Submitted:
24 March 2025
Posted:
25 March 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Basic Facts About the Prenatal Screening for Chromosomal Defects
1.2. Screening by Maternal and Gestational Age
1.3. Previous Affected Pregnancy
1.4. Second-Trimester Maternal Serum Biochemistry
1.5. First-Trimester Screening
1.5.1. Nuchal Translucency
1.5.2. Maternal Serum Biochemistry
1.5.3. First-Trimester Screening by Combined Test (NT-Maternal Serum Biochemistry)
1.5.4. Additional First-Trimester Ultrasound Markers
1.6. First-Trimester Screening Followed by Second-Trimester Biochemical Testing
1.6.1. Integrated Test
1.6.2. Step Wise Sequential Test
1.6.3. Independent Sequential Screening
1.6.4. Contingent Test
1.7. Second-Trimester Ultrasound (Genetic Sonogram)
1.7.1. Down Syndrome
1.7.2. Trisomy 18
1.7.3. Trisomy 13
1.7.4. Triploidy
1.7.5. Turner Syndrome and Other Sex Chromosome Aneuploidies
1.7.6. DiGeorge Syndrome (Microdeletion 22q11.2)
1.7.7. Smith-Lemli-Opitz (SLO) Syndrome
1.7.8. Rare Chromosomal Abnormalities (RCA)
1.8. Non-Invasive Prenatal Cell Free DNA Testing (NIPT)
1.8.1. The Principle of NIPT
1.8.2. NIPT Methodologies
1.8.3. Performance of NIPT for the Common Conditions Screened
1.8.4. NIPT No-Calls and Complex Results
1.8.5. Expanded Testing with NIPT
1.8.6. The Future of NIPT
2. Conclusions
Funding
Conflicts of Interest
Appendix
References
- Nicolaides, K.H., Screening for fetal aneuploidies at 11 to 13 weeks. Prenat Diagn, 2011. 31(1): p. 7-15.
- Spencer, K., Aneuploidy screening in the first trimester. Am J Med Genet C Semin Med Genet, 2007. 145C(1): p. 18-32. [CrossRef]
- Dolk, H., M. Loane, and E. Garne, The prevalence of congenital anomalies in Europe. Adv Exp Med Biol, 2010. 686: p. 349-64.
- Jindal, A., et al., Amniocentesis, in StatPearls. 2025: Treasure Island (FL) ineligible companies. Disclosure: Medhavi Sharma declares no relevant financial relationships with ineligible companies. Disclosure: Zalak Karena declares no relevant financial relationships with ineligible companies. Disclosure: Chitra Chaudhary declares no relevant financial relationships with ineligible companies.
- Anderson, C.L. and C.E. Brown, Fetal chromosomal abnormalities: antenatal screening and diagnosis. Am Fam Physician, 2009. 79(2): p. 117-23.
- Alldred, S.K., et al., First and second trimester serum tests with and without first trimester ultrasound tests for Down's syndrome screening. Cochrane Database Syst Rev, 2017. 3(3): p. CD012599. [CrossRef]
- Nicolaides, K.H., et al., Fetal nuchal translucency: ultrasound screening for chromosomal defects in first trimester of pregnancy. BMJ, 1992. 304(6831): p. 867-9. [CrossRef]
- Pandya, P.P., et al., Screening for fetal trisomies by maternal age and fetal nuchal translucency thickness at 10 to 14 weeks of gestation. Br J Obstet Gynaecol, 1995. 102(12): p. 957-62. [CrossRef]
- Spencer, K., et al., A screening program for trisomy 21 at 10-14 weeks using fetal nuchal translucency, maternal serum free beta-human chorionic gonadotropin and pregnancy-associated plasma protein-A. Ultrasound Obstet Gynecol, 1999. 13(4): p. 231-7.
- Wald, N.J., et al., SURUSS in perspective. Semin Perinatol, 2005. 29(4): p. 225-35. [CrossRef]
- Cuckle, H.S., et al., Contingent screening for Down syndrome--results from the FaSTER trial. Prenat Diagn, 2008. 28(2): p. 89-94. [CrossRef]
- Abele, H., et al., First trimester ultrasound screening for Down syndrome based on maternal age, fetal nuchal translucency and different combinations of the additional markers nasal bone, tricuspid and ductus venosus flow. Prenat Diagn, 2015. 35(12): p. 1182-6. [CrossRef]
- Ghaffari, S.R., et al., First-trimester screening for chromosomal abnormalities by integrated application of nuchal translucency, nasal bone, tricuspid regurgitation and ductus venosus flow combined with maternal serum free beta-hCG and PAPP-A: a 5-year prospective study. Ultrasound Obstet Gynecol, 2012. 39(5): p. 528-34.
- Hsiao, C.H., et al., Extended first-trimester screening using multiple sonographic markers and maternal serum biochemistry: a five-year prospective study. Fetal Diagn Ther, 2014. 35(4): p. 296-301. [CrossRef]
- Norton, M.E., et al., Cell-free DNA analysis for noninvasive examination of trisomy. N Engl J Med, 2015. 372(17): p. 1589-97.
- Iwarsson, E., et al., Analysis of cell-free fetal DNA in maternal blood for detection of trisomy 21, 18 and 13 in a general pregnant population and in a high risk population - a systematic review and meta-analysis. Acta Obstet Gynecol Scand, 2017. 96(1): p. 7-18.
- Gil, M.M., et al., Analysis of cell-free DNA in maternal blood in screening for aneuploidies: updated meta-analysis. Ultrasound Obstet Gynecol, 2017. 50(3): p. 302-314. [CrossRef]
- Demko, Z., B. Prigmore, and P. Benn, A Critical Evaluation of Validation and Clinical Experience Studies in Non-Invasive Prenatal Testing for Trisomies 21, 18, and 13 and Monosomy X. J Clin Med, 2022. 11(16).
- van der Meij, K.R.M., et al., TRIDENT-2: National Implementation of Genome-wide Non-invasive Prenatal Testing as a First-Tier Screening Test in the Netherlands. Am J Hum Genet, 2019. 105(6): p. 1091-1101.
- Kagan, K.O., J. Sonek, and P. Kozlowski, Antenatal screening for chromosomal abnormalities. Arch Gynecol Obstet, 2022. 305(4): p. 825-835. [CrossRef]
- Dungan, J.S., et al., Noninvasive prenatal screening (NIPS) for fetal chromosome abnormalities in a general-risk population: An evidence-based clinical guideline of the American College of Medical Genetics and Genomics (ACMG). Genet Med, 2023. 25(2): p. 100336.
- Benn, P. and H. Cuckle, Overview of Noninvasive Prenatal Testing (NIPT) for the Detection of Fetal Chromosome Abnormalities; Differences in Laboratory Methods and Scope of Testing. Clin Obstet Gynecol, 2023. 66(3): p. 536-556. [CrossRef]
- Leonard, S.J., Reproductive genetic screening for information: evolving paradigms? J Perinat Med, 2021. 49(8): p. 998-1002.
- Gilstrop Thompson, M., et al., Clinical Validation of a Prenatal Cell-Free DNA Screening Test for Fetal RHD in a Large U.S. Cohort. Obstet Gynecol, 2025. 145(2): p. 211-216. [CrossRef]
- Rose, N.C., et al., Systematic evidence-based review: The application of noninvasive prenatal screening using cell-free DNA in general-risk pregnancies. Genet Med, 2022. 24(9): p. 1992.
- Nicolaides, K.H., Screening for chromosomal defects. Ultrasound Obstet Gynecol, 2003. 21(4): p. 313-21.
- Chitayat, D., et al., Prenatal screening for fetal aneuploidy in singleton pregnancies. J Obstet Gynaecol Can, 2011. 33(7): p. 736-750. [CrossRef]
- Santorum, M., et al., Accuracy of first-trimester combined test in screening for trisomies 21, 18 and 13. Ultrasound Obstet Gynecol, 2017. 49(6): p. 714-720. [CrossRef]
- Elmerdahl Frederiksen, L., et al., Maternal age and the risk of fetal aneuploidy: A nationwide cohort study of more than 500 000 singleton pregnancies in Denmark from 2008 to 2017. Acta Obstet Gynecol Scand, 2024. 103(2): p. 351-359. [CrossRef]
- Snijders, R.J., et al., Maternal age- and gestation-specific risk for trisomy 21. Ultrasound Obstet Gynecol, 1999. 13(3): p. 167-70.
- Haith, M., Encyclopedia of infant and early childhood development. 2008.
- Snijders, R.J., N.J. Sebire, and K.H. Nicolaides, Maternal age and gestational age-specific risk for chromosomal defects. Fetal Diagn Ther, 1995. 10(6): p. 356-67. [CrossRef]
- Morris, J.K., N.J. Wald, and H.C. Watt, Fetal loss in Down syndrome pregnancies. Prenat Diagn, 1999. 19(2): p. 142-5.
- Merkatz, I.R., et al., An association between low maternal serum alpha-fetoprotein and fetal chromosomal abnormalities. Am J Obstet Gynecol, 1984. 148(7): p. 886-94. [CrossRef]
- Wald, N.J., et al., Maternal serum screening for Down's syndrome in early pregnancy. BMJ, 1988. 297(6653): p. 883-7. [CrossRef]
- Wald, N.J., W.J. Huttly, and A.K. Hackshaw, Antenatal screening for Down's syndrome with the quadruple test. Lancet, 2003. 361(9360): p. 835-6. [CrossRef]
- Wald, N.J., et al., Prenatal screening for Down's syndrome using inhibin-A as a serum marker. Prenat Diagn, 1996. 16(2): p. 143-53.
- Cuckle, H., Biochemical screening for Down syndrome. Eur J Obstet Gynecol Reprod Biol, 2000. 92(1): p. 97-101.
- Porter, F.D., RSH/Smith-Lemli-Opitz syndrome: a multiple congenital anomaly/mental retardation syndrome due to an inborn error of cholesterol biosynthesis. Mol Genet Metab, 2000. 71(1-2): p. 163-74. [CrossRef]
- Jira, P.E., et al., Smith-Lemli-Opitz syndrome and the DHCR7 gene. Ann Hum Genet, 2003. 67(Pt 3): p. 269-80.
- Palomaki, G.E., et al., Assigning risk for Smith-Lemli-Opitz syndrome as part of 2nd trimester screening for Down's syndrome. J Med Screen, 2002. 9(1): p. 43-4. [CrossRef]
- Bradley, L.A., et al., Levels of unconjugated estriol and other maternal serum markers in pregnancies with Smith-Lemli-Opitz (RSH) syndrome fetuses. Am J Med Genet, 1999. 82(4): p. 355-8. [CrossRef]
- Pandya, P.P., et al., Chromosomal defects and outcome in 1015 fetuses with increased nuchal translucency. Ultrasound Obstet Gynecol, 1995. 5(1): p. 15-9. [CrossRef]
- Nicolaides, K.H., Nuchal translucency and other first-trimester sonographic markers of chromosomal abnormalities. Am J Obstet Gynecol, 2004. 191(1): p. 45-67.
- Kagan, K.O., et al., Relation between increased fetal nuchal translucency thickness and chromosomal defects. Obstet Gynecol, 2006. 107(1): p. 6-10. [CrossRef]
- Souka, A.P., et al., Outcome of pregnancy in chromosomally normal fetuses with increased nuchal translucency in the first trimester. Ultrasound Obstet Gynecol, 2001. 18(1): p. 9-17. [CrossRef]
- Bilardo, C.M., et al., Increased nuchal translucency thickness and normal karyotype: time for parental reassurance. Ultrasound Obstet Gynecol, 2007. 30(1): p. 11-8. [CrossRef]
- Bekker, M.N., A normal 20-week scan of a euploid fetus with a history of first-trimester increased nuchal translucency: caution or reassurance? Ultrasound Obstet Gynecol, 2007. 30(1): p. 8-10.
- Bardi, F., et al., Is there still a role for nuchal translucency measurement in the changing paradigm of first trimester screening? Prenat Diagn, 2020. 40(2): p. 197-205. [CrossRef]
- Grande, M., et al., Genomic microarray in fetuses with increased nuchal translucency and normal karyotype: a systematic review and meta-analysis. Ultrasound Obstet Gynecol, 2015. 46(6): p. 650-8. [CrossRef]
- Senat, M.V., et al., Long-term outcome of children born after a first-trimester measurement of nuchal translucency at the 99th percentile or greater with normal karyotype: a prospective study. Am J Obstet Gynecol, 2007. 196(1): p. 53 e1-6. [CrossRef]
- Stuurman, K.E., et al., Prenatal ultrasound findings of rasopathies in a cohort of 424 fetuses: update on genetic testing in the NGS era. J Med Genet, 2019. 56(10): p. 654-661. [CrossRef]
- Kelley, J., et al., Increased nuchal translucency after low-risk noninvasive prenatal testing: What should we tell prospective parents? Prenat Diagn, 2021. 41(10): p. 1305-1315. [CrossRef]
- Wright, D., et al., First-trimester combined screening for trisomy 21 at 7-14 weeks' gestation. Ultrasound Obstet Gynecol, 2010. 36(4): p. 404-11. [CrossRef]
- Kagan, K.O., et al., Screening for trisomy 21 by maternal age, fetal nuchal translucency thickness, free beta-human chorionic gonadotropin and pregnancy-associated plasma protein-A. Ultrasound Obstet Gynecol, 2008. 31(6): p. 618-24. [CrossRef]
- Spencer, K. and K.H. Nicolaides, A first trimester trisomy 13/trisomy 18 risk algorithm combining fetal nuchal translucency thickness, maternal serum free beta-hCG and PAPP-A. Prenat Diagn, 2002. 22(10): p. 877-9. [CrossRef]
- Spencer, K., et al., Screening for trisomy 13 by fetal nuchal translucency and maternal serum free beta-hCG and PAPP-A at 10-14 weeks of gestation. Prenat Diagn, 2000. 20(5): p. 411-6.
- Spencer, K., et al., Screening for triploidy by fetal nuchal translucency and maternal serum free beta-hCG and PAPP-A at 10-14 weeks of gestation. Prenat Diagn, 2000. 20(6): p. 495-9.
- Spencer, K., N. Tul, and K.H. Nicolaides, Maternal serum free beta-hCG and PAPP-A in fetal sex chromosome defects in the first trimester. Prenat Diagn, 2000. 20(5): p. 390-4. [CrossRef]
- Petersen, O.B., et al., Potential diagnostic consequences of applying non-invasive prenatal testing: population-based study from a country with existing first-trimester screening. Ultrasound Obstet Gynecol, 2014. 43(3): p. 265-71. [CrossRef]
- Wijngaard, R., et al., Significance of Low Maternal Serum Beta-hCG Levels in the Assessment of the Risk of Atypical Chromosomal Abnormalities. Fetal Diagn Ther, 2021. 48(11-12): p. 849-856. [CrossRef]
- Wright, D., et al., First-trimester screening for trisomies 21, 18 and 13 by ultrasound and biochemical testing. Fetal Diagn Ther, 2014. 35(2): p. 118-26.
- Kagan, K.O., et al., Fetal nasal bone in screening for trisomies 21, 18 and 13 and Turner syndrome at 11-13 weeks of gestation. Ultrasound Obstet Gynecol, 2009. 33(3): p. 259-64.
- Cicero, S., et al., Nasal bone in first-trimester screening for trisomy 21. Am J Obstet Gynecol, 2006. 195(1): p. 109-14. [CrossRef]
- Kagan, K.O., et al., Tricuspid regurgitation in screening for trisomies 21, 18 and 13 and Turner syndrome at 11+0 to 13+6 weeks of gestation. Ultrasound Obstet Gynecol, 2009. 33(1): p. 18-22.
- Maiz, N., et al., Ductus venosus Doppler in screening for trisomies 21, 18 and 13 and Turner syndrome at 11-13 weeks of gestation. Ultrasound Obstet Gynecol, 2009. 33(5): p. 512-7.
- Kagan, K.O., et al., Two-stage first-trimester screening for trisomy 21 by ultrasound assessment and biochemical testing. Ultrasound Obstet Gynecol, 2010. 36(5): p. 542-7. [CrossRef]
- Wagner, P., et al., First-trimester screening for trisomies 18 and 13, triploidy and Turner syndrome by detailed early anomaly scan. Ultrasound Obstet Gynecol, 2016. 48(4): p. 446-451. [CrossRef]
- Kagan, K.O., et al., The 11-13-week scan: diagnosis and outcome of holoprosencephaly, exomphalos and megacystis. Ultrasound Obstet Gynecol, 2010. 36(1): p. 10-4.
- Sherod, C., et al., Prenatal diagnosis of trisomy 18 at the 10-14-week ultrasound scan. Ultrasound Obstet Gynecol, 1997. 10(6): p. 387-90.
- Snijders, R.J., et al., Increased nuchal translucency in trisomy 13 fetuses at 10-14 weeks of gestation. Am J Med Genet, 1999. 86(3): p. 205-7.
- Sebire, N.J., et al., Detection of sex chromosome abnormalities by nuchal translucency screening at 10-14 weeks. Prenat Diagn, 1998. 18(6): p. 581-4.
- Jauniaux, E., et al., Early prenatal diagnosis of triploidy. Am J Obstet Gynecol, 1997. 176(3): p. 550-4. [CrossRef]
- Syngelaki, A., et al., Impact of holoprosencephaly, exomphalos, megacystis and increased nuchal translucency on first-trimester screening for chromosomal abnormalities. Ultrasound Obstet Gynecol, 2017. 50(1): p. 45-48.
- Malone, F.D., et al., First-trimester or second-trimester screening, or both, for Down's syndrome. N Engl J Med, 2005. 353(19): p. 2001-11.
- Smith, M. and J. Visootsak, Noninvasive screening tools for Down syndrome: a review. Int J Womens Health, 2013. 5: p. 125-31. [CrossRef]
- Cuckle, H., P. Benn, and D. Wright, Down syndrome screening in the first and/or second trimester: model predicted performance using meta-analysis parameters. Semin Perinatol, 2005. 29(4): p. 252-7. [CrossRef]
- Nicolaides, K., et al., Ultrasonographically detectable markers of fetal chromosomal defects. Ultrasound Obstet Gynecol, 1993. 3(1): p. 56-69. [CrossRef]
- Nyberg, D.A. and V.L. Souter, Sonographic markers of fetal trisomies: second trimester. J Ultrasound Med, 2001. 20(6): p. 655-74. [CrossRef]
- Benacerraf, B.R., The role of the second trimester genetic sonogram in screening for fetal Down syndrome. Semin Perinatol, 2005. 29(6): p. 386-94. [CrossRef]
- Odibo, A.O. and A. Ghidini, Role of the second-trimester 'genetic sonogram' for Down syndrome screen in the era of first-trimester screening and noninvasive prenatal testing. Prenat Diagn, 2014. 34(6): p. 511-7.
- Benacerraf, B.R., V.A. Barss, and L.A. Laboda, A sonographic sign for the detection in the second trimester of the fetus with Down's syndrome. Am J Obstet Gynecol, 1985. 151(8): p. 1078-9. [CrossRef]
- Agathokleous, M., et al., Meta-analysis of second-trimester markers for trisomy 21. Ultrasound Obstet Gynecol, 2013. 41(3): p. 247-61.
- Smith-Bindman, R., et al., Second-trimester ultrasound to detect fetuses with Down syndrome: a meta-analysis. JAMA, 2001. 285(8): p. 1044-55.
- Shipp, T.D. and B.R. Benacerraf, Second trimester ultrasound screening for chromosomal abnormalities. Prenat Diagn, 2002. 22(4): p. 296-307. [CrossRef]
- Benacerraf, B.R., The history of the second-trimester sonographic markers for detecting fetal Down syndrome, and their current role in obstetric practice. Prenat Diagn, 2010. 30(7): p. 644-52.
- Bromley, B., et al., The genetic sonogram: a method of risk assessment for Down syndrome in the second trimester. J Ultrasound Med, 2002. 21(10): p. 1087-96; quiz 1097-8.
- Freeman, S.B., et al., Population-based study of congenital heart defects in Down syndrome. Am J Med Genet, 1998. 80(3): p. 213-7.
- Nyberg, D.A., et al., Isolated sonographic markers for detection of fetal Down syndrome in the second trimester of pregnancy. J Ultrasound Med, 2001. 20(10): p. 1053-63. [CrossRef]
- Breathnach, F.M., et al., First- and second-trimester screening: detection of aneuploidies other than Down syndrome. Obstet Gynecol, 2007. 110(3): p. 651-7.
- Krantz, D.A., et al., Genetic sonography after first-trimester Down syndrome screening. Ultrasound Obstet Gynecol, 2007. 29(6): p. 666-70. [CrossRef]
- Aagaard-Tillery, K.M., et al., Role of second-trimester genetic sonography after Down syndrome screening. Obstet Gynecol, 2009. 114(6): p. 1189-1196. [CrossRef]
- Yeo, L., et al., Prenatal detection of fetal trisomy 18 through abnormal sonographic features. J Ultrasound Med, 2003. 22(6): p. 581-90; quiz 591-2. [CrossRef]
- DeVore, G.R., Second trimester ultrasonography may identify 77 to 97% of fetuses with trisomy 18. J Ultrasound Med, 2000. 19(8): p. 565-76. [CrossRef]
- Snijders, R.J., L. Shawa, and K.H. Nicolaides, Fetal choroid plexus cysts and trisomy 18: assessment of risk based on ultrasound findings and maternal age. Prenat Diagn, 1994. 14(12): p. 1119-27. [CrossRef]
- Benacerraf, B.R., W.A. Miller, and F.D. Frigoletto, Jr., Sonographic detection of fetuses with trisomies 13 and 18: accuracy and limitations. Am J Obstet Gynecol, 1988. 158(2): p. 404-9. [CrossRef]
- Lehman, C.D., et al., Trisomy 13 syndrome: prenatal US findings in a review of 33 cases. Radiology, 1995. 194(1): p. 217-22. [CrossRef]
- Jauniaux, E., et al., Prenatal diagnosis of triploidy during the second trimester of pregnancy. Obstet Gynecol, 1996. 88(6): p. 983-9. [CrossRef]
- Lugthart, M.A., et al., Prenatal sonographic features can accurately determine parental origin in triploid pregnancies. Prenat Diagn, 2020. 40(6): p. 705-714. [CrossRef]
- Mittal, T.K., et al., Triploidy: antenatal sonographic features with post-mortem correlation. Prenat Diagn, 1998. 18(12): p. 1253-62. [CrossRef]
- Berglund, A., K. Stochholm, and C.H. Gravholt, The epidemiology of sex chromosome abnormalities. Am J Med Genet C Semin Med Genet, 2020. 184(2): p. 202-215. [CrossRef]
- De Vigan, C., et al., Contribution of ultrasonographic examination to the prenatal detection of chromosomal abnormalities in 19 centres across Europe. Ann Genet, 2001. 44(4): p. 209-17. [CrossRef]
- Reimers, R., et al., Prenatal diagnosis of sex chromosome aneuploidy-What do we tell the prospective parents? Prenat Diagn, 2023. 43(2): p. 250-260.
- Papp, C., et al., Prenatal diagnosis of Turner syndrome: report on 69 cases. J Ultrasound Med, 2006. 25(6): p. 711-7; quiz 718-20.
- Maisenbacher, M.K., et al., Incidence of the 22q11.2 deletion in a large cohort of miscarriage samples. Mol Cytogenet, 2017. 10: p. 6. [CrossRef]
- McDonald-McGinn, D.M., et al., 22q11.2 Deletion Syndrome, in GeneReviews((R)), M.P. Adam, et al., Editors. 1993: Seattle (WA).
- Goldmuntz, E., et al., Prenatal cardiac findings and 22q11.2 deletion syndrome: Fetal detection and evaluation. Prenat Diagn, 2024. 44(6-7): p. 804-814. [CrossRef]
- Chaoui, R., et al., Absent or hypoplastic thymus on ultrasound: a marker for deletion 22q11.2 in fetal cardiac defects. Ultrasound Obstet Gynecol, 2002. 20(6): p. 546-52. [CrossRef]
- Chaoui, R., et al., The thymic-thoracic ratio in fetal heart defects: a simple way to identify fetuses at high risk for microdeletion 22q11. Ultrasound Obstet Gynecol, 2011. 37(4): p. 397-403. [CrossRef]
- Chaoui, R., et al., Dilated cavum septi pellucidi in fetuses with microdeletion 22q11. Prenat Diagn, 2016. 36(10): p. 911-915. [CrossRef]
- Goldenberg, A., et al., Antenatal manifestations of Smith-Lemli-Opitz (RSH) syndrome: a retrospective survey of 30 cases. Am J Med Genet A, 2004. 124A(4): p. 423-6. [CrossRef]
- Lin, A.E., et al., Cardiovascular malformations in Smith-Lemli-Opitz syndrome. Am J Med Genet, 1997. 68(3): p. 270-8. [CrossRef]
- Schoner, K., et al., Smith-Lemli-Opitz syndrome - Fetal phenotypes with special reference to the syndrome-specific internal malformation pattern. Birth Defects Res, 2020. 112(2): p. 175-185.
- Wellesley, D., et al., Rare chromosome abnormalities, prevalence and prenatal diagnosis rates from population-based congenital anomaly registers in Europe. Eur J Hum Genet, 2012. 20(5): p. 521-6. [CrossRef]
- Lo, Y.M., et al., Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am J Hum Genet, 1998. 62(4): p. 768-75.
- Bianchi, D.W., Circulating fetal DNA: its origin and diagnostic potential-a review. Placenta, 2004. 25 Suppl A: p. S93-S101. [CrossRef]
- Miltoft, C.B., et al., Cell-Free Fetal DNA in the Early and Late First Trimester. Fetal Diagn Ther, 2020. 47(3): p. 228-236. [CrossRef]
- Lo, Y.M., et al., Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet, 1999. 64(1): p. 218-24. [CrossRef]
- Everett, T.R. and L.S. Chitty, Cell-free fetal DNA: the new tool in fetal medicine. Ultrasound Obstet Gynecol, 2015. 45(5): p. 499-507. [CrossRef]
- DiNonno, W., et al., Quality Assurance of Non-Invasive Prenatal Screening (NIPS) for Fetal Aneuploidy Using Positive Predictive Values as Outcome Measures. J Clin Med, 2019. 8(9). [CrossRef]
- American College of, O., et al., Screening for Fetal Chromosomal Abnormalities: ACOG Practice Bulletin, Number 226. Obstet Gynecol, 2020. 136(4): p. e48-e69.
- Raymond, Y., et al., Placental, maternal, fetal, and technical origins of false-positive cell-free DNA screening results. Am J Obstet Gynecol, 2024. 230(4): p. 381-389. [CrossRef]
- Smith, L.H., et al., Cancer associated with obstetric delivery: results of linkage with the California cancer registry. Am J Obstet Gynecol, 2003. 189(4): p. 1128-35. [CrossRef]
- Niles, K.M., A. Murji, and D. Chitayat, Prolonged duration of persistent cell-free fetal DNA from vanishing twin. Ultrasound Obstet Gynecol, 2018. 52(4): p. 547-548. [CrossRef]
- Kantor, V., et al., Non-invasive prenatal screening for fetal triploidy using single nucleotide polymorphism-based testing: Differential diagnosis and clinical management in cases showing an extra haplotype. Prenat Diagn, 2022. 42(8): p. 994-999. [CrossRef]
- Soster, E., et al., Positive cfDNA screening results for 22q11.2 deletion syndrome-Clinical and laboratory considerations. Front Genet, 2023. 14: p. 1146669.
- Zaninovic, L., et al., Validity and Utility of Non-Invasive Prenatal Testing for Copy Number Variations and Microdeletions: A Systematic Review. J Clin Med, 2022. 11(12). [CrossRef]
- Hanson, B., et al., Non-invasive prenatal diagnosis (NIPD): current and emerging technologies. Extracell Vesicles Circ Nucl Acids, 2023. 4(1): p. 3-26. [CrossRef]
- Mohan, P., et al., Clinical experience with non-invasive prenatal screening for single-gene disorders. Ultrasound Obstet Gynecol, 2022. 59(1): p. 33-39. [CrossRef]
- Grace, M.R., et al., Cell-Free DNA Screening: Complexities and Challenges of Clinical Implementation. Obstet Gynecol Surv, 2016. 71(8): p. 477-87.
- Benn, P., H. Cuckle, and E. Pergament, Non-invasive prenatal testing for aneuploidy: current status and future prospects. Ultrasound Obstet Gynecol, 2013. 42(1): p. 15-33. [CrossRef]
- Boyle, B., et al., Prevalence and risk of Down syndrome in monozygotic and dizygotic multiple pregnancies in Europe: implications for prenatal screening. BJOG, 2014. 121(7): p. 809-19; discussion 820. [CrossRef]
- Gil, M.M., et al., Screening for trisomies by cfDNA testing of maternal blood in twin pregnancy: update of The Fetal Medicine Foundation results and meta-analysis. Ultrasound Obstet Gynecol, 2019. 53(6): p. 734-742. [CrossRef]
- Wang, Y., et al., Cell-free DNA screening for sex chromosome aneuploidies by non-invasive prenatal testing in maternal plasma. Mol Cytogenet, 2020. 13: p. 10. [CrossRef]
- Martin, K.A., et al., Detection of maternal X chromosome abnormalities using single nucleotide polymorphism-based noninvasive prenatal testing. Am J Obstet Gynecol MFM, 2020. 2(3): p. 100152. [CrossRef]
- Christiaens, L., L.S. Chitty, and S. Langlois, Current controversies in prenatal diagnosis: Expanded NIPT that includes conditions other than trisomies 13, 18, and 21 should be offered. Prenat Diagn, 2021. 41(10): p. 1316-1323. [CrossRef]
- Mackie, F.L., et al., The accuracy of cell-free fetal DNA-based non-invasive prenatal testing in singleton pregnancies: a systematic review and bivariate meta-analysis. BJOG, 2017. 124(1): p. 32-46.
- Dhamankar, R., et al., Fetal Sex Results of Noninvasive Prenatal Testing and Differences With Ultrasonography. Obstet Gynecol, 2020. 135(5): p. 1198-1206. [CrossRef]
- Hui, L., et al., Position statement from the International Society for Prenatal Diagnosis on the use of non-invasive prenatal testing for the detection of fetal chromosomal conditions in singleton pregnancies. Prenat Diagn, 2023. 43(7): p. 814-828. [CrossRef]
- Takoudes, T. and B. Hamar, Performance of non-invasive prenatal testing when fetal cell-free DNA is absent. Ultrasound Obstet Gynecol, 2015. 45(1): p. 112. [CrossRef]
- Persson, F. and L. Prensky, Variability of "Reported Fetal Fraction" in Noninvasive Prenatal Screening (NIPS). Clin Chem, 2021. 67(6): p. 863-866. [CrossRef]
- Benn, P., et al., Accuracy of fetal fraction measurements in a single-nucleotide polymorphism-based noninvasive prenatal test. Prenat Diagn, 2024. 44(10): p. 1218-1224. [CrossRef]
- Becking, E.C., et al., Variability in Fetal Fraction Estimation: Comparing Fetal Fractions Reported by Noninvasive Prenatal Testing Providers Globally. Clin Chem, 2023. 69(2): p. 160-167. [CrossRef]
- Hedriana, H., et al., Cell-free DNA fetal fraction in twin gestations in single-nucleotide polymorphism-based noninvasive prenatal screening. Prenat Diagn, 2020. 40(2): p. 179-184. [CrossRef]
- Ryan, A., et al., Validation of an Enhanced Version of a Single-Nucleotide Polymorphism-Based Noninvasive Prenatal Test for Detection of Fetal Aneuploidies. Fetal Diagn Ther, 2016. 40(3): p. 219-223. [CrossRef]
- Goldring, G., et al., Maternal Malignancy After Atypical Findings on Single-Nucleotide Polymorphism-Based Prenatal Cell-Free DNA Screening. Obstet Gynecol, 2023. 141(4): p. 791-800. [CrossRef]
- Wapner, R.J., et al., Expanding the scope of noninvasive prenatal testing: detection of fetal microdeletion syndromes. Am J Obstet Gynecol, 2015. 212(3): p. 332 e1-9. [CrossRef]
- Grati, F.R., et al., Prevalence of recurrent pathogenic microdeletions and microduplications in over 9500 pregnancies. Prenat Diagn, 2015. 35(8): p. 801-9. [CrossRef]
- Dar, P., et al., Cell-free DNA screening for prenatal detection of 22q11.2 deletion syndrome. Am J Obstet Gynecol, 2022. 227(1): p. 79 e1-79 e11. [CrossRef]
- Zhang, J., et al., Non-invasive prenatal sequencing for multiple Mendelian monogenic disorders using circulating cell-free fetal DNA. Nat Med, 2019. 25(3): p. 439-447.
- Sapantzoglou, I., et al., Low fetal fraction and adverse pregnancy outcomes- systematic review of the literature and metanalysis. Arch Gynecol Obstet, 2024. 310(3): p. 1343-1354. [CrossRef]
- Khalil, A., et al., The role of cell-free DNA biomarkers and patient data in the early prediction of preeclampsia: an artificial intelligence model. Am J Obstet Gynecol, 2024. 231(5): p. 554 e1-554 e18. [CrossRef]
- Mattar, C.N.Z., J.K.Y. Chan, and M. Choolani, Gene modification therapies for hereditary diseases in the fetus. Prenat Diagn, 2023. 43(5): p. 674-686. [CrossRef]
| Screening method | Detection rate (%) | False positive rate (%) |
|---|---|---|
| Maternal age above 35 (38) years | 50 (30) | 20 (5) |
| Second-trimester tests | ||
| Double test: Maternal serum AFP and freeβ-hCG (AFP and total-hCG) | 65 (60) | 5 |
| Triple test: Maternal serum AFP, freeβ-hCG and uE3 (total-hCG) | 70 (65) | 5 |
| Quadruple test: Maternal serum AFP, freeβ-hCG, uE3 and Inhibin (total-hCG) | 75 (70) | 5 |
| Genetic sonogram | 65-75 | 4-15 |
| First-trimester tests | ||
| Nuchal translucency (NT) | 80 | 5 |
| Maternal serum PAPP-A and freeβ-hCG) | 65 | 5 |
| Combined test (NT-FHR-Maternal serum PAPP-A and freeβ-hCG) | 92 | 6 |
| Combined test with nasal bone, ductus venosus, or tricuspid blood flow | 93-96 | 2,5 |
| NIPT cfDNA | 99,7 | 0,04 |
| Combined tests | ||
| Fully integrated test (NT, PAPP-A at 12. weeks with quadruple test) | 96 | 5 |
| Fully integrated test (PAPP-A at 12. weeks with quadruple test) | 88 | 5 |
| Aneuploidy | NT | CRL | Heart rate | free β-hCG | PAPP-A (MoM) |
| Trisomy 21 | ⇧ | ⇔ | ⇔ | > 2 MoM | < 0,5 MoM |
| Trisomy 18 | ⇧ | ⇩ | ⇩ | < 0,2 MoM | < 0,2 MoM |
| Trisomy 13 | ⇧ | ⇔ | ⇧ | < 0,5 MoM | < 0,3 MoM |
| Turner syndrome | ⇧⇧/⇔ | ⇔ | ⇧ | ⇔ | < 0,5 |
| Triploidy | ⇩ | ⇩ | ⇩ | < 0,1 MoM / > 8 MoM | < 0,1 MoM/⇔ |
| Marker | LR + | LR- | LRc |
|---|---|---|---|
| Intracardiac echogenic focus | 5,8 | 0,8 | 0,95 |
| Ventriculomegaly | 27,3 | 0,9 | 3,81 |
| Nuchal fold thickness > 6mm | 23,3 | 0,8 | 3,79 |
| Echogenic bowel | 11,4 | 0,9 | 1,65 |
| Mild hydronephrosis | 7,6 | 0,9 | 1,08 |
| Short humerus | 4,8 | 0,7 | 0,78 |
| Short femur | 3,7 | 0,8 | 0,61 |
| Aberrant right subclavian artery | 21,5 | 0,7 | 3,94 |
| Absent/Hypoplastic nasal bone | 23,3 | 0,5 | 6,58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).