastText, LR, SVM | Medium | Medium |
| [96] | 2020 | ✓ | ✗ | CatBoost, Ensemble | Medium | High |
| [90] | 2020 | ✗ | ✓ | FFNN | Medium | Medium |
| [93] | 2021 | ✓ | ✗ | RF, SVM, NB | Medium | High |
| [95] | 2021 | ✓ | ✓ | SVM, ANN | Medium | Medium |
| Paper | Year | ML | DL | Algorithm | Complexity | Scalability |
|---|---|---|---|---|---|---|
| [101] | 2017 | ✓ | ✗ | RF | Low–Med | Medium |
| [107] | 2019 | ✗ | ✓ | LSTM, ARIMA, GRNN | High | Medium |
| [106] | 2021 | ✓ | ✓ | SVM, CNN | High | High |
| [100] | 2021 | ✓ | ✗ | SVM, RF | Medium | Medium |
| [104] | 2021 | ✓ | ✗ | GBM | Medium | Medium |
| [105] | 2022 | ✓ | ✓ | Bagging, RNN | Medium | Medium |
| [102] | 2023 | ✓ | ✗ | RF, SMOTE | Medium | Medium |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).