Submitted:
11 March 2025
Posted:
13 March 2025
You are already at the latest version
Abstract
The cattle sector plays a critical role in Peru's agricultural economy, yet it faces challenges related to low productivity and environmental degradation. Sustainable alternatives like silvo-pastoral systems (SPS) offer promising solutions to enhance both economic returns and ecological outcomes in cattle farming. This study examines the economic and environmental viability of intensive SPS (SPSi) compared to traditional monoculture grass systems in San Martín, Peru. SPSi, which integrate grasses, legumes, shrubs, and trees, have the potential to enhance cattle farming profitability while simultaneously offering environmental benefits such as improved soil health and reduced greenhouse gas emissions. Through a discounted cash flow model over an eight-year period, key profitability indicators—Net Present Value (NPV), Internal Rate of Return (IRR), Benefit-Cost Ratio (BC), and payback period—were estimated for four dual-purpose cattle production scenarios: a traditional system and three SPSi scenarios (pessimistic, moderate, and optimistic). Monte Carlo simulations were conducted to assess risk, ensuring robust results. Results show that the NPV for the traditional system was a modest US$61, while SPSi scenarios ranged from US$9,564 to US$20,465. The IRR improved from 8.17% in the traditional system to between 26.63% and 30.33% in SPSi scenarios, with a shorter payback period of 4.5 to 5.8 years, compared to 7.98 years in the traditional system. Additionally, SPSi demonstrated a 30% increase in milk production and a 50% to 250% rise in stocking rates per hectare. The study recommends promoting SPSi adoption through improved access to credit, technical assistance, and policy frameworks that compensate farmers for ecosystem services. Policymakers should also implement monitoring mechanisms to mitigate unintended consequences, such as deforestation, ensuring that SPSi expansion aligns with sustainable land management practices. Overall, SPSi present a viable solution for achieving economic resilience and environmental sustainability in Peru’s cattle sector.
Keywords:
1. Introduction
2. Cattle Farming in San Martín Province
2.1. Motivation to Encourage the Adoption of SSP in San Martín Province
2.2. Intensive Silvo-Pastoral Systems
3. Materials and Methods
3.1. Description of Evaluated Technologies
3.2. Assumptions for the Discounted Cash Flow Model
3.3. The Discounted Cash Flow Model
3.4. Risk Analysis
4. Results
4.1. Cost and Revenue Structure
4.2. Profitability Indicators
5. Discussion
5.1. Economic Evaluation of SPSi in San Martín Province
5.2. Obstacles and Chances for Scaling the Adoption of SPS
Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Díaz, M. F., Enciso, K., Triana, N., Muriel, J., & Burkart, S. (2019). Pagos por Servicios Ambientales para sistemas silvopastoriles en Colombia. Centro Internacional de Agricultura Tropical (CIAT), Cali, CO. https://hdl.handle.net/10568/106849.
- Alcott, B. (2005). Jevons’ paradox. Ecological Economics, 54(1), 9–21. [CrossRef]
- Parodi, A., Valencia-Salazar, S., Loboguerrero, A. M., Martínez-Barón, D., Murgueitía, E., & Vázquez-Rowe, I. (2022). The sustainable transformation of the Colombian cattle sector: Assessing its circularity. PLOS Climate, 1(10), e0000074. [CrossRef]
- Castro-Nuñez, A., Buriticá, A., Gonzalez, C., Villarino, E., Holmann, F., Perez, L., del Río, M., Sandoval, D., Eufemia, L., Löhr, K., Durango, S., Lana, M., Sotelo, S., Rivera, O., Loboguerrero, A. M., & Quintero, M. (2021). The risk of unintended deforestation from scaling sustainable livestock production systems. Conservation Science and Practice, 3(9), e495. [CrossRef]
- Lerma, L. M., Díaz Baca, M. F., & Burkart, S. (2023). Sustainable beef labeling in Latin America and the Caribbean: Initiatives, developments, and bottlenecks. Frontiers in Sustainable Food Systems, 7, 1148973. [CrossRef]
- Calle, Z., Murgueitio, E., Chará, J., Molina, C. H., Zuluaga, A. F., & Calle, A. (2013). A strategy for scaling-up intensive silvopastoral systems in Colombia. Journal of Sustainable Forestry, 32(7), 677–693. [CrossRef]
- Zapata, C., Robalino, J., & Solarte, A. (2015). Influencia del pago por servicios ambientales y otras variables biofísicas y socioeconómicas en la adopción de sistemas silvopastoriles a nivel de finca. Livestock Research for Rural Development, 27(4). https://lrrd.cipav.org.co/lrrd27/4/zapa27063.html.
- Zepeda Cancino, R. M., Velasco Zebadúa, M. E., Nahed Toral, J., Garay, A. H., & Martínez Tinajero, J. J. (2016). Adoption of silvopastoral systems and the sociocultural context of producers: Support and limitations. Revista Mexicana de Ciencias Pecuarias, 7(4), 471–488. https://www.scielo.org.mx/scielo.php?pid=S2007-11242016000400471&script=sci_arttext&tlng=en.
- Tschopp, M., Ceddia, M. G., Inguaggiato, C., Bardsley, N. O., & Hernández, H. (2020). Understanding the adoption of sustainable silvopastoral practices in Northern Argentina: What is the role of land tenure? Land Use Policy, 99, 105092. [CrossRef]
- Tschopp, M., Ceddia, M. G., & Inguaggiato, C. (2022). Adoption of sustainable silvopastoral practices in Argentina’s Gran Chaco: A multilevel approach. Journal of Arid Environments, 197, 104657. [CrossRef]
- Raes, L., Speelman, S., & Aguirre, N. (2017). Farmers’ preferences for PES contracts to adopt silvopastoral systems in Southern Ecuador, revealed through a choice experiment. Environmental Management, 60(2), 200–215. [CrossRef]
- Puppo, L., Aguerre, M., Camio, G., Hayashi, R., & Morales, P. (2018). Evaluación del riego por melgas en los suelos del sur del Uruguay: Uso del modelo WinSRFR, resultados preliminares. Agrociencia, 22(2), 113–121. http://www.scielo.edu.uy/scielo.php?script=sci_arttext&pid=S2301-15482018000200079.
- Lee, S., Bonatti, M., Löhr, K., Palacios, V., Lana, M. A., & Sieber, S. (2020). Adoption potentials and barriers of silvopastoral systems in Colombia: Case of Cundinamarca region. Cogent Environmental Science, 6(1), 1823632. [CrossRef]
- Enciso, K., Triana, N., Díaz, M., & Burkart, S. (2022). On (dis)connections and transformations: The role of the agricultural innovation system in the adoption of improved forages in Colombia. Frontiers in Sustainable Food Systems, 5, 741057. [CrossRef]
- Charry, A., Narjes, M., Enciso, K., Peters, M., & Burkart, S. (2019). Sustainable intensification of beef production in Colombia—Chances for product differentiation and price premiums. Agricultural and Food Economics, 7(1), 1–18. [CrossRef]
- Lerma, L. M., Díaz Baca, M. F., & Burkart, S. (2022). Public policies for the development of a sustainable cattle sector in Colombia, Argentina, and Costa Rica: A comparative analysis (2010–2020). Frontiers in Sustainable Food Systems, 6, 722522. [CrossRef]
- Enciso, K., Sotelo, M., Peters, M., & Burkart, S. (2019). The inclusion of Leucaena diversifolia in a Colombian beef cattle production system: An economic perspective. Tropical Grasslands-Forrajes Tropicales, 7(4), 359–369. [CrossRef]
- Gonzalez Quintero, R., García, E. H., Florez, F., Burkart, S., & Arango, J. (2024). A case study on enhancing dairy cattle sustainability: The impact of silvopastoral systems and improved pastures on milk carbon footprint and farm economics in Cauca department, Colombia. Agroforestry Systems. [CrossRef]
- Díaz, M. F., Moreno Lerma, L., & Burkart, S. (2024). How do sustainability policies emerge in the Colombian political system? A Kaleidoscope Model analysis of the policy for sustainable cattle 2022-2050. Cleaner and Circular Bioeconomy, 7, 100075. [CrossRef]
- Alegre, J., Lao, C., Silva, C., & Schrevens, E. (2017). Recovering degraded lands in the Peruvian Amazon by cover crops and sustainable agroforestry systems. Peruvian Journal of Agronomy, 1(1), 1–7. [CrossRef]
- Alegre, J., Sánchez, Y., Pizarro, D., & Gómez, C. (2019). Manejo de los suelos con sistemas silvopastoriles en las regiones de amazonas y San Martín. Universidad Nacional Agraria La Molina (UNALM), Programa Nacional de Innovación Agraria (PNIA).
- Barrios-Pérez, C., Rahn, E., Sulca, S., & Alvarez Toro, P. (2023). Fortaleciendo el sector agrícola en San Martín, Perú a partir de nuevos servicios agroclimáticos. Blog.
- Banco Central de Reserva del Perú. (2021). Actividad económica: enero 2021 resumen (Notas de Estudios Del BCRP No. 21). https://www.bcrp.gob.pe/docs.
- Banco Central de Reserva del Perú. (2023a). IPC. BCRPData. https://estadisticas.bcrp.gob.pe/estadisticas/series/anuales/resultados/PM05217PA/html.
- Banco Central de Reserva del Perú. (2023b). San Martín: Síntesis de actividad económica, marzo 2023. Sucursal Iquitos.
- Banco Central de Reserva del Perú. (2023c). Tipo de cambio nominal (32 series). BCRPData. https://estadisticas.bcrp.gob.pe/estadisticas/series/mensuales/tipo-de-cambio-nominal.
- Bernardy, D., Jesus, L. C. de, Ziembowicz, M. M., Weiler, E. B., & Farias, J. A. de. (2022). Production and financial feasibility in silvopastoral systems in small rural property. Revista Árvore, 46, 1–7. [CrossRef]
- Campanhola, C., & Pandey, S. (2019). Sustainable livestock and animal-sourced food. In C. Campanhola & S. Pandey (Eds.), Sustainable food and agriculture (pp. 225–232). Elsevier. [CrossRef]
- Castañeda-Álvarez, N. P., Álvarez, F., Arango, J., Chanchy, L., García, G. F., Sánchez, V., Solarte, A., Sotelo, M., & Zapata, C. (2016). Especies vegetales útiles para sistemas silvopastoriles del Caquetá, Colombia. Deutsche Gesellschaft Für Internationale Zusammenarbeit (GIZ) GmbH; Centro Internacional de Agricultura Tropical (CIAT).
- Centro de Estudios Para La Preparación y Evaluación Socioeconómica de Proyectos. (2017). Indicadores de rentabilidad (Boletín Número V).
- Chará, J., Reyes, E., Peri, P., Otte, J., Arce, E., & Schneider, F. (2018). Sistemas silvopastoriles y su contribución al uso eficiente de los recursos y los objetivos de desarrollo sostenible: Evidencia desde América Latina. FAO, CIPAV and Agri Benchmark.
- Chará, J., Reyes, E., Peri, P., Otte, J., Arce, E., & Schneider, F. (2019). Silvopastoral systems and their contribution to improved resource use and sustainable development goals: Evidence from Latin America. FAO, CIPAV and Agri Benchmark.
- Chizmar, S., Castillo, M., Pizarro, D., Vasquez, H., Bernal, W., Rivera, R., Sills, E., Abt, R., Parajuli, R., & Cubbage, F. (2020). A discounted cash flow and capital budgeting analysis of silvopastoral systems in the Amazonas region of Peru. Land, 9(10), 353. [CrossRef]
- Choudhary, V., Arce, C., D’Alessandro, P., Giertz, Å., Suit, K. C., Johnson, T. J., Baedeker, T., & Caballero, R. J. (2016). Agricultural sector risk assessment: Methodological guidance for practitioners. The World Bank.
- Coordinadora Nacional de Las Fundaciones Produce (COFUPRO). (2014). Sistemas silvopastoriles intensivos, base de la productividad, creación de valor y sostenibilidad de la ganadería del trópico de México. Premio Innovagro 2014 El Fruto Del Ingenio.
- Contexto Ganadero. (2023). Perú promoverá el uso de fertilizantes orgánicos. https://www.contextoganadero.com/internacional/peru-promovera-el-uso-de-fertilizantes-organicos.
- Cook, B., Pengelly, B., Schultze-Kraft, R., Taylor, M., Burkart, S., Cardoso Arango, J., González Guzmán, J., Cox, K., Jones, C., & Peters, M. (2020). Tropical forages: An interactive selection tool. International Center for Tropical Agriculture (CIAT) & International Livestock Research Institute (ILRI).
- Cubbage, F., Balmelli, G., Bussoni, A., Noellemeyer, E., Pachas, A. N., Fassola, H., Colcombet, L., Rossner, B., Frey, G., Dube, F., de Silva, M. L., Stevenson, H., Hamilton, J., & Hubbard, W. (2012). Comparing silvopastoral systems and prospects in eight regions of the world. Agroforestry Systems, 86(3), 303–314. [CrossRef]
- Cuevas-Reyes, V., Reyes Jimenez, J. E., Borja Bravo, M., Loaiza Meza, A., Sánchez Toledano, B. I., Moreno Gallegos, T., & Rosales Nieto, C. (2020). Evaluación financiera y económica de un sistema silvopastoril intensivo bajo riego. Revista Mexicana de Ciencias Forestales, 11(62), 1–22. [CrossRef]
- Dirección Regional Agraria San Martín (DRASAM). (2007). Plan de desarrollo ganadero para la región San Martín 2007 – 2016. Gobierno Regional de San Martín.
- Durango, S. G., Barahona, R., Bolívar, D., Chirinda, N., & Arango, J. (2021). Feeding strategies to increase nitrogen retention and improve rumen fermentation and rumen microbial population in beef steers fed with tropical forages. Sustainability, 13(18), 1–19. [CrossRef]
- Echevarría, M., Pizarro, D., & Gómez, C. (2019). Alimentación de ganadería en sistemas silvopastoriles de la Amazonía peruana. Universidad Nacional Agraria La Molina (UNALM), Programa Nacional de Innovación Agraria (PNIA).
- Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA). (1984). Brachiaria brizantha cv. Marandu. Centro Nacional de Pesquisas de Gado de Corte.
- Erazo, M. (2023). La importancia de los sistemas silvopastoriles para la recuperación de los bosques y suelos de la Amazonía peruana. Universidad Nacional Agraria La Molina (UNALM).
- Estrada López, I., Esparza Jiménez, S., Albarrán Portillo, B., Yong Angel, G., Rayas Amor, A. A., & García Martínez, A. (2018). Evaluación productiva y económica de un sistema silvopastoril intensivo en bovinos doble propósito en Michoacán, México. Ciencia Ergo Sum, 25(3), 1–13. [CrossRef]
- Franzel, S., Scherr, S., Coe, R., Cooper, P., & Place, F. (2002). Methods for assessing agroforestry adoption potential. In S. Franzel & S. J. Scherr (Eds.), Trees on the farm (pp. 11–35). CAB International and ICRAF.
- Gomes da Silva, I. A., Dubeux, J. C. B., de Melo, A. C. L., da Cunha, M. V., dos Santos, M. V. F., Apolinário, V. X. O., & de Freitas, E. V. (2021). Tree legume enhances livestock performance in a silvopasture system. Agronomy Journal, 113(1), 358–369. [CrossRef]
- Grebner, D. L., Bettinger, P., Siry, J. P., & Boston, K. (2021). Introduction to forestry and natural resources (2nd ed.). Elsevier. [CrossRef]
- Helguera Pereda, L., & Lanfranco Crespo, B. (2006). Riesgo y rentabilidad en empresas ganaderas (Serie Técnica N° 157). Instituto Nacional de Investigación Agropecuaria (INIA).
- Huang, J., & Hartemink, A. E. (2020). Soil and environmental issues in sandy soils. Earth-Science Reviews, 208, 103295. [CrossRef]
- Instituto Interamericano de Cooperación para la Agricultura (IICA), Ministerio de Agricultura (MA), United States Department of Agriculture (USDA), & Ministerio de Economía, Planificación y Desarrollo (MEPyD). (2016). Establecimiento y uso de sistemas silvopastoriles en República Dominicana. Programa de Préstamos al Sector Agropecuario Agroindustrial y Comercial (PRESAAC).
- Instituto Nacional de Defensa de La Competencia y de La Protección de La Propiedad Intelectual (INDECOPI). (2022). Informe preliminar: Estudio de mercado sobre el sector lácteo en el Perú.
- Instituto Nacional de Estadística e Informática (INEGI). (2023). Perú: Compendio estadístico 2023. Sistema Estadístico Nacional.
- Islam, M. A., Mugloo, J. A., Raj, A., Bhat, G. M., Wani, A. A., Gatoo, A. A., Malik, A. R., Pala, N. A., & Shah, M. (2022). Agroforestry strategy for revitalizing fodder security in Kashmir Himalaya, India. Agricultural Research, 11(3), 528–538. [CrossRef]
- Jiménez-Ferrer, G., Mendoza-Martínez, G., Soto-Pinto, L., & Alayón-Gamboa, A. (2015). Evaluation of local energy sources in milk production in a tropical silvopastoral system with Erythrina poeppigiana. Tropical Animal Health and Production, 47(5), 903–908. [CrossRef]
- Jose, S., & Dollinger, J. (2019). Silvopasture: A sustainable livestock production system. Agroforestry Systems, 93, 1–9. [CrossRef]
- Lagrange, S. P., MacAdam, J. W., & Villalba, J. J. (2021). The use of temperate tannin-containing forage legumes to improve sustainability in forage–livestock production. Agronomy, 11(11), 2264. [CrossRef]
- Lemes, A. P., Garcia, A. R., Pezzopane, J. R. M., Brandão, F. Z., Watanabe, Y. F., Cooke, R. F., Sponchiado, M., de Paz, C. C. P., Camplesi, A. C., Binelli, M., & Gimenes, L. U. (2021). Silvopastoral system is an alternative to improve animal welfare and productive performance in meat production systems. Scientific Reports, 11, 14092. [CrossRef]
- Libreros, H. F. (2015). Experiencias locales: Sistemas silvopastoriles: Opción para la mitigación y adecuación al cambio climático en bosque seco tropical. Revista Semillas. https://www.semillas.org.co/es/sistemas-silvopastoriles-opci.
- Mahecha, L., Escobar, J., Suárez, J., & Restrepo, L. (2007). Tithonia diversifolia (hemsl.) Gray (botón de oro) como suplemento forrajero de vacas F1 (Holstein por Cebú). Livestock Research for Rural Development, 19(2), 1–7.
- Marcelo-Bazán, F. E., Mantilla Chávez, W., Baselly Villanueva, J. R., Vargas Aldave, J. C., & Pajares Gallardo, U. (2022). Uso potencial de Eucalyptus viminalis Labill. para la captura de carbono en un sistema silvopastoril, Perú. Colombia Forestal, 26(1), 64–78. [CrossRef]
- Marques Filho, W. C., Barbosa, G. F., Cardoso, D. L., Ferreira, A. D., Pedrinho, D. R., Bono, J. A. M., Souza, C. C. de, & Frainer, D. M. (2017). Productive sustainability in a silvopastoral system. Bioscience Journal, 10–18. [CrossRef]
- Mavisoy, H., Vallejos, A. R. R., Narváez-Herrera, J. P., Sánchez, Á., Fangueiro, D., & de Almeida, A. M. (2024). Using silvopastoral systems for the mitigation of greenhouse gas emissions from livestock in the Colombian Amazon. Agroforestry Systems, 98(2), 337–352. [CrossRef]
- Ministerio de Economía y Finanzas (MEF). (2021). Guía general para la identificación, formulación y evaluación de proyectos de inversión: Módulo 3: Evaluación.
- Ministerio de Desarrollo Agrario y Riego (MIDAGRI). (2019). Midagri impulsa producción y consumo de carne para luchar contra la anemia infantil. Nota de Prensa. https://www.gob.pe/institucion/midagri/noticias/52971-minagri-impulsa-produccion-y-consumo-de-carne-para-luchar-contra-la-anemia-infantil.
- Ministerio de Desarrollo Agrario y Riego (MIDAGRI). (2023a). Anuario estadístico: Producción ganadera y avícola 2022.
- Ministerio de Desarrollo Agrario y Riego (MIDAGRI). (2023b). Consideraciones técnicas para la consolidación de un modelo de ganadería tropical sostenible en el Perú.
- Ministerio de Desarrollo Agrario y Riego (MIDAGRI). (2023c). Pastos naturales. https://www.midagri.gob.pe/portal/datero/40-sector-agrario/situacion-de-las-actividades-de-crianza-y-producci/306-pastos-naturales?start=16.
- Miranda, J. J. (2022). Gestión de proyectos (9th ed.). MM Editores.
- Osman, K. T. (2018). Sandy soils. In Management of soil problems (pp. 37–65). Springer International Publishing. [CrossRef]
- Park, C. S. (2007). Contemporary engineering economics (4th ed.). Pearson Prentice Hall.
- Peri, P. L., Dube, F., & Varella, A. C. (2016). Silvopastoral systems in the subtropical and temperate zones of South America: An overview. In Silvopastoral systems in Southern South America (Vol. 11). Springer.
- Perulactea. (2012). Girolando: Una Mirada al Ganado Lechero Tropical. Noticias Internacionales. https://perulactea.com/girolando-una-mirada-al-ganado-lechero-tropical/#:~:text=La%20Girolando%20es%20considerada%20la,un%20rendimiento%20muy%20satisfactorio%20econ%C3%B3micamente.
- Perulactea. (2014). Girolando: una Raza para Producir Leche en el Trópico. https://perulactea.com/girolando-una-raza-para-producir-leche-en-el-tropico/?amp-wp-skip-redirect=1Perulactea. (2015). El pasto Brachiaria: Sus híbridos e introducción al Perú – Segunda parte. Perulactea. https://perulactea.com/el-pasto-brachiaria-sus-hibridos-e-introduccion-al-peru-segunda-parte/.
- Pizarro, D., Vásquez, H., Bernal, W., Fuentes, E., Alegre, J., Castillo, M. S., & Gómez, C. (2020). Assessment of silvopasture systems in the northern Peruvian Amazon. Agroforestry Systems, 94, 173–183. [CrossRef]
- Rade, D. Y., Cañadas, A., Zambrano, C., Molina, C., Ormaza, A., & Wehenkel, C. (2017). Viabilidad económica y financiera de sistemas silvopastoriles con Jatropha curcas L. en Manabí, Ecuador. Revista MVZ Córdoba, 22(3), 6241–6255. [CrossRef]
- Raza, A., Zahra, N., Hafeez, M. B., Ahmad, M., Iqbal, S., Shaukat, K., & Ahmad, G. (2020). Nitrogen fixation of legumes: Biology and physiology. In The plant family Fabaceae (pp. 43–74). Springer Singapore. [CrossRef]
- Rivera, J. E., Cuartas, C., Naranjo, J., Tafur, O., Hurtado, E., Arenas, F., Chará, J., & Murgueitio, E. (2015). Efecto de la oferta y el consumo de Tithonia diversifolia en un sistema silvopastoril intensivo (SSPi), en la calidad y productividad de leche bovina en el piedemonte Amazónico colombiano. Livestock Research for Rural Development, 27(10), 1–9.
- Rivera, J. E., Villegas, G., Chará, J., Durango, S. G., Romero, M. A., & Verchot, L. (2022). Effect of Tithonia diversifolia (Hemsl.) A. Gray intake on in vivo methane (CH4) emission and milk production in dual-purpose cows in the Colombian Amazonian piedmont. Translational Animal Science, 6(4), 1–12. [CrossRef]
- Rivera, J. E., Villegas, G. O., Serna, L., Chará, J., & Murgueitio, E. (2023). Potencial de los sistemas silvopastoriles con Leucaena leucocephala para incrementar la producción bovina y mitigar las emisiones de gases de efecto invernadero en el caribe colombiano. In J. Rivera, C. Viñoles, J. Fedrigo, A. Bussoni, P. Peri, L. Colcombet, E. Murgueitio, A. Quadrelli, & J. Chará (Eds.), Sistemas silvopastoriles: Hacia una diversificación sostenible (pp. 1–1349). Editorial CIPAV.
- Rogerio, M., Calsavara, L. H., Ribeiro, R. S., Pereira, L. G., de Freitas, D. S., Paciullo, D. S., Barahona, R., Rivera, J. E., Chará, J., & Murgueitio, E. (2017). Feeding ruminants using Tithonia diversifolia as forage. Journal of Dairy, Veterinary & Animal Research, 5(4). [CrossRef]
- Roque Alcarraz, R. E., Silva Del Águila, J. G., & Barrera Lozano, M. (2022). Sistemas silvopastoriles para la producción ganadera en el Centro de Producción Limón Rocío de la UNSM-T. Revista de Veterinaria y Zootecnia Amazónica, 2(2), e398. [CrossRef]
- Sandoval, D. F., Florez, J. F., Enciso Valencia, K. J., Sotelo Cabrera, M. E., & Burkart, S. (2023). Economic-environmental assessment of silvo-pastoral systems in Colombia: An ecosystem service perspective. Heliyon, 9(8), 1–19. [CrossRef]
- Schinato, F., Munka, M. C., Olmos, V. M., & Bussoni, A. T. (2023). Microclimate, forage production and carbon storage in a eucalypt-based silvopastoral system. Agriculture, Ecosystems & Environment, 344, 108290. [CrossRef]
- Thilakarathna, M. S., Papadopoulos, Y. A., Rodd, A. V., Grimmett, M., Fillmore, S. A. E., Crouse, M., & Prithiviraj, B. (2016). Nitrogen fixation and transfer of red clover genotypes under legume–grass forage-based production systems. Nutrient Cycling in Agroecosystems, 106, 233–247. [CrossRef]
- Vilani, L., Zanin, A., Lizot, M., Trentin, M. G., Afonso, P., & Lima, J. D. (2024). A framework for investment and risk assessment of agricultural projects. Journal of Risk and Financial Management, 17(9), 378. [CrossRef]
- Zavala Pope, M. (2010). Análisis del sector lácteo peruano. Cadena de la Leche, Ministerio de Agricultura.


| Information of the production system | Scenarios | |||
|---|---|---|---|---|
| Traditional | SPSi PS | SPSi MS | SPSi OS | |
| Milk productivity (l cow-1 day-1) | 5 | 6.5 | 6.5 | 6.5 |
| Annual lactation period (days) | 305 | 305 | 305 | 305 |
| Stocking rate (animals ha-1) | 1 | 1 | 2 | 3 |
| Weight of 1 TLU (kg) | 450 | 450 | 450 | 450 |
| Weight of calf at weaning (kg)* | 150 | 150 | 150 | 150 |
| Productive lifespan of the system (years) | 8 | 8 | 8 | 8 |
| Variable | Minimum | Most likely | Maximum |
|---|---|---|---|
| Milk price (US$ l-1) | 0.32 | 0.34 | 0.36 |
| Milk productivity (l cow-1) | 6.2 | 6.5 | 6.8 |
| Stocking rate (cows ha-1) | 1 | 2 | 3 |
| Discount rate (%) | 7.6 | 8.0 | 8.4 |
| Variables | Traditional | SPSi PS | SPSi MS | SPSi OS |
|---|---|---|---|---|
| Milk price (US$ l-1) | 0.34 | 0.34 | 0.34 | 0.34 |
| Beef price (US$ kg liveweight-1) | 1.54 | 1.54 | 1.54 | 1.54 |
| Animal acquisition (US$ animal-1) | 1,567 | 1,567 | 1,567 | 1,567 |
| Clearing, burning, and others* | 522 | - | - | - |
| Chemical fertilizers* | 157 | - | - | - |
| Fencing | 783 | 783 | 783 | 783 |
| Planting | 183 | 183 | 183 | 183 |
| Management cost (US$ cow-1 y-1) | 261 | 418 | 418 | 418 |
| Annual income from milk sales (US$ TLU-1) | 518 | 673 | 673 | 673 |
| Annual income from beef sales (US$ calf-1)** | 232 | 232 | 232 | 232 |
| Indicator | Traditional | SPSi PS | SPSi MS | SPSi OS |
|---|---|---|---|---|
| NPV (US$) | 61 | 9,564 | 15,014 | 20,465 |
| IRR (%) | 8.17 | 26.63 | 29.02 | 30.33 |
| BC | 1.006 | 1.628 | 1.632 | 1.634 |
| PB (years) | 7.98 | 5.78 | 4.91 | 4.55 |
| Notes: The discount rate is 8% and the evaluation is for 2.5 hectares. | ||||
| Indicator | Measure | Traditional | SPSi PS | SPSi MS | SPSi OS |
|---|---|---|---|---|---|
| NPV | Mean (US$) | 33 | 9,555 | 15,021 | 20,455 |
| SD* | 144.34 | 289.85 | 486.07 | 680.53 | |
| CV** | 4.3726 | 0.0303 | 0.0324 | 0.0333 | |
| Prob(NPV<0)*** | 0.41 | 0.00 | 0.00 | 0.00 | |
| IRR | Mean (%) | 8.09 | 26.62 | 29.03 | 30.33 |
| *SD: Standard deviation; **CV: Confindece Interval; ***Prob: Probability. | |||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
