Submitted:
02 March 2025
Posted:
03 March 2025
You are already at the latest version
Abstract
Keywords:
MSC: Primary 11N05; Secondary 11N13; 11Y11
1. Where Are Prime Numbers Used?
2. Networks of Keywords and Co-Authors of Scopus Documents on Prime Numbers
3. Julia Code for Checking Prime Numbers
- using Primes # Import the Primes package
- function compute_prime_stats()
- # Define the polynomial function
- f(x) = x^2 - x + 41
- total_count = 10^7
- prime_count = 0
- max_streak = 0
- current_streak = 0
- # Loop through values of x from 0 to total_count
- for x in 0:total_count
- value = f(x)
- if isprime(value)
- prime_count += 1
- current_streak += 1
- else
- max_streak = max(max_streak, current_streak)
- current_streak = 0
- end
- println("f($x) = $value -> Prime: ", isprime(value))
- end
- # Check in case the last numbers were primes
- max_streak = max(max_streak, current_streak)
- prime_percentage = (prime_count / total_count) * 100
- println("Percentage of prime numbers: $prime_percentage%")
- println("Maximum number of prime values: $max_streak")
- end
- # Execute the function
- @time compute_prime_stats()
4. Results of the Computational Experiment
| No. | a | b | c | Number of primes | Percentage |
|---|---|---|---|---|---|
| 1 | 1 | 1 | 41 | 30 | 100.0 |
| 2 | 1 | 3 | 43 | 30 | 100.0 |
| 3 | 1 | 5 | 47 | 30 | 100.0 |
| 4 | 1 | 7 | 53 | 30 | 100.0 |
| 5 | 1 | 9 | 61 | 30 | 100.0 |
| 6 | 1 | 11 | 71 | 30 | 100.0 |
| 7 | 1 | 13 | 83 | 30 | 100.0 |
| 8 | 1 | 15 | 97 | 30 | 100.0 |
| 9 | 1 | 17 | 113 | 30 | 100.0 |
| 10 | 1 | 19 | 131 | 30 | 100.0 |
| 11 | 1 | 21 | 151 | 30 | 100.0 |
| No. | a | b | c | Number of primes | Percentage |
|---|---|---|---|---|---|
| 1 | 1 | -61 | 971 | 40 | 100.0 |
| 2 | 1 | -59 | 911 | 40 | 100.0 |
| 3 | 1 | -57 | 853 | 40 | 100.0 |
| 4 | 1 | -55 | 797 | 40 | 100.0 |
| 5 | 1 | -53 | 743 | 40 | 100.0 |
| 6 | 1 | -51 | 691 | 40 | 100.0 |
| 7 | 1 | -49 | 641 | 40 | 100.0 |
| 8 | 1 | -47 | 593 | 40 | 100.0 |
| 9 | 1 | -45 | 547 | 40 | 100.0 |
| 10 | 1 | -43 | 503 | 40 | 100.0 |
| 11 | 1 | -41 | 461 | 40 | 100.0 |
| 12 | 1 | -39 | 421 | 40 | 100.0 |
| 13 | 1 | -37 | 383 | 40 | 100.0 |
| 14 | 1 | -35 | 347 | 40 | 100.0 |
| 15 | 1 | -33 | 313 | 40 | 100.0 |
| 16 | 1 | -31 | 281 | 40 | 100.0 |
| 17 | 1 | -29 | 251 | 40 | 100.0 |
| 18 | 1 | -27 | 223 | 40 | 100.0 |
| 19 | 1 | -25 | 197 | 40 | 100.0 |
| 20 | 1 | -23 | 173 | 40 | 100.0 |
| 21 | 1 | -21 | 151 | 40 | 100.0 |
| 22 | 1 | -19 | 131 | 40 | 100.0 |
| 23 | 1 | -17 | 113 | 40 | 100.0 |
| 24 | 1 | -15 | 97 | 40 | 100.0 |
| 25 | 1 | -13 | 83 | 40 | 100.0 |
| 26 | 1 | -11 | 71 | 40 | 100.0 |
| 27 | 1 | -9 | 61 | 40 | 100.0 |
| 28 | 1 | -7 | 53 | 40 | 100.0 |
| 29 | 1 | -5 | 47 | 40 | 100.0 |
| 30 | 1 | -3 | 43 | 40 | 100.0 |
| 31 | 1 | -1 | 41 | 40 | 100.0 |
| 32 | 1 | 1 | 41 | 40 | 100.0 |
| 33 | 2 | -88 | 997 | 40 | 100.0 |
| 34 | 2 | -84 | 911 | 40 | 100.0 |
| 35 | 2 | -80 | 829 | 40 | 100.0 |
| 36 | 2 | -76 | 751 | 40 | 100.0 |
| 37 | 2 | -72 | 677 | 40 | 100.0 |
| 38 | 2 | -68 | 607 | 40 | 100.0 |
| 39 | 2 | -64 | 541 | 40 | 100.0 |
| 40 | 2 | -60 | 479 | 40 | 100.0 |
| 41 | 2 | -56 | 421 | 40 | 100.0 |
| 42 | 2 | -52 | 367 | 40 | 100.0 |
| 43 | 2 | -48 | 317 | 40 | 100.0 |
| 44 | 2 | -44 | 271 | 40 | 100.0 |
| 45 | 3 | -105 | 941 | 40 | 100.0 |
| 46 | 6 | -150 | 967 | 40 | 100.0 |
| 47 | 6 | -138 | 823 | 40 | 100.0 |
| 48 | 6 | -126 | 691 | 40 | 100.0 |
| No. | a | b | c | Number of primes | Percentage |
|---|---|---|---|---|---|
| 1 | 2 | 44 | 43 | 4366 | 43.6556 |
| 2 | 2 | 40 | 1 | 4365 | 43.6456 |
| 3 | 1 | 1 | 41 | 4149 | 41.4859 |
| 4 | 1 | 3 | 43 | 4149 | 41.4859 |
| 5 | 1 | 5 | 47 | 4148 | 41.4759 |
| 6 | 6 | 6 | 31 | 3859 | 38.5861 |
| 7 | 6 | 18 | 43 | 3858 | 38.5761 |
| 8 | 4 | 2 | 41 | 3836 | 38.3562 |
| 9 | 4 | 10 | 47 | 3835 | 38.3462 |
| 10 | 2 | 40 | 19 | 3805 | 38.0462 |
| 11 | 4 | 6 | 43 | 3785 | 37.8462 |
| 12 | 1 | 35 | 23 | 3663 | 36.6263 |
| 13 | 9 | 9 | 43 | 3637 | 36.3664 |
| 14 | 9 | 3 | 41 | 3604 | 36.0364 |
| 15 | 9 | 15 | 47 | 3602 | 36.0164 |
| 16 | 24 | 12 | 31 | 3598 | 35.9764 |
| 17 | 2 | 34 | 31 | 3580 | 35.7964 |
| 18 | 24 | 36 | 43 | 3577 | 35.7664 |
| 19 | 16 | 4 | 41 | 3534 | 35.3365 |
| 20 | 16 | 20 | 47 | 3524 | 35.2365 |
| 21 | 3 | 39 | 37 | 3510 | 35.0965 |
| 22 | 3 | 33 | 1 | 3509 | 35.0865 |
| 23 | 7 | 49 | 41 | 3509 | 35.0865 |
| 24 | 10 | 20 | 29 | 3491 | 34.9065 |
| 25 | 22 | 22 | 17 | 3484 | 34.8365 |
| 26 | 2 | 4 | 31 | 3483 | 34.8265 |
| 27 | 2 | 8 | 37 | 3483 | 34.8265 |
| 28 | 2 | 12 | 47 | 3482 | 34.8165 |
| 29 | 16 | 12 | 43 | 3468 | 34.6765 |
| 30 | 25 | 25 | 47 | 3467 | 34.6665 |
| 31 | 1 | 23 | 23 | 3446 | 34.4566 |
| 32 | 1 | 25 | 47 | 3446 | 34.4566 |
| 33 | 1 | 21 | 1 | 3445 | 34.4466 |
| 34 | 25 | 5 | 41 | 3412 | 34.1166 |
| 35 | 7 | 7 | 17 | 3409 | 34.0866 |
| 36 | 7 | 21 | 31 | 3409 | 34.0866 |
| 37 | 1 | 37 | 29 | 3405 | 34.0466 |
| 38 | 38 | 40 | 1 | 3404 | 34.0366 |
| 39 | 33 | 15 | 11 | 3392 | 33.9166 |
| 40 | 36 | 18 | 43 | 3388 | 33.8766 |
| 41 | 36 | 30 | 47 | 3388 | 33.8766 |
| 42 | 35 | 35 | 19 | 3387 | 33.8666 |
| 43 | 36 | 6 | 41 | 3381 | 33.8066 |
| 44 | 25 | 15 | 43 | 3375 | 33.7466 |
| 45 | 43 | 3 | 1 | 3374 | 33.7366 |
| 46 | 49 | 35 | 47 | 3360 | 33.5966 |
| 47 | 47 | 5 | 1 | 3356 | 33.5566 |
| 48 | 41 | 1 | 1 | 3355 | 33.5466 |
| 49 | 32 | 18 | 47 | 3344 | 33.4367 |
| 50 | 20 | 20 | 43 | 3342 | 33.4167 |
| 51 | 49 | 21 | 43 | 3339 | 33.3867 |
| 52 | 49 | 7 | 41 | 3314 | 33.1367 |
| 53 | 34 | 46 | 23 | 3306 | 33.0567 |
| 54 | 1 | 27 | 13 | 3305 | 33.0467 |
| 55 | 1 | 29 | 41 | 3305 | 33.0467 |
| 56 | 3 | 3 | 23 | 3299 | 32.9867 |
| 57 | 3 | 9 | 29 | 3298 | 32.9767 |
| 58 | 3 | 15 | 41 | 3298 | 32.9767 |
| 59 | 34 | 22 | 11 | 3287 | 32.8667 |
| 60 | 40 | 40 | 29 | 3267 | 32.6667 |
| 61 | 8 | 8 | 31 | 3263 | 32.6267 |
| 62 | 8 | 24 | 47 | 3263 | 32.6267 |
| 63 | 8 | 16 | 37 | 3243 | 32.4268 |
| 64 | 4 | 46 | 23 | 3242 | 32.4168 |
| 65 | 23 | 35 | 1 | 3222 | 32.2168 |
| 66 | 14 | 6 | 29 | 3214 | 32.1368 |
| 67 | 14 | 34 | 49 | 3214 | 32.1368 |
| 68 | 2 | 30 | 29 | 3211 | 32.1068 |
| 69 | 2 | 26 | 1 | 3210 | 32.0968 |
| 70 | 26 | 32 | 43 | 3206 | 32.0568 |
| 71 | 46 | 46 | 17 | 3203 | 32.0268 |
| 72 | 28 | 42 | 31 | 3185 | 31.8468 |
| 73 | 33 | 33 | 41 | 3172 | 31.7168 |
| 74 | 28 | 14 | 17 | 3154 | 31.5368 |
| 75 | 14 | 22 | 37 | 3146 | 31.4569 |
| 76 | 18 | 12 | 31 | 3142 | 31.4169 |
| 77 | 18 | 36 | 47 | 3133 | 31.3269 |
| 78 | 42 | 30 | 29 | 3131 | 31.3069 |
| 79 | 22 | 14 | 11 | 3123 | 31.2269 |
| 80 | 15 | 45 | 1 | 3117 | 31.1669 |
| 81 | 26 | 20 | 37 | 3109 | 31.0869 |
| 82 | 4 | 42 | 1 | 3107 | 31.0669 |
| 83 | 4 | 50 | 47 | 3107 | 31.0669 |
| 84 | 15 | 15 | 17 | 3102 | 31.0169 |
| 85 | 15 | 45 | 47 | 3101 | 31.0069 |
| 86 | 7 | 49 | 23 | 3096 | 30.9569 |
| 87 | 18 | 24 | 37 | 3089 | 30.8869 |
| 88 | 13 | 27 | 1 | 3086 | 30.8569 |
| 89 | 46 | 20 | 47 | 3082 | 30.8169 |
| 90 | 11 | 9 | 11 | 3080 | 30.7969 |
| 91 | 11 | 31 | 31 | 3079 | 30.7869 |
| 92 | 11 | 13 | 13 | 3075 | 30.7469 |
| 93 | 11 | 35 | 37 | 3074 | 30.7369 |
| 94 | 25 | 17 | 17 | 3073 | 30.7269 |
| 95 | 33 | 15 | 19 | 3068 | 30.6769 |
| 96 | 32 | 32 | 37 | 3065 | 30.6469 |
| 97 | 1 | 19 | 17 | 3061 | 30.6069 |
| 98 | 22 | 30 | 19 | 3061 | 30.6069 |
| 99 | 1 | 21 | 37 | 3060 | 30.5969 |
| 100 | 26 | 26 | 37 | 3060 | 30.5969 |
| 1 | 36 | -810 | 2753 | 3981 | 39.81 |
| 2 | 47 | -1701 | 10181 | 3758 | 37.58 |
| 3 | 103 | -4707 | 50383 | 3874 | 38.74 |
| 4 | 43 | -537 | 2971 | 3808 | 38.08 |
| 5 | 8 | -488 | 7243 | 4048 | 40.48 |
| 6 | 6 | -342 | 4903 | 3874 | 38.74 |
| 7 | 2 | 0 | 29 | 3484 | 34.84 |
| 8 | 7 | -371 | 4871 | 3526 | 35.26 |
| 9 | 3 | 3 | 23 | 3299 | 32.99 |
| 10 | 3 | 39 | 37 | 3510 | 35.10 |
| 11 | 1 | 1 | 17 | 2628 | 26.28 |
| 12 | 4 | 4 | 59 | 3408 | 34.08 |
| 13 | 2 | 0 | 11 | 2080 | 20.8 |
5. Conclusion
References
- Coman, M. (n.d.). A list of known root prime-generating quadratic polynomials producing more than 23 distinct primes in a row.
- DeBenedetto, J., & Rouse, J. (2012). A 60,000 digit prime number of the form x2+x+41. arXiv. arXiv:1207.7291.
- Diouf, M.(2017). Prime-Generating Polynomial arXiv. arXiv:1702.06276.
- Fuentes, F., Meirose, M., & Tou, E. R. (2017). Quadratic prime-generating polynomials over the Gaussian integers. Pi Mu Epsilon Journal, 14(6), 365-372.
- Heffernan, R., Lord, N., & MacHale, D. (2024). Euler’s prime-producing polynomial revisited. The Mathematical Gazette, 108(571), 69-77. [CrossRef]
- Hunter, J. A. H. (1965). n2+21n+1 as a generator of primes. Mathematics Magazine, 38(4), 232-232.
- Kravitz, S. (1962). Elementary observations concerning Euler’s prime-generating polynomial f(n)=n2-n+41. Mathematics Magazine, 35(3), 152-152.
- Lee, J. H. (2023). Prime-producing polynomials related to class number one problem of number fields. Bulletin of the Korean Mathematical Society, 60(2), 315-323.
- Mollin, R. (1996). Quadratic polynomials producing consecutive, distinct primes and class groups of complex quadratic fields. Acta Arithmetica, 74(1), 17-30.
- Mollin, R. A. (1997). Prime-producing quadratics. The American Mathematical Monthly, 104(6), 529-544.
- Morizono, A. (2017). An analogy of Euler primes for a polynomial ring over a field (Doctoral dissertation, Kyushu University, Japan).
- Ribenboim, P. (2000). Euler’s famous prime-generating polynomial and the class number of imaginary quadratic fields. My Numbers, My Friends: Popular Lectures on Number Theory, 91-111.
- Shaghaghi, M. (n.d.). Exploring the Infinitude of Prime-Generating Functions: Extending the Mersenne Framework.
- Shchelkov, N. (n.d.). Systems of equations based on Euler’s polynomial that generate sequences of hundreds of prime numbers. Available at SSRN 4873470.
- Singh, S. (2024). Prime Generation via Polynomials: Analysis and Applications.
- Walker, J. A., & Miller, J. F. (2007). Predicting prime numbers using Cartesian genetic programming. In Genetic Programming: 10th European Conference, EuroGP 2007, Valencia, Spain, April 11-13, 2007. Proceedings 10 (pp. 205-216). Springer Berlin Heidelberg.
- Weisstein, E. W. (2000). Euler Number. Retrieved from https://mathworld.wolfram.com/.
- Weisstein, E. W. (2005). Prime-generating polynomial. Retrieved from https://mathworld.wolfram.com/.
- Xiaochun, M. (2021). The Problems Existing in the Complex Continuations of the Gamma Function and the Euler Formula of Prime Numbers.
- Savitsky, Z. (2024). ‘Sensational breakthrough’ marks step toward revealing hidden structure of prime numbers. Science. [CrossRef]
| 1 | |
| 2 | RSA (Rivest-Shamir-Adleman) is a public key cryptosystem, one of the oldest and most widely used for secure data transmission. |
| 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
