Submitted:
10 April 2025
Posted:
11 April 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Transmission Spectra and Field
3.2. Multipole Decomposition
3.3. Polarization and Dimension Influence
3.4. Refractive Index Sensing
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hsu, C.W.; Zhen, B.; Stone, A.D.; Joannopoulos, J.D.; Soljačić, M. Bound states in the continuum. Nature Reviews Materials 2016, 1, 1–13. [Google Scholar] [CrossRef]
- Koshelev, K.; Bogdanov, A.; Kivshar, Y. Meta-optics and bound states in the continuum. Science Bulletin 2019, 64, 836–842. [Google Scholar] [CrossRef] [PubMed]
- Azzam, S.I.; Kildishev, A.V. Photonic bound states in the continuum: from basics to applications. Advanced Optical Materials 2021, 9, 2001469. [Google Scholar] [CrossRef]
- Joseph, S.; Pandey, S.; Sarkar, S.; Joseph, J. Bound states in the continuum in resonant nanostructures: an overview of engineered materials for tailored applications. Nanophotonics 2021, 10, 4175–4207. [Google Scholar] [CrossRef]
- Qin, H.; Chen, S.; Zhang, W.; Zhang, H.; Pan, R.; Li, J.; Shi, L.; Zi, J.; Zhang, X.D. Optical moiré bound states in the continuum. Nature Communications 2024, 15. [Google Scholar] [CrossRef]
- Mesli, S.; Yala, H.; Hamidi, M.; BelKhir, A.; Baida, F.I. High performance for refractive index sensors via symmetry-protected guided mode resonance. Optics Express 2021, 29, 21199–21211. [Google Scholar] [CrossRef]
- Gao, J.Y.; Liu, J.; Yang, H.; Liu, H.; Zeng, G.; Huang, B. Anisotropic medium sensing controlled by bound states in the continuum in polarization-independent metasurfaces. Optics express 2023, 31 26, 44703–44719. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y.; Cai, G.; Zhuo, J.; Lai, K.; Ye, L. All-dielectric metasurfaces with high Q-factor Fano resonances enabling multi-scenario sensing. Nanophotonics 2022, 11, 4537–4549. [Google Scholar] [CrossRef]
- Ndao, A.; Hsu, L.; Cai, W.; Ha, J.; Park, J.; Contractor, R.; Lo, Y.; Kanté, B. Differentiating and quantifying exosome secretion from a single cell using quasi-bound states in the continuum. Nanophotonics 2020, 9, 1081–1086. [Google Scholar] [CrossRef]
- Droulias, S. Chiral sensing with achiral isotropic metasurfaces. Physical Review B 2020, 102, 075119. [Google Scholar] [CrossRef]
- Deng, Q.; Li, X.; Hu, M.; et al. Advances on broadband and resonant chiral metasurfaces. npj Nanophoton 2024, 1, 20. [Google Scholar] [CrossRef]
- Tanaka, K.; Arslan, D.; Fasold, S.; Steinert, M.; Sautter, J.; Falkner, M.; Pertsch, T.; Decker, M.; Staude, I. Chiral bilayer all-dielectric metasurfaces. ACS nano 2020, 14, 15926–15935. [Google Scholar] [CrossRef] [PubMed]
- Koshelev, K.L.; Tonkaev, P.; Kivshar, Y.S. Nonlinear chiral metaphotonics: a perspective. Advanced Photonics 2023, 5, 064001. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, Y.; Lin, Y.; Xiang, J.; Feng, T.; Cao, Q.; Li, J.; Lan, S.; Liu, J. High-Q quasibound states in the continuum for nonlinear metasurfaces. Physical review letters 2019, 123, 253901. [Google Scholar] [CrossRef]
- Koshelev, K.; Tang, Y.; Hu, Z.; Kravchenko, I.I.; Li, G.; Kivshar, Y. Resonant Chiral Effects in Nonlinear Dielectric Metasurfaces. ACS Photonics 2023, 10, 298–306. [Google Scholar] [CrossRef]
- Wang, W.; Besteiro, L.V.; Yu, P.; Lin, F.; Govorov, A.O.; Xu, H.; Wang, Z. Plasmonic hot-electron photodetection with quasi-bound states in the continuum and guided resonances. Nanophotonics 2021, 10, 1911–1921. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, Z.; Zhang, Z.; Sun, B.; Tong, Y.; Xu, J.B.; Sun, X.; Tsang, H.K. Bound-states-in-continuum hybrid integration of 2D platinum diselenide on silicon nitride for high-speed photodetectors. ACS Photonics 2020, 7, 2643–2649. [Google Scholar] [CrossRef]
- Gao, X.D.; Fei, G.T.; Xu, S.H.; Zhong, B.N.; Ouyang, H.M.; Li, X.H.; Zhang, L.D. Porous Ag/TiO2-Schottky-diode based plasmonic hot-electron photodetector with high detectivity and fast response. Nanophotonics 2019, 8, 1247–1254. [Google Scholar] [CrossRef]
- Seo, I.C.; Kim, S.; Woo, B.H.; Chung, I.S.; Jun, Y.C. Fourier-plane investigation of plasmonic bound states in the continuum and molecular emission coupling. Nanophotonics 2020, 9, 4565–4577. [Google Scholar] [CrossRef]
- Zhou, C.; Qu, X.; Xiao, S.; Fan, M. Imaging Through a Fano-Resonant Dielectric Metasurface Governed by Quasi–bound States in the Continuum. Physical Review Applied 2020, 14, 044009. [Google Scholar] [CrossRef]
- Romano, S.; Mangini, M.; Penzo, E.; Cabrini, S.; De Luca, A.C.; Rendina, I.; Mocella, V.; Zito, G. Ultrasensitive surface refractive index imaging based on quasi-bound states in the continuum. ACS nano 2020, 14, 15417–15427. [Google Scholar] [CrossRef] [PubMed]
- Siefke, T.; Hurtado, C.B.R.; Dickmann, J.; Dickmann, W.; Käseberg, T.; Meyer, J.; Burger, S.; Zeitner, U.; Bodermann, B.; Kroker, S. Quasi-bound states in the continuum for deep subwavelength structural information retrieval for DUV nano-optical polarizers. Optics Express 2020, 28, 23122–23132. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.W.; Zhen, B.; Lee, J.; Chua, S.L.; Johnson, S.G.; Joannopoulos, J.D.; Soljačić, M. Observation of trapped light within the radiation continuum. Nature 2013, 499, 188–191. [Google Scholar] [CrossRef] [PubMed]
- Plotnik, Y.; Peleg, O.; Dreisow, F.; Heinrich, M.; Nolte, S.; Szameit, A.; Segev, M. Experimental observation of optical bound states in the continuum. Physical review letters 2011, 107, 183901. [Google Scholar] [CrossRef]
- Gansch, R.; Kalchmair, S.; Genevet, P.; Zederbauer, T.; Detz, H.; Andrews, A.M.; Schrenk, W.; Capasso, F.; Lončar, M.; Strasser, G. Measurement of bound states in the continuum by a detector embedded in a photonic crystal. Light: Science & Applications 2016, 5, e16147–e16147. [Google Scholar]
- Fan, K.; Shadrivov, I.V.; Padilla, W.J. Dynamic bound states in the continuum. Optica 2019, 6, 169–173. [Google Scholar] [CrossRef]
- Koshelev, K.; Lepeshov, S.; Liu, M.; Bogdanov, A.; Kivshar, Y. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Physical review letters 2018, 121, 193903. [Google Scholar] [CrossRef]
- Li, S.; Zhou, C.; Liu, T.; Xiao, S. Symmetry-protected bound states in the continuum supported by all-dielectric metasurfaces. Physical Review A 2019, 100, 063803. [Google Scholar] [CrossRef]
- Han, S.; Pitchappa, P.; Wang, W.; Srivastava, Y.K.; Rybin, M.V.; Singh, R. Extended bound states in the continuum with symmetry-Broken terahertz dielectric metasurfaces. Advanced Optical Materials 2021, 9, 2002001. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, L.; Liu, Z.; Panmai, M.; Li, S.; Liu, J.; Lan, S. Modifying the Quality Factors of the Bound States in the Continuum in a Dielectric Metasurface by Mode Coupling. ACS Photonics 2022. [Google Scholar] [CrossRef]
- Hu, L.; Wang, B.; Guo, Y.; Du, S.; Chen, J.; Li, J.; Gu, C.; Wang, L. Quasi-BIC Enhanced Broadband Terahertz Generation in All-Dielectric Metasurface. Advanced Optical Materials 2022, 10, 2200193. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, C.; Kaj, K.; Hammock, I.; Huang, Y.; Averitt, R.D.; Zhang, X. Terahertz investigation of bound states in the continuum of metallic metasurfaces. Optica 2020, 7, 1548–1554. [Google Scholar] [CrossRef]
- Chen, X.; Fan, W.; Yan, H. Toroidal dipole bound states in the continuum metasurfaces for terahertz nanofilm sensing. Optics Express 2020, 28, 17102–17112. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Cao, J.; Li, X.; Zhao, Y.; Shi, H.; Fu, L.; Liu, D.; Liu, F. Quasi-BICs Enabled Proximity Sensing Based on Metal Complementary H-Shaped Arrays at Terahertz Frequencies. IEEE Photonics Journal 2022, 14, 1–8. [Google Scholar] [CrossRef]
- Xing, W.; Bian, X.; Su, R.; Han, Y.; Liang, M.; You, R. Enhanced Sugar Sensing via a Fano Resonance Terahertz Metasurface With a Metallic Cross-Shaped Hole Array. IEEE Sensors Journal 2024, 24, 34311–34319. [Google Scholar] [CrossRef]
- Zhang, J.; Ruan, Y.; Hu, Z.D.; Wu, J.; Wang, J. An Enhanced High Q-Factor Resonance of Quasi-Bound States in the Continuum With All-Dielectric Metasurface Based on Multilayer Film Structures. IEEE Sensors Journal 2023, 23, 2070–2075. [Google Scholar] [CrossRef]
- Tan, T.C.W.; Plum, E.; Singh, R. Lattice-Enhanced Fano Resonances from Bound States in the Continuum Metasurfaces. ADVANCED OPTICAL MATERIALS 2020, 8. [Google Scholar] [CrossRef]
- Wang, D.; Fan, X.; Fang, W.; Du, M.; Sun, Q.; Niu, H.; Li, C.; Wei, X.; Li, M.; Chen, B.; et al. High-Performance All-Dielectric Metasurface for Quadruple Fano Resonance-Induced Biosensing Applications in the Near-Infrared Range. IEEE Sensors Journal 2024, 24, 12286–12295. [Google Scholar] [CrossRef]
- Du, X.; Xiong, L.; Zhao, X.; Chen, S.; Shi, J.; Li, G. Dual-band bound states in the continuum based on hybridization of surface lattice resonances. Nanophotonics 2022, 11, 4843–4853. [Google Scholar] [CrossRef]
- Wang, Y.; Han, Z.; Du, Y.; Qin, J. Ultrasensitive terahertz sensing with high-Q toroidal dipole resonance governed by bound states in the continuum in all-dielectric metasurface. Nanophotonics 2021, 10, 1295–1307. [Google Scholar] [CrossRef]
- Hsiao, H.H.; Hsu, Y.C.; Liu, A.Y.; Hsieh, J.C.; Lin, Y.H. Ultrasensitive Refractive Index Sensing Based on the Quasi-Bound States in the Continuum of All-Dielectric Metasurfaces. Advanced Optical Materials 2022, 10, 2200812. [Google Scholar] [CrossRef]
- Liu, W.; Liang, Z.; Qin, Z.; Shi, X.; Yang, F.; Meng, D. Polarization-insensitive dual-band response governed by quasi bound states in the continuum for high-performance refractive index sensing. Results in Physics 2022, 32, 105125. [Google Scholar] [CrossRef]
- Abbas, M.A.; Zubair, A.; Riaz, K.; Huang, W.; Teng, J.; Mehmood, M.Q.; Zubair, M. Engineering multimodal dielectric resonance of TiO2 based nanostructures for high-performance refractive index sensing applications. Optics Express 2020, 28, 23509–23522. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.Q.; Fan, W.H.; Chen, X.; Yan, H. Ultrahigh-Q terahertz sensor based on simple all-dielectric metasurface with toroidal dipole resonance. Applied Physics Express 2021, 14, 102008. [Google Scholar] [CrossRef]
- Fan, H.; Li, J.; Liu, C.; Sun, Y.; Wang, Y.; Wang, X.; Wu, T.; Ye, H.; Liu, Y. Polarization-independent tetramer metasurface with multi-Fano resonances based on symmetry-protected bound states in the continuum. Optics Communications 2022, 525, 128864. [Google Scholar] [CrossRef]
- Li, M.; Ma, Q.; Luo, A.; Hong, W. Multiple toroidal dipole symmetry-protected bound states in the continuum in all-dielectric metasurfaces. Optics & Laser Technology 2022, 154, 108252. [Google Scholar]
- Palik, E.D. Handbook of optical constants of solids; Vol. 3, Academic press, 1998.
- Miroshnichenko, A.E.; Flach, S.; Kivshar, Y.S. Fano resonances in nanoscale structures. Reviews of Modern Physics 2010, 82, 2257. [Google Scholar] [CrossRef]
- Lim, W.X.; Manjappa, M.; Pitchappa, P.; Singh, R. Shaping High-Q Planar Fano Resonant Metamaterials toward Futuristic Technologies. Advanced Optical Materials 2018, 6, 1800502. [Google Scholar] [CrossRef]
- Savinov, V.; Fedotov, V.; Zheludev, N.I. Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials. Physical Review B 2014, 89, 205112. [Google Scholar] [CrossRef]
- Radescu, E.; Vaman, G. Exact calculation of the angular momentum loss, recoil force, and radiation intensity for an arbitrary source in terms of electric, magnetic, and toroid multipoles. Physical Review E 2002, 65, 046609. [Google Scholar] [CrossRef]
- Ye, Y.; Yu, S.; Li, H.; Gao, Z.; Yang, L.; Zhao, T. Triple Fano resonances metasurface and its extension for multi-channel ultra-narrow band absorber. Results in Physics 2022, 42, 106025. [Google Scholar] [CrossRef]










| Mode | Sensitivity(m/RIU) | FOM |
|---|---|---|
| Mode1 | 2.404 | 724 |
| Mode2 | 2.475 | 1123 |
| Mode3 | 1.905 | 5625 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).