Submitted:
03 March 2025
Posted:
03 March 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. Undesirable Output Super-Efficiency Slacks-Based Measure Model
2.2.2. Malmquist Index
2.2.3. Moran’s I
2.3. Indices and Data
2.3.1. Study Period
2.3.2. Input Indices
2.3.3. Output Indices
3. Results
3.1. Analysis of Temporal Changes of Cotton Green Production Efficiency
3.1.1. Characteristics of Temporal Variation in Green Production Efficiency of Cotton
3.1.2. Dynamic Analysis of Green Efficiency Changes in Cotton Production in Xinjiang
3.2. Analysis of Spatial Pattern of Cotton Green Production Efficiency
3.2.1. Overall Spatial Characteristics of Cotton Green Production Efficiency
3.2.2. Spatial Correlation of Cotton Green Production Efficiency
4. Conclusions and Suggestions
4.1. Conclusions
4.2. Suggestions
Author Contributions
Funding
Conflicts of Interest
References
- IPCC. Climate change 2021: The physical science basis. Contribution of’ working group I to the sixth assessment report of’ the intergovernmental panel on climate change. New York: Cam-bridge University Press 2021.
- Golcher, S.C.; Visseren-Hamakers, J.I. Framing and integration in the global forest, agriculture and climate change nexus. J. Environment and Planning C: Politics and Space, 2018, 36, 1415–1436. [Google Scholar]
- LI, R.; Geng, S. Impacts of Climate Change on Agriculture and Adaptive Strategies in China. J. Journal of Integrative Agriculture, 2013, 12, 1402–1408. [Google Scholar]
- Wang, X.; Maeda, K.; Hokazono, S.; et al. Measuring the Effects of a Sliding Scale Duty System on China’s Cotton Market: A Spatial Equilibrium Approach. J. Agribusiness, 2014, 30, 345–365. [Google Scholar]
- Zhu, Y.Q.; Sun, L.; Luo, Q.Y.; Chen, H.Y.; Yang, Y.D. Spatial optimization of cotton cultivation in Xinjiang: A climate change perspective. J. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION 2023, 124, 103523. [Google Scholar]
- Shanqing, Z.; Zongchao, P.; Jinglin, L.; et al. Changes in cotton planting zoning in southern Xinjiang under the background of climate warming. J. China Agricultural Meteorology 2015, 36, 594–601. [Google Scholar]
- Xiaoyan, T.; Xiaoheng, Z.; Liangzhi, Y. The impact of natural factors and policy interventions on the transformation of cotton production layout in China. J. Agricultural Technology and Economics 2020, 300, 79–93. [Google Scholar]
- Pengpeng, S. Climate Change and Cotton Planting Promotion in the Yellow River Basin during the Yuan Dynasty. J, 2024; 64. [Google Scholar]
- Huang, J.; Ji, F. Effects of climate change on phenological trends and seed cotton yields in oasis of arid regions. J. International Journal of Biometeorology 2015, 59, 877–888. [Google Scholar]
- Wang, H.; Gan, Y.; Wang, R.; et al. Phenological trends in winter wheat and spring cotton in response to climate changes in northwest China. J. Agricultural and Forest Meteorology, 2008, 148, 1242–1251. [Google Scholar]
- Luo, Q.; Bange, M.; Clancy, L. Cotton crop phenology in a new temperature regime. J. Ecological Modelling, 2014, 285, 22–29. [Google Scholar]
- Han, W.; Liu, S.; Lei, Y.; et al. Climate warming accelerates cotton growth while cultivar shifts extend the growth period. J. Field Crops Research 2023, 293, 108850. [Google Scholar]
- Yang, Y.; Yang, Y.; Han, S.; et al. Prediction of cotton yield and water demand under climate change and future adaptation measures. J. Agricultural Water Management 2014, 144, 42–53. [Google Scholar]
- Gérardeaux, E.; Sultan, B.; Palaï, O.; et al. Positive effect of climate change on cotton in 2050 by CO2 enrichment and conservation agriculture in Cameroon. J. Agronomy for Sustainable Development, 2013, 33, 485–495. [Google Scholar]
- Naveed, M.; Hongshi, H.E.; Shengwei, Z.; et al. Spatial Pattern of Cotton Yield Variability and Its Response to Climate Change in Cotton Belt of Pakistan. J. Chinese Geographical Science 2023, 351–362. [Google Scholar]
- Li, N.; Li, Y.; Yang, Q.; et al. Simulating climate change impacts on cotton using AquaCrop model in China. J. Agricultural Systems, 2024, 216, 103897. [Google Scholar]
- Abuduwaili, J. The climatic and hydrological changes and environmental responses recorded in lake sediments of Xinjiang, China. J. Journal of Arid Land 2011, 3, 1–8. [Google Scholar]
- B.Q.W.A.; A.P.M.Z.; C.D.H.Q. New perspectives on ‘warming–wetting’ trend in Xinjiang, China. J, 2020; 11.
- Cao, K. ; J., Gao. Assessment of climatic conditions for tourism in Xinjiang, China. J, 14.
- A.X.L.T.; B.X.L.; C.Y.H. Features of climate change and their effects on glacier snow melting in Xinjiang, China - ScienceDirect. J, 2013.
- Lin, S.; Wang, Q.; Deng, M.; et al. Assessing the influence of water fertilizer, and climate factors on seed cotton yield under mulched drip irrigation in Xinjiang Agricultural Regions. J. European Journal of Agronomy 2024, 152, 127034. [Google Scholar]
- China National Bureau of Statistics China Statistical Yearbook. M, 2023.
- Xue, L.; Qu, A.; Guo, X.; et al. Research on Environmental Performance Measurement and Influencing Factors of Key Cities in China Based on Super-Efficiency SBM-Tobit Model. J. Sustainability, 2024, 16, 4792. [Google Scholar]
- Yang, T.; Chen, W.; Zhou, K.; et al. Regional energy efficiency evaluation in China: A super efficiency slack-based measure model with undesirable outputs. J. Journal of Cleaner Production, 2018, 198, 859–866. [Google Scholar]
- Wentsao, P.; Meier, Z.; Yingying, Z.; et al. Research on sustainable development and efficiency of China’s E-Agriculture based on a data envelopment analysis-Malmquist model. J Technological Forecasting & Social Change 2021, 1621, 20298. [Google Scholar]
- Asmild, M.; Baležentis, T.; Hougaard, L.J. Multi-directional productivity change: MEA-Malmquist. J. Journal of Productivity Analysis, 2016, 46, 109–119. [Google Scholar]
- W. L.M.; Nicolette, M.; T.Y.B. Decomposition of Green Agriculture Productivity for Policy in Africa: An Application of Global Malmquist–Luenberger Index. J. Sustainability, 2023, 15, 1645–1645. [Google Scholar]
- Perry, M.E.; Dezzani, J.R.; Seavert, F.C.; et al. Spatial variation in tree characteristics and yield in a pear orchard. J. Precision Agriculture, 2010, 11, 42–60. [Google Scholar]
- Jiaxing, P.; Hengji, L.; Chengpeng, L.; et al. Regional Differences and Dynamic Evolution of Carbon Emission Intensity of Agriculture Production in China. J. International journal of environmental research and public health, 2020, 17, 7541. [Google Scholar]
- Xinyao, W.; Dan, L.; Yue, Y. Current Situation and Optimization Countermeasures of Cotton Subsidy in China Based on WTO Rules. J. Agriculture, 2022, 12, 1245–1245. [Google Scholar]
- Gao, M. Re estimation of Agricultural Productivity under Climate Change. J. China Soft Science 2018, 5, 26–39. [Google Scholar]
- Shuai, C.; Jintao, X.; Haipeng, Z. The Impact of Climate Change on China’s Grain Production: An Empirical Analysis Based on County level Panel Data. J. China Rural Economy 2016, 5, 2–15. [Google Scholar]
- Aytop, Y. Determination of Energy Consumption and Technical Efficiency of Cotton Farms in Türkiye. J. Sustainability, 2023, 15, 11194. [Google Scholar]
- Arif, M.W.; Amin, M. Measuring efficiency of cotton cultivation in Pakistan: a restricted production frontier study. J. Journal of the science of food and agriculture, 2014, 94, 3038–45. [Google Scholar]
- Candemir, S. Efficiency and Functional analysis of cotton production in Turkey: case of Kahramanmaras Province. J. custos e agronegocio on line 2021, 17, 100–122. [Google Scholar]
- Grkem, rük. Measurement of Input Usage Efficiency in Cotton Production in Diyarbakir Province, Turkey. J. Custos e Agronegocio 2020, 16, 55–71.
- Cobanoglu. ; Ferit. Measuring the technical efficiency of cotton farms in Turkey using stochastic frontier and data envelopment analysis. J. Outlook on Agriculture 2013, 42, 125–131. [Google Scholar]
- Oruk, G.; Baran, M.F. Measurement of technical efficiency in cotton production in Batman Province, Turkey: a comparison of DEA and SFA. J. custos e agronegocio on line 2022, 18, 271–284. [Google Scholar]
- Theriault, V.; Serra, R. Institutional Environment and Technical Efficiency: A Stochastic Frontier Analysis of Cotton Producers in West Africa. J. Journal of Agricultural Economics 2014, 65, 383–405. [Google Scholar]
- Shafiq, M.; Rehman, T. The extent of resource use inefficiencies in cotton production in Pakistan’s Punjab: an application of Data Envelopment Analysis. J. Agricultural Economics, 2000, 22, 321–330. [Google Scholar]
- Theodoridis, A.; Hasanov, S.; Abruev, A. Efficiency and Productivity Change Analysis of Cotton Production in Uzbekistan. J. Outlook on Agriculture, 2014, 43, 259–263. [Google Scholar]
- Hui, Y.; Fawen, Y. Research on Green Total Factor Productivity of Cotton in China - Based on Malmquist Luenberger Index Analysis. J, 2019; 10. [Google Scholar]



| 2002 | 2004 | 2006 | 2008 | 2010 | 2012 | 2014 | 2016 | 2018 | 2020 | |
| Shanshan County | 0.134 | 0.260 | 0.255 | 0.270 | 0.197 | 0.194 | 0.204 | 0.025 | 0.124 | 0.105 |
| Toksun County | 0.242 | 1.019 | 1.005 | 1.076 | 1.020 | 0.329 | 0.433 | 0.133 | 0.209 | 0.226 |
| Balikun Kazak Autonomous County | 0.126 | 0.071 | 0.058 | 0.112 | 0.123 | 0.121 | 0.109 | 0.006 | 0.134 | 0.132 |
| Yiwu County | 0.107 | 0.112 | 0.085 | 0.076 | 0.062 | 0.088 | 0.068 | 0.002 | 0.097 | 0.133 |
| Changji City | 0.233 | 0.348 | 0.401 | 0.402 | 0.368 | 0.495 | 0.401 | 0.141 | 0.420 | 0.408 |
| Fukang City | 0.129 | 0.152 | 0.189 | 0.079 | 0.081 | 1.089 | 1.126 | 0.007 | 0.271 | 0.379 |
| Hutubi County | 0.398 | 0.633 | 0.537 | 0.609 | 0.417 | 0.478 | 0.538 | 0.206 | 0.684 | 1.006 |
| Manas County | 1.098 | 1.061 | 1.009 | 1.047 | 1.018 | 0.773 | 1.003 | 0.403 | 1.002 | 0.794 |
| Jimusar County | 0.093 | 0.127 | 0.126 | 0.069 | 0.001 | 0.081 | 0.058 | 0.011 | 0.134 | 0.111 |
| Chabuchar Xibo Autonomous County | 0.135 | 0.155 | 0.211 | 0.341 | 0.200 | 0.188 | 0.108 | 0.004 | 0.101 | 0.107 |
| Huocheng County | 0.131 | 0.142 | 0.149 | 0.116 | 0.083 | 0.109 | 0.104 | 0.008 | 0.087 | 0.109 |
| Wusu City | 1.047 | 1.045 | 1.130 | 1.207 | 1.039 | 1.020 | 1.419 | 1.353 | 1.863 | 1.253 |
| Shawan City | 0.713 | 0.654 | 0.717 | 0.662 | 1.006 | 1.051 | 1.025 | 1.068 | 1.020 | 1.015 |
| Toli County | 0.032 | 0.096 | 0.102 | 0.093 | 0.115 | 0.110 | 0.119 | 0.010 | 0.129 | 0.137 |
| Hoboksar Mongol Autonomous County | 0.196 | 0.308 | 0.367 | 0.416 | 0.471 | 0.532 | 0.216 | 0.096 | 0.362 | 0.395 |
| Bole City | 0.588 | 1.001 | 0.628 | 0.565 | 0.492 | 0.653 | 0.445 | 0.455 | 0.477 | 0.505 |
| Jinghe County | 1.201 | 1.095 | 1.081 | 1.326 | 1.012 | 1.159 | 1.097 | 1.125 | 1.049 | 1.003 |
| Korla City | 0.554 | 1.013 | 1.041 | 0.696 | 1.005 | 0.838 | 1.077 | 1.436 | 0.750 | 0.600 |
| Luntai County | 0.525 | 0.595 | 0.522 | 0.655 | 1.019 | 1.064 | 1.047 | 1.001 | 1.175 | 1.008 |
| Yuli County | 1.896 | 1.554 | 1.343 | 1.477 | 1.384 | 1.449 | 1.289 | 1.260 | 1.291 | 1.477 |
| Ruoqiang County | 1.023 | 1.039 | 1.023 | 0.413 | 0.357 | 0.271 | 0.211 | 0.029 | 0.156 | 0.205 |
| Qiemo County | 0.759 | 1.120 | 1.089 | 1.651 | 1.312 | 1.084 | 0.487 | 0.228 | 0.443 | 0.331 |
| Yanqi Hui Autonomous County | 0.069 | 0.084 | 0.109 | 0.096 | 0.091 | 0.142 | 0.117 | 0.001 | 0.090 | 0.095 |
| Hejing County | 0.114 | 0.170 | 0.254 | 0.228 | 0.302 | 0.280 | 0.158 | 0.000 | 0.099 | 0.224 |
| Heshuo County | 0.274 | 0.443 | 1.013 | 0.627 | 0.451 | 0.468 | 0.403 | 0.047 | 0.248 | 0.139 |
| Bohu County | 0.103 | 0.168 | 0.326 | 0.326 | 0.248 | 0.239 | 0.185 | 0.035 | 0.192 | 0.224 |
| Aksu City | 1.028 | 1.016 | 0.718 | 0.815 | 1.117 | 1.038 | 0.706 | 1.471 | 0.631 | 0.702 |
| Wensu County | 0.785 | 0.601 | 0.644 | 0.655 | 0.735 | 0.690 | 0.499 | 1.166 | 0.415 | 0.374 |
| Kuche City | 0.593 | 0.662 | 0.585 | 0.496 | 0.516 | 0.593 | 0.902 | 1.192 | 1.233 | 0.757 |
| Shaya County | 1.030 | 0.818 | 1.001 | 0.752 | 0.777 | 0.789 | 1.057 | 1.635 | 1.158 | 1.457 |
| Xinhe County | 1.176 | 1.034 | 0.940 | 1.050 | 1.379 | 0.580 | 1.017 | 1.112 | 0.671 | 0.598 |
| Wushi County | 0.177 | 0.143 | 0.193 | 0.279 | 0.190 | 0.173 | 0.092 | 0.002 | 0.089 | 0.140 |
| Awati County | 1.009 | 1.005 | 0.836 | 0.709 | 1.013 | 1.365 | 1.386 | 0.441 | 0.781 | 1.045 |
| Keping County | 0.213 | 0.408 | 0.507 | 0.481 | 0.410 | 0.445 | 0.559 | 0.312 | 0.441 | 1.010 |
| Atushi City | 0.147 | 0.162 | 0.186 | 0.162 | 0.152 | 0.145 | 0.213 | 0.172 | 0.195 | 0.242 |
| Aketao County | 0.282 | 0.308 | 0.278 | 0.239 | 0.180 | 0.188 | 0.210 | 0.057 | 0.163 | 0.169 |
| Shufu County | 0.289 | 0.243 | 0.254 | 0.230 | 0.157 | 0.160 | 0.273 | 0.015 | 0.138 | 0.163 |
| Shule County | 1.018 | 1.006 | 0.552 | 0.395 | 0.317 | 0.422 | 1.308 | 1.235 | 0.410 | 0.475 |
| Yingjisha County | 0.204 | 0.316 | 0.334 | 0.298 | 0.271 | 0.195 | 0.331 | 0.183 | 0.229 | 0.279 |
| Zepu County | 1.015 | 0.620 | 0.538 | 0.446 | 0.200 | 0.202 | 0.293 | 0.067 | 0.161 | 0.177 |
| Shache County | 1.029 | 0.686 | 1.285 | 1.357 | 0.527 | 0.462 | 0.798 | 0.366 | 0.293 | 0.333 |
| Yecheng County | 1.045 | 0.358 | 0.360 | 0.389 | 0.224 | 0.233 | 0.414 | 0.202 | 0.254 | 0.290 |
| Makit County | 0.847 | 0.768 | 1.107 | 1.022 | 1.241 | 0.689 | 0.857 | 1.277 | 0.529 | 0.448 |
| Yuepuhu County | 0.550 | 0.355 | 0.497 | 0.326 | 0.339 | 0.335 | 0.711 | 0.546 | 0.547 | 0.566 |
| Jiashi County | 1.025 | 0.456 | 0.665 | 0.564 | 0.331 | 0.346 | 1.038 | 0.414 | 0.565 | 0.502 |
| Bachu County | 1.095 | 1.267 | 1.080 | 1.102 | 1.003 | 0.662 | 1.042 | 0.362 | 0.555 | 0.474 |
| Hotan County | 0.156 | 0.236 | 0.234 | 0.207 | 0.191 | 0.188 | 0.254 | 0.089 | 0.214 | 0.069 |
| Moyu County | 0.148 | 0.249 | 0.232 | 0.216 | 0.199 | 0.179 | 0.211 | 0.081 | 0.115 | 0.093 |
| Pishan County | 0.209 | 0.306 | 0.297 | 0.269 | 0.258 | 0.206 | 0.246 | 0.104 | 0.115 | 0.131 |
| Luopu County | 0.260 | 0.298 | 0.284 | 0.263 | 0.213 | 0.165 | 0.174 | 0.009 | 0.079 | 0.046 |
| Cele County | 0.146 | 0.236 | 0.300 | 0.291 | 0.263 | 0.209 | 0.226 | 0.036 | 0.113 | 0.138 |
| Yutian County | 0.194 | 0.215 | 0.251 | 0.339 | 0.285 | 0.208 | 0.264 | 0.057 | 0.129 | 0.160 |
| The average green production efficiency | 0.531 | 0.543 | 0.556 | 0.538 | 0.507 | 0.484 | 0.549 | 0.417 | 0.439 | 0.442 |
| The average production efficiency | 0.249 | 0.287 | 0.331 | 0.331 | 0.257 | 0.282 | 0.383 | 0.334 | 0.295 | 0.298 |
| year | MI | TC | EC | PEC | SEC |
| 2003 | 1.085 | 1.075 | 1.010 | 0.990 | 1.020 |
| 2004 | 1.168 | 1.115 | 1.047 | 0.996 | 1.051 |
| 2005 | 0.939 | 0.991 | 0.947 | 1.016 | 0.932 |
| 2006 | 1.177 | 1.111 | 1.060 | 0.979 | 1.082 |
| 2007 | 1.065 | 1.107 | 0.962 | 1.197 | 0.803 |
| 2008 | 0.917 | 0.952 | 0.964 | 0.808 | 1.193 |
| 2009 | 0.825 | 0.835 | 0.988 | 1.083 | 0.912 |
| 2010 | 0.900 | 0.950 | 0.948 | 0.951 | 0.997 |
| 2011 | 1.066 | 1.084 | 0.984 | 1.075 | 0.915 |
| 2012 | 0.986 | 1.022 | 0.964 | 1.005 | 0.960 |
| 2013 | 0.889 | 0.915 | 0.972 | 0.944 | 1.031 |
| 2014 | 1.360 | 1.221 | 1.113 | 1.163 | 0.957 |
| 2015 | 0.680 | 0.771 | 0.882 | 0.950 | 0.928 |
| 2016 | 0.733 | 1.479 | 0.495 | 0.915 | 0.541 |
| 2017 | 0.708 | 0.572 | 1.238 | 1.077 | 1.150 |
| 2018 | 0.779 | 0.862 | 0.905 | 0.990 | 0.914 |
| 2019 | 0.870 | 0.855 | 1.017 | 0.967 | 1.052 |
| 2020 | 0.925 | 0.978 | 0.946 | 0.940 | 1.007 |
| Average | 0.948 | 0.994 | 0.969 | 1.003 | 0.969 |
| MI | TC | EC | PEC | SEC | |
| Shanshan County | 0.945 | 0.905 | 0.951 | 1.136 | 1.086 |
| Toksun County | 1.011 | 1.109 | 1.065 | 1.019 | 0.868 |
| Balikun Kazak Autonomous County | 1.127 | 1.022 | 0.971 | 1.000 | 0.995 |
| Yiwu County | 1.070 | 0.941 | 0.994 | 0.858 | 0.929 |
| Changji City | 1.090 | 1.054 | 1.086 | 1.041 | 1.014 |
| Fukang City | 1.153 | 0.937 | 0.981 | 1.102 | 0.932 |
| Hutubi County | 1.127 | 1.039 | 1.120 | 1.049 | 1.039 |
| Manas County | 1.054 | 1.072 | 1.033 | 1.013 | 0.998 |
| Jimusar County | 0.948 | 0.864 | 0.939 | 1.046 | 0.813 |
| Chabuchar Xibo Autonomous County | 0.977 | 0.828 | 0.969 | 1.003 | 0.973 |
| Huocheng County | 0.993 | 0.950 | 0.949 | 1.056 | 1.026 |
| Wusu City | 1.092 | 1.036 | 1.073 | 1.050 | 1.014 |
| Shawan City | 1.082 | 1.090 | 1.021 | 1.012 | 1.003 |
| Toli County | 1.123 | 0.989 | 0.923 | 0.951 | 0.878 |
| Hoboksar Mongol Autonomous County | 1.139 | 1.071 | 0.994 | 1.006 | 0.988 |
| Bole City | 1.035 | 1.036 | 1.010 | 0.985 | 1.019 |
| Jinghe County | 1.044 | 1.134 | 0.948 | 1.001 | 0.947 |
| Korla City | 1.055 | 1.039 | 1.051 | 1.062 | 1.020 |
| Luntai County | 1.076 | 1.025 | 1.058 | 1.038 | 1.023 |
| Yuli County | 1.008 | 1.042 | 0.995 | 1.012 | 1.001 |
| Ruoqiang County | 0.966 | 0.988 | 0.890 | 1.007 | 1.018 |
| Qiemo County | 0.990 | 1.038 | 0.982 | 1.093 | 1.028 |
| Yanqi Hui Autonomous County | 1.032 | 0.935 | 0.892 | 1.238 | 1.116 |
| Hejing County | 0.991 | 0.942 | 1.000 | 1.072 | 0.999 |
| Heshuo County | 1.038 | 1.002 | 0.964 | 1.020 | 1.057 |
| Bohu County | 1.158 | 1.017 | 1.015 | 1.092 | 1.031 |
| Aksu City | 1.047 | 1.034 | 1.012 | 1.021 | 0.989 |
| Wensu County | 1.012 | 1.011 | 0.995 | 1.004 | 0.992 |
| Kuche City | 1.090 | 0.988 | 1.040 | 1.041 | 1.001 |
| Shaya County | 1.057 | 1.023 | 1.033 | 0.965 | 1.077 |
| Xinhe County | 1.065 | 1.018 | 1.042 | 0.998 | 1.026 |
| Wushi County | 0.854 | 0.753 | 0.851 | 1.122 | 0.848 |
| Awati County | 1.067 | 1.045 | 1.069 | 1.050 | 1.021 |
| Keping County | 1.067 | 0.990 | 1.112 | 1.047 | 1.226 |
| Atushi City | 1.098 | 1.065 | 1.032 | 1.014 | 1.024 |
| Aketao County | 0.941 | 1.010 | 1.047 | 1.045 | 1.027 |
| Shufu County | 0.847 | 1.030 | 0.941 | 1.032 | 0.931 |
| Shule County | 1.001 | 1.048 | 0.967 | 1.044 | 1.053 |
| Yingjisha County | 0.941 | 1.071 | 0.995 | 1.057 | 1.032 |
| Zepu County | 0.931 | 1.017 | 1.009 | 0.993 | 1.030 |
| Shache County | 0.968 | 1.066 | 0.961 | 1.086 | 0.986 |
| Yecheng County | 0.896 | 1.056 | 0.983 | 1.047 | 1.023 |
| Makit County | 0.862 | 0.966 | 0.896 | 0.966 | 0.912 |
| Yuepuhu County | 0.955 | 1.048 | 1.046 | 1.038 | 1.023 |
| Jiashi County | 0.862 | 1.033 | 0.905 | 0.987 | 1.014 |
| Bachu County | 1.010 | 1.035 | 1.046 | 1.032 | 0.997 |
| Hotan County | 0.995 | 0.998 | 0.993 | 1.056 | 0.950 |
| Moyu County | 0.931 | 0.980 | 1.002 | 1.049 | 0.955 |
| Pishan County | 0.978 | 0.999 | 1.004 | 1.084 | 1.062 |
| Luopu County | 0.743 | 0.757 | 0.870 | 1.124 | 0.911 |
| Cele County | 0.971 | 0.884 | 0.956 | 1.198 | 1.122 |
| Yutian County | 1.029 | 1.054 | 0.954 | 1.167 | 1.073 |
| 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | ||
| Moran’s I index | 0.162 | 0.181 | 0.149 | 0.217 | 0.294 | 0.239 | 0.251 | 0.224 | 0.284 | |
| Z-value | 1.970 | 1.846 | 1.815 | 2.215 | 2.878 | 2.395 | 2.519 | 2.277 | 2.794 | |
| P-value | 0.049 | 0.065 | 0.070 | 0.027 | 0.004 | 0.017 | 0.012 | 0.023 | 0.005 | |
| 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | |
| Moran’s I index | 0.249 | 0.140 | 0.172 | 0.095 | 0.125 | 0.238 | 0.229 | 0.282 | 0.197 | 0.190 |
| Z-value | 2.508 | 1.475 | 1.776 | 1.055 | 1.320 | 2.372 | 2.302 | 2.846 | 2.004 | 1.948 |
| P-value | 0.012 | 0.140 | 0.076 | 0.292 | 0.187 | 0.018 | 0.021 | 0.004 | 0.045 | 0.051 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).