Submitted:
07 February 2025
Posted:
10 February 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Classification of Human Peptides
3. Selective Antifungal Activities
3.1. Malassezia
3.2. Trichophyton
3.3. Candida
3.4. Aspergillus
3.5. Cryptococcus
3.6. Histoplasma capsulatum
3.7. Paracoccidioides brasiliensis
3.8. Mucorales
3.9. Talaromyces marneffei
4. Mechanism by Human Peptides Act
5. Sources and Modification of New Antifungal Agents
6. Future Directions
7. Conclusion
| Antimicrobial Peptide | Source (Human) | Antifungal Activity | Reference |
|---|---|---|---|
| Lactoferrin (LF) | Mucosal secretions, saliva, milk | Candida albicans, Candida kefyr, Candida krusei, Candida parapsilosis, Cryptococcus neoformans, Aspergillus fumigatus | [127,243,244,245,246] |
| Histatin-5 (Hst 5) | Saliva | Candida albicans, Candida kefyr, Candida , Candida parapsilosis, Cryptococcus neoformans, fumigatus | [247,248,249,250,251,252,253,254,255] |
| Histatin-1 (Hst 1) | Oral cavity | Candida albicans, Candida krusei | [256] |
| (Hst 2) | Oral cavity | Candida albicans, Candida krusei | [256,257] |
| Ribonuclease A (RNase A) | Vertebrates, chromosome 14 | Candida albicans, Candida tropicalis | [258,259,260] |
| RNase 1 | Pancreas | Candida albicans, Candida tropicalis | [259,261] |
| RNase 2 | Eosinophils | Candida albicans, Candida tropicalis | [260] |
| RNase 5 (Angiogenin) | Neurotoxin | Candida albicans, Candida tropicalis | [262] |
| RNase 7 | Skin | Candida albicans, Candida tropicalis, Aspergillus fumigatus | [263,264,265] |
| Dermcidin (DCD) | Sweat glands | Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Enterococcus faecalis, Candida albicans | [266,267,268] |
| LL-37 | Airways, oral cavity, tongue, esophagus, epididymis, small intestine | Candida albicans, Candida kefyr, Candida krusei, Candida parapsilosis, Cryptococcus neoformans, fumigatus, Trichophyton rubrum, Microsporum canis | [122,269,270,271,272,273,274,275,276] |
| Hepcidin | Liver | Candida albicans, Candida tropicalis, Aspergillus fumigatus | [277,278,279,280,281] |
| Vasostatin-1 | Endocrine, neuroendocrine, and neuronal cells | Candida albicans, Candida tropicalis, Candida kefyr, Aspergillus fumigatus, Fusarium solani, Sporothrix schenckii | [282] |
| Alpha-defensins (HD5, HD6) | Intestinal Paneth cells, neutrophils | Candida albicans, Aspergillus fumigatus, Candida glabrata, Cryptococcus neoformans | [283,284,285,286] |
| Beta-defensins (hBD-1, hBD-2, hBD-3) | Epithelial cells (skin, respiratory tract, urogenital tract) | Candida albicans, Candida glabrata, Aspergillus fumigatus, Cryptococcus neoformans, Trichophyton rubrum | [287,288,289,290,291,292,293,294,295,296,297,298,299] |
Author Contributions
Funding
Conflicts of Interest
References
- Iliev, I.D.; Brown, G.D.; Bacher, P.; Gaffen, S.L.; Heitman, J.; Klein, B.S.; Lionakis, M.S. Focus on fungi. Cell 2024, 187, 5121–5127. [Google Scholar] [CrossRef]
- Denning, D.W. Global incidence and mortality of severe fungal disease. The Lancet. Infectious diseases 2024, 24, e428–e438. [Google Scholar] [CrossRef] [PubMed]
- Suleyman, G.; Alangaden, G.J. Nosocomial Fungal Infections: Epidemiology, Infection Control, and Prevention. Infectious disease clinics of North America 2021, 35, 1027–1053. [Google Scholar] [CrossRef] [PubMed]
- Köhler, J.R.; Hube, B.; Puccia, R.; Casadevall, A.; Perfect, J.R. Fungi that Infect Humans. Microbiology spectrum 2017, 5. [Google Scholar] [CrossRef] [PubMed]
- Perlin, D.S.; Rautemaa-Richardson, R.; Alastruey-Izquierdo, A. The global problem of antifungal resistance: prevalence, mechanisms, and management. The Lancet. Infectious diseases 2017, 17, e383–e392. [Google Scholar] [CrossRef]
- Perlin, D.S. Cell Wall-Modifying Antifungal Drugs. Current topics in microbiology and immunology 2020, 425, 255–275. [Google Scholar] [CrossRef]
- Robbins, N.; Wright, G.D.; Cowen, L.E. Antifungal Drugs: The Current Armamentarium and Development of New Agents. Microbiology spectrum 2016, 4. [Google Scholar] [CrossRef]
- Ben-Ami, R.; Kontoyiannis, D.P. Resistance to Antifungal Drugs. Infectious disease clinics of North America 2021, 35, 279–311. [Google Scholar] [CrossRef]
- Fisher, M.C.; Hawkins, N.J.; Sanglard, D.; Gurr, S.J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 2018, 360, 739–742. [Google Scholar] [CrossRef]
- Pristov, K.E.; Ghannoum, M.A. Resistance of Candida to azoles and echinocandins worldwide. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases 2019, 25, 792–798. [Google Scholar] [CrossRef]
- Dannaoui, E. Antifungal resistance in mucorales. International journal of antimicrobial agents 2017, 50, 617–621. [Google Scholar] [CrossRef] [PubMed]
- Carlet, J.; Collignon, P.; Goldmann, D.; Goossens, H.; Gyssens, I.C.; Harbarth, S.; Jarlier, V.; Levy, S.B.; N'Doye, B.; Pittet, D.; et al. Society's failure to protect a precious resource: antibiotics. Lancet (London, England) 2011, 378, 369–371. [Google Scholar] [CrossRef]
- Kovács, R.; Mahmoudi, S. Editorial: Alternative approaches to antifungal drugs against drug-resistant fungi. Front Cell Infect Microbiol 2023, 13, 1184922. [Google Scholar] [CrossRef]
- Jampilek, J. Novel avenues for identification of new antifungal drugs and current challenges. Expert opinion on drug discovery 2022, 17, 949–968. [Google Scholar] [CrossRef] [PubMed]
- Vanzolini, T.; Magnani, M. Old and new strategies in therapy and diagnosis against fungal infections. Applied microbiology and biotechnology 2024, 108, 147. [Google Scholar] [CrossRef]
- van Hoek, M.L. Antimicrobial peptides in reptiles. Pharmaceuticals (Basel) 2014, 7, 723–753. [Google Scholar] [CrossRef]
- Lehrer, R.I.; Ganz, T. Antimicrobial peptides in mammalian and insect host defence. Current opinion in immunology 1999, 11, 23–27. [Google Scholar] [CrossRef]
- Lomakin, I.B.; Gagnon, M.G.; Steitz, T.A. Antimicrobial peptides targeting bacterial ribosome. Oncotarget 2015, 6, 18744–18745. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Li, X.; Wang, Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic acids research 2016, 44, D1087–1093. [Google Scholar] [CrossRef]
- Jirillo, E.; Magrone, T. Editorial: Antimicrobial Peptides as Mediators of Innate Immunity. Current pharmaceutical design 2018, 24, 1041–1042. [Google Scholar] [CrossRef]
- Zhou, H.; Wu, S.; Liu, L.; Li, R.; Jin, P.; Li, S. Drosophila Relish Activating lncRNA-CR33942 Transcription Facilitates Antimicrobial Peptide Expression in Imd Innate Immune Response. Front Immunol 2022, 13, 905899. [Google Scholar] [CrossRef] [PubMed]
- Drago-Serrano, M.E.; Campos-Rodriguez, R.; Carrero, J.C.; de la Garza, M. Lactoferrin and Peptide-derivatives: Antimicrobial Agents with Potential Use in Nonspecific Immunity Modulation. Current pharmaceutical design 2018, 24, 1067–1078. [Google Scholar] [CrossRef]
- Kang, H.K.; Lee, H.H.; Seo, C.H.; Park, Y. Antimicrobial and Immunomodulatory Properties and Applications of Marine-Derived Proteins and Peptides. Mar Drugs 2019, 17. [Google Scholar] [CrossRef] [PubMed]
- Brogden, K.A.; Ackermann, M.; McCray, P.B., Jr.; Tack, B.F. Antimicrobial peptides in animals and their role in host defences. International journal of antimicrobial agents 2003, 22, 465–478. [Google Scholar] [CrossRef]
- Bruno, R.; Maresca, M.; Canaan, S.; Cavalier, J.F.; Mabrouk, K.; Boidin-Wichlacz, C.; Olleik, H.; Zeppilli, D.; Brodin, P.; Massol, F.; et al. Worms' Antimicrobial Peptides. Mar Drugs 2019, 17. [Google Scholar] [CrossRef] [PubMed]
- García-Beltrán, J.M.; Arizcun, M.; Chaves-Pozo, E. Antimicrobial Peptides from Photosynthetic Marine Organisms with Potential Application in Aquaculture. Mar Drugs 2023, 21. [Google Scholar] [CrossRef]
- Shi, Y.; Li, Y.; Yang, K.; Wei, G.; Huang, A. A novel milk-derived peptide effectively inhibits Staphylococcus aureus: Interferes with cell wall synthesis, peptidoglycan biosynthesis disruption reaction mechanism, and its application in real milk system. Food Control 2023, 144, 109374. [Google Scholar] [CrossRef]
- Hernández-Aristizábal, I.; Ocampo-Ibáñez, I.D. Antimicrobial Peptides with Antibacterial Activity against Vancomycin-Resistant Staphylococcus aureus Strains: Classification, Structures, and Mechanisms of Action. Int J Mol Sci 2021, 22. [Google Scholar] [CrossRef]
- Yang, X.; Wang, Y.; Jiang, H.; Song, R.; Liu, Y.; Guo, H.; Meng, D. Antimicrobial peptide CB-M exhibits direct antifungal activity against Botrytis cinerea and induces disease resistance to gray mold in cherry tomato fruit. Postharvest Biology and Technology 2023, 196, 112184. [Google Scholar] [CrossRef]
- De Smet, K.; Contreras, R. Human antimicrobial peptides: defensins, cathelicidins and histatins. Biotechnol Lett 2005, 27, 1337–1347. [Google Scholar] [CrossRef]
- Liepke, C.; Baxmann, S.; Heine, C.; Breithaupt, N.; Ständker, L.; Forssmann, W.G. Human hemoglobin-derived peptides exhibit antimicrobial activity: a class of host defense peptides. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences 2003, 791, 345–356. [Google Scholar] [CrossRef]
- Perinpanayagam, H.E.; Van Wuyckhuyse, B.C.; Ji, Z.S.; Tabak, L.A. Characterization of low-molecular-weight peptides in human parotid saliva. Journal of dental research 1995, 74, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Shaban, S.; Patel, M.; Ahmad, A. Fungicidal activity of human antimicrobial peptides and their synergistic interaction with common antifungals against multidrug-resistant Candida auris. International microbiology : the official journal of the Spanish Society for Microbiology 2023, 26, 165–177. [Google Scholar] [CrossRef] [PubMed]
- Santos-Júnior, C.D.; Torres, M.D.T.; Duan, Y.; Rodríguez Del Río, Á.; Schmidt, T.S.B.; Chong, H.; Fullam, A.; Kuhn, M.; Zhu, C.; Houseman, A.; et al. Discovery of antimicrobial peptides in the global microbiome with machine learning. Cell 2024, 187, 3761–3778.e3716. [Google Scholar] [CrossRef]
- Wang, G.; Vaisman, II; van Hoek, M. L. Machine Learning Prediction of Antimicrobial Peptides. Methods in molecular biology (Clifton, N.J.) 2022, 2405, 1–37. [Google Scholar] [CrossRef] [PubMed]
- Torres, P.; Díaz, J.; Arce, M.; Silva, P.; Mendoza, P.; Lois, P.; Molina-Berríos, A.; Owen, G.I.; Palma, V.; Torres, V.A. The salivary peptide histatin-1 promotes endothelial cell adhesion, migration, and angiogenesis. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 2017, 31, 4946–4958. [Google Scholar] [CrossRef]
- Torres, S.R.; Garzino-Demo, A.; Meiller, T.F.; Meeks, V.; Jabra-Rizk, M.A. Salivary histatin-5 and oral fungal colonisation in HIV+ individuals. Mycoses 2009, 52, 11–15. [Google Scholar] [CrossRef]
- Sørensen, O.E.; Borregaard, N.; Cole, A.M. Antimicrobial peptides in innate immune responses. Contributions to microbiology 2008, 15, 61–77. [Google Scholar] [CrossRef]
- Huttner, K.M.; Bevins, C.L. Antimicrobial peptides as mediators of epithelial host defense. Pediatric research 1999, 45, 785–794. [Google Scholar] [CrossRef]
- Lyu, W.; Curtis, A.R.; Sunkara, L.T.; Zhang, G. Transcriptional Regulation of Antimicrobial Host Defense Peptides. Current protein & peptide science 2015, 16, 672–679. [Google Scholar] [CrossRef]
- Kovalchuk, L.V.; Gankovskaya, L.V.; Gankovskaya, O.A.; Lavrov, V.F. Herpes simplex virus: treatment with antimicrobial peptides. Adv Exp Med Biol 2007, 601, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Siman-Tov, G.; Hall, G.; Bhalla, N.; Narayanan, A. Human Antimicrobial Peptides as Therapeutics for Viral Infections. Viruses 2019, 11. [Google Scholar] [CrossRef]
- Mousavi Maleki, M.S.; Rostamian, M.; Madanchi, H. Antimicrobial peptides and other peptide-like therapeutics as promising candidates to combat SARS-CoV-2. Expert Rev Anti Infect Ther 2021, 19, 1205–1217. [Google Scholar] [CrossRef]
- Aghamiri, S.; Zandsalimi, F.; Raee, P.; Abdollahifar, M.A.; Tan, S.C.; Low, T.Y.; Najafi, S.; Ashrafizadeh, M.; Zarrabi, A.; Ghanbarian, H.; et al. Antimicrobial peptides as potential therapeutics for breast cancer. Pharmacological research 2021, 171, 105777. [Google Scholar] [CrossRef] [PubMed]
- Tonk, M.; Vilcinskas, A.; Rahnamaeian, M. Insect antimicrobial peptides: potential tools for the prevention of skin cancer. Applied microbiology and biotechnology 2016, 100, 7397–7405. [Google Scholar] [CrossRef]
- Merlini, G.; Bellotti, V. Lysozyme: a paradigmatic molecule for the investigation of protein structure, function and misfolding. Clinica chimica acta; international journal of clinical chemistry 2005, 357, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Wiesner, J.; Vilcinskas, A. Antimicrobial peptides: the ancient arm of the human immune system. Virulence 2010, 1, 440–464. [Google Scholar] [CrossRef]
- Vijaya Chandra, S.H.; Srinivas, R.; Dawson, T.L., Jr.; Common, J.E. Cutaneous Malassezia: Commensal, Pathogen, or Protector? Front Cell Infect Microbiol 2020, 10, 614446. [Google Scholar] [CrossRef]
- Ianiri, G.; LeibundGut-Landmann, S.; Dawson, T.L., Jr. Malassezia: A Commensal, Pathogen, and Mutualist of Human and Animal Skin. Annual review of microbiology 2022, 76, 757–782. [Google Scholar] [CrossRef]
- Schmid, B.; Künstner, A.; Fähnrich, A.; Busch, H.; Glatz, M.; Bosshard, P.P. Longitudinal Characterization of the Fungal Skin Microbiota in Healthy Subjects Over a Period of 1 Year. J Invest Dermatol 2022, 142, 2766–2772.e2768. [Google Scholar] [CrossRef]
- Leung, M.H.; Chan, K.C.; Lee, P.K. Skin fungal community and its correlation with bacterial community of urban Chinese individuals. Microbiome 2016, 4, 46. [Google Scholar] [CrossRef] [PubMed]
- Agerberth, B.; Buentke, E.; Bergman, P.; Eshaghi, H.; Gabrielsson, S.; Gudmundsson, G.H.; Scheynius, A. Malassezia sympodialis differently affects the expression of LL-37 in dendritic cells from atopic eczema patients and healthy individuals. Allergy 2006, 61, 422–430. [Google Scholar] [CrossRef] [PubMed]
- López-García, B.; Lee, P.H.; Gallo, R.L. Expression and potential function of cathelicidin antimicrobial peptides in dermatophytosis and tinea versicolor. The Journal of antimicrobial chemotherapy 2006, 57, 877–882. [Google Scholar] [CrossRef] [PubMed]
- Khurana, A.; Sharath, S.; Sardana, K.; Chowdhary, A. Clinico-mycological and therapeutic updates on cutaneous dermatophytic infections in the era of Trichophyton indotineae. Journal of the American Academy of Dermatology 2024, 91, 315–323. [Google Scholar] [CrossRef]
- Trichophyton | Skin Infections, Dermatophytes & Fungi | Britannica.
- Leung, A.K.; Barankin, B.; Lam, J.M.; Leong, K.F.; Hon, K.L. Tinea pedis: an updated review. Drugs in context 2023, 12. [Google Scholar] [CrossRef]
- Jabet, A.; Normand, A.C.; Brun, S.; Dannaoui, E.; Bachmeyer, C.; Piarroux, R.; Hennequin, C.; Moreno-Sabater, A. Trichophyton indotineae, from epidemiology to therapeutic. Journal de mycologie medicale 2023, 33, 101383. [Google Scholar] [CrossRef]
- Migliolo, L.; Silva, O.N.; Silva, P.A.; Costa, M.P.; Costa, C.R.; Nolasco, D.O.; Barbosa, J.A.; Silva, M.R.; Bemquerer, M.P.; Lima, L.M.; et al. Structural and functional characterization of a multifunctional alanine-rich peptide analogue from Pleuronectes americanus. PLoS ONE 2012, 7, e47047. [Google Scholar] [CrossRef]
- Lockhart, S.R.; Chowdhary, A.; Gold, J.A.W. The rapid emergence of antifungal-resistant human-pathogenic fungi. Nature reviews. Microbiology 2023, 21, 818–832. [Google Scholar] [CrossRef]
- Brasch, J.; Gräser, Y.; Beck-Jendroscheck, V.; Voss, K.; Torz, K.; Walther, G.; Schwarz, T. "Indian" strains of Trichophyton mentagrophytes with reduced itraconazole susceptibility in Germany. Journal der Deutschen Dermatologischen Gesellschaft = Journal of the German Society of Dermatology : JDDG 2021, 19, 1723–1727. [Google Scholar] [CrossRef]
- Shen, J.J.; Arendrup, M.C.; Verma, S.; Saunte, D.M.L. The Emerging Terbinafine-Resistant Trichophyton Epidemic: What Is the Role of Antifungal Susceptibility Testing? Dermatology (Basel, Switzerland) 2022, 238, 60–79. [Google Scholar] [CrossRef]
- Uhrlaß, S.; Verma, S.B.; Gräser, Y.; Rezaei-Matehkolaei, A.; Hatami, M.; Schaller, M.; Nenoff, P. Trichophyton indotineae-An Emerging Pathogen Causing Recalcitrant Dermatophytoses in India and Worldwide-A Multidimensional Perspective. J Fungi (Basel) 2022, 8. [Google Scholar] [CrossRef] [PubMed]
- Lockhart, S.R.; Smith, D.J.; Gold, J.A.W. Trichophyton indotineae and other terbinafine-resistant dermatophytes in North America. Journal of clinical microbiology 2023, 61, e0090323. [Google Scholar] [CrossRef] [PubMed]
- Stensen, W.; Turner, R.; Brown, M.; Kondori, N.; Svendsen, J.S.; Svenson, J. Short Cationic Antimicrobial Peptides Display Superior Antifungal Activities toward Candidiasis and Onychomycosis in Comparison with Terbinafine and Amorolfine. Mol Pharm 2016, 13, 3595–3600. [Google Scholar] [CrossRef] [PubMed]
- Evans, E.G. Causative pathogens in onychomycosis and the possibility of treatment resistance: a review. Journal of the American Academy of Dermatology 1998, 38, S32–36. [Google Scholar] [CrossRef]
- Svenson, J.; Molchanova, N.; Schroeder, C.I. Antimicrobial Peptide Mimics for Clinical Use: Does Size Matter? Front Immunol 2022, 13, 915368. [Google Scholar] [CrossRef]
- Mercer, D.K.; Robertson, J.C.; Miller, L.; Stewart, C.S.; O'Neil, D.A. NP213 (Novexatin®): A unique therapy candidate for onychomycosis with a differentiated safety and efficacy profile. Medical mycology 2020, 58, 1064–1072. [Google Scholar] [CrossRef]
- Mercer, D.K.; Stewart, C.S.; Miller, L.; Robertson, J.; Duncan, V.M.S.; O'Neil, D.A. Improved Methods for Assessing Therapeutic Potential of Antifungal Agents against Dermatophytes and Their Application in the Development of NP213, a Novel Onychomycosis Therapy Candidate. Antimicrob Agents Chemother 2019, 63. [Google Scholar] [CrossRef] [PubMed]
- Nakatsuji, T.; Chen, T.H.; Narala, S.; Chun, K.A.; Two, A.M.; Yun, T.; Shafiq, F.; Kotol, P.F.; Bouslimani, A.; Melnik, A.V.; et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Science translational medicine 2017, 9. [Google Scholar] [CrossRef]
- Patiño, M.I.; Restrepo, L.M.; Becerra, N.Y.; van der Mei, H.C.; van Kooten, T.G.; Sharma, P.K. Nonviral Expression of LL-37 in a Human Skin Equivalent to Prevent Infection in Skin Wounds. Human gene therapy 2021, 32, 1147–1157. [Google Scholar] [CrossRef]
- Kiatsurayanon, C.; Ogawa, H.; Niyonsaba, F. The Role of Host Defense Peptide Human β-defensins in the Maintenance of Skin Barriers. Current pharmaceutical design 2018, 24, 1092–1099. [Google Scholar] [CrossRef]
- Ryu, S.; Song, P.I.; Seo, C.H.; Cheong, H.; Park, Y. Colonization and infection of the skin by S. aureus: immune system evasion and the response to cationic antimicrobial peptides. Int J Mol Sci 2014, 15, 8753–8772. [Google Scholar] [CrossRef] [PubMed]
- Köten, B.; Simanski, M.; Gläser, R.; Podschun, R.; Schröder, J.M.; Harder, J. RNase 7 contributes to the cutaneous defense against Enterococcus faecium. PLoS ONE 2009, 4, e6424. [Google Scholar] [CrossRef] [PubMed]
- Zeitvogel, J.; Döhner, K.; Klug, I.; Rademacher, F.; Gläser, R.; Sodeik, B.; Harder, J.; Werfel, T. The antimicrobial protein RNase 7 directly restricts herpes simplex virus infection of human keratinocytes. Journal of medical virology 2024, 96, e29942. [Google Scholar] [CrossRef] [PubMed]
- Torrent, M.; Badia, M.; Moussaoui, M.; Sanchez, D.; Nogués, M.V.; Boix, E. Comparison of human RNase 3 and RNase 7 bactericidal action at the Gram-negative and Gram-positive bacterial cell wall. The FEBS journal 2010, 277, 1713–1725. [Google Scholar] [CrossRef]
- Singh, S.B.; Ondeyka, J.; Harris, G.; Herath, K.; Zink, D.; Vicente, F.; Bills, G.; Collado, J.; Platas, G.; González del Val, A.; et al. Isolation, structure, and biological activity of Phaeofungin, a cyclic lipodepsipeptide from a Phaeosphaeria sp. Using the Genome-Wide Candida albicans Fitness Test. Journal of natural products 2013, 76, 334–345. [Google Scholar] [CrossRef]
- Dahiya, R.; Gautam, H. Total synthesis and antimicrobial activity of a natural cycloheptapeptide of marine origin. Mar Drugs 2010, 8, 2384–2394. [Google Scholar] [CrossRef]
- Dahiya, R.; Rampersad, S.; Ramnanansingh, T.G.; Kaur, K.; Kaur, R.; Mourya, R.; Chennupati, S.V.; Fairman, R.; Jalsa, N.K.; Sharma, A.; et al. Synthesis and Bioactivity of a Cyclopolypeptide from Caribbean Marine Sponge. Iranian journal of pharmaceutical research : IJPR 2020, 19, 156–170. [Google Scholar] [CrossRef]
- Fernández-Muiños, T.; Recha-Sancho, L.; López-Chicón, P.; Castells-Sala, C.; Mata, A.; Semino, C.E. Bimolecular based heparin and self-assembling hydrogel for tissue engineering applications. Acta Biomater 2015, 16, 35–48. [Google Scholar] [CrossRef]
- Banwell, E.F.; Abelardo, E.S.; Adams, D.J.; Birchall, M.A.; Corrigan, A.; Donald, A.M.; Kirkland, M.; Serpell, L.C.; Butler, M.F.; Woolfson, D.N. Rational design and application of responsive alpha-helical peptide hydrogels. Nature materials 2009, 8, 596–600. [Google Scholar] [CrossRef]
- Donati, L.; Valicenti, M.L.; Giannoni, S.; Morena, F.; Martino, S. Biomaterials Mimicking Mechanobiology: A Specific Design for a Specific Biological Application. Int J Mol Sci 2024, 25. [Google Scholar] [CrossRef]
- カンジダ症(侵襲性) - 13. 感染性疾患. MSD.
- The gut, the bad and the harmless: Candida albicans as a commensal and opportunistic pathogen in the intestine - PMC.
- Epidemiology and drug resistance among Candida pathogens in Africa: Candida auris could now be leading the pack - The Lancet Microbe.
- Candida auris: new clade, same challenges - The Lancet Microbe.
- Candida Fungus Skin Infection: Causes, Symptoms & Diagnosis.
- Trofa, D.; Gácser, A.; Nosanchuk, J.D. Candida parapsilosis, an emerging fungal pathogen. Clinical microbiology reviews 2008, 21, 606–625. [Google Scholar] [CrossRef] [PubMed]
- Candidiasis - Infectious Diseases. MSD Manual Professional Edition.
- Lewis, R.E. Overview of the changing epidemiology of candidemia. Current medical research and opinion 2009, 25, 1732–1740. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, H.; Xia, T.; Huang, Y. Characterization of fungal microbiota on normal ocular surface of humans. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases 2020, 26, 123.e129–123.e113. [Google Scholar] [CrossRef]
- Shivaji, S.; Jayasudha, R.; Sai Prashanthi, G.; Kalyana Chakravarthy, S.; Sharma, S. The Human Ocular Surface Fungal Microbiome. Investigative ophthalmology & visual science 2019, 60, 451–459. [Google Scholar] [CrossRef]
- Tuite, A.; Mullick, A.; Gros, P. Genetic analysis of innate immunity in resistance to Candida albicans. Genes and immunity 2004, 5, 576–587. [Google Scholar] [CrossRef] [PubMed]
- Candidiasis and HIV: Link, treatment, and prevention.
- Candida-Host Interactions in HIV Disease: Implications for Oropharyngeal Candidiasis - PMC.
- van Asbeck, E.C.; Clemons, K.V.; Stevens, D.A. Candida parapsilosis: a review of its epidemiology, pathogenesis, clinical aspects, typing and antimicrobial susceptibility. Crit Rev Microbiol 2009, 35, 283–309. [Google Scholar] [CrossRef] [PubMed]
- Ramos, L.S.; Fernandes, M.F.; Santos, H.L.C.; Picão, R.C.; Branquinha, M.H.; Santos, A.L.S. Candida spp. isolated from recreational coastal waters of Rio de Janeiro - Brazil: Focus on antifungal resistance and virulence attributes. The Science of the total environment 2024, 947, 174662. [Google Scholar] [CrossRef]
- Mor, A.; Nicolas, P. Isolation and structure of novel defensive peptides from frog skin. European journal of biochemistry 1994, 219, 145–154. [Google Scholar] [CrossRef]
- Dong, Z.; Hu, H.; Yu, X.; Tan, L.; Ma, C.; Xi, X.; Li, L.; Wang, L.; Zhou, M.; Chen, T.; et al. Novel Frog Skin-Derived Peptide Dermaseptin-PP for Lung Cancer Treatment: In vitro/vivo Evaluation and Anti-tumor Mechanisms Study. Frontiers in chemistry 2020, 8, 476. [Google Scholar] [CrossRef]
- Miura, S.; Garcet, S.; Li, X.; Cueto, I.; Salud-Gnilo, C.; Kunjravia, N.; Yamamura, K.; Gonzalez, J.; Murai-Yamamura, M.; Rambhia, D.; et al. Cathelicidin Antimicrobial Peptide LL37 Induces Toll-Like Receptor 8 and Amplifies IL-36γ and IL-17C in Human Keratinocytes. J Invest Dermatol 2023, 143, 832–841.e834. [Google Scholar] [CrossRef]
- The Inhibitory Effect of Human Beta-defensin-3 on Candida Glabrata Isolated from Patients with Candidiasis: Immunological Investigations: Vol 50, No 1 - Get Access.
- Human antimicrobial peptides: defensins, cathelicidins and histatins - PubMed.
- Candida Infections and Human Defensins | Bentham Science.
- Polesello, V.; Segat, L.; Crovella, S.; Zupin, L. Candida Infections and Human Defensins. PPL 24. [CrossRef]
- Sowa-Jasiłek, A.; Zdybicka-Barabas, A.; Stączek, S.; Wydrych, J.; Skrzypiec, K.; Mak, P.; Deryło, K.; Tchórzewski, M.; Cytryńska, M. Galleria mellonella lysozyme induces apoptotic changes in Candida albicans cells. Microbiological research 2016, 193, 121–131. [Google Scholar] [CrossRef]
- Chen, Y.C.; Chen, F.J.; Lee, C.H. Effect of antifungal agents, lysozyme and human antimicrobial peptide LL-37 on clinical Candida isolates with high biofilm production. Journal of medical microbiology 2021, 70. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Samaranayake, L.P.; Leung, W.K.; Sullivan, P.A. Inhibition of growth and secreted aspartyl proteinase production in Candida albicans by lysozyme. Journal of medical microbiology 1999, 48, 721–730. [Google Scholar] [CrossRef] [PubMed]
- Zolin, G.V.S.; Fonseca, F.H.D.; Zambom, C.R.; Garrido, S.S. Histatin 5 Metallopeptides and Their Potential against Candida albicans Pathogenicity and Drug Resistance. Biomolecules 2021, 11. [Google Scholar] [CrossRef] [PubMed]
- Veerman, E.C.; Valentijn-Benz, M.; van't Hof, W.; Nazmi, K.; van Marle, J.; Amerongen, A.V. Phytosphingosine kills Candida albicans by disrupting its cell membrane. Biological chemistry 2010, 391, 65–71. [Google Scholar] [CrossRef]
- Bednarek, A.; Satala, D.; Zawrotniak, M.; Nobbs, A.H.; Rapala-Kozik, M.; Kozik, A. Glyceraldehyde 3-Phosphate Dehydrogenase on the Surface of Candida albicans and Nakaseomyces glabratus Cells-A Moonlighting Protein That Binds Human Vitronectin and Plasminogen and Can Adsorb to Pathogenic Fungal Cells via Major Adhesins Als3 and Epa6. Int J Mol Sci 2024, 25. [Google Scholar] [CrossRef]
- Pierre, J.F.; Peters, B.M.; La Torre, D.; Sidebottom, A.M.; Tao, Y.; Zhu, X.; Cham, C.M.; Wang, L.; Kambal, A.; Harris, K.G.; et al. Peptide YY: A Paneth cell antimicrobial peptide that maintains Candida gut commensalism. Science 2023, 381, 502–508. [Google Scholar] [CrossRef]
- Athapaththu, A.; Sanjaya, S.S.; Lee, K.T.; Karunarathne, W.; Choi, Y.H.; Hur, S.P.; Kim, G.Y. Pinostrobin Suppresses the α-Melanocyte-Stimulating Hormone-Induced Melanogenic Signaling Pathway. Int J Mol Sci 2023, 24. [Google Scholar] [CrossRef]
- Böhm, M.; Schiller, M.; Luger, T.A. Non-pigmentary actions of alpha-melanocyte-stimulating hormone--lessons from the cutaneous melanocortin system. Cellular and molecular biology (Noisy-le-Grand, France) 2006, 52, 61–68. [Google Scholar]
- Rauch, I.; Holzmeister, S.; Kofler, B. Anti-Candida activity of alpha-melanocyte-stimulating hormone (alpha-MSH) peptides. Journal of leukocyte biology 2009, 85, 371–372. [Google Scholar] [CrossRef]
- Obar, J.J. Sensing the threat posed by Aspergillus infection. Current opinion in microbiology 2020, 58, 47–55. [Google Scholar] [CrossRef]
- Cadena, J.; Thompson, G.R., 3rd; Patterson, T.F. Aspergillosis: Epidemiology, Diagnosis, and Treatment. Infectious disease clinics of North America 2021, 35, 415–434. [Google Scholar] [CrossRef]
- Zahid, A.; Waqas, S. Importance of excluding invasive aspergillus infection prior to immunosuppression. The journal of the Royal College of Physicians of Edinburgh 2022, 52, 184. [Google Scholar] [CrossRef] [PubMed]
- Rieber, N.; Gazendam, R.P.; Freeman, A.F.; Hsu, A.P.; Collar, A.L.; Sugui, J.A.; Drummond, R.A.; Rongkavilit, C.; Hoffman, K.; Henderson, C.; et al. Extrapulmonary Aspergillus infection in patients with CARD9 deficiency. JCI insight 2016, 1, e89890. [Google Scholar] [CrossRef] [PubMed]
- Amaike, S.; Keller, N.P. Aspergillus flavus. Annual review of phytopathology 2011, 49, 107–133. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, S.; Manavathu, E.K.; Chandrasekar, P.H. Aspergillus flavus: an emerging non-fumigatus Aspergillus species of significance. Mycoses 2009, 52, 206–222. [Google Scholar] [CrossRef]
- Cairns, T.C.; Barthel, L.; Meyer, V. Something old, something new: challenges and developments in Aspergillus niger biotechnology. Essays in biochemistry 2021, 65, 213–224. [Google Scholar] [CrossRef]
- Nielsen, K.F.; Mogensen, J.M.; Johansen, M.; Larsen, T.O.; Frisvad, J.C. Review of secondary metabolites and mycotoxins from the Aspergillus niger group. Analytical and bioanalytical chemistry 2009, 395, 1225–1242. [Google Scholar] [CrossRef]
- Luo, X.L.; Li, J.X.; Huang, H.R.; Duan, J.L.; Dai, R.X.; Tao, R.J.; Yang, L.; Hou, J.Y.; Jia, X.M.; Xu, J.F. LL37 Inhibits Aspergillus fumigatus Infection via Directly Binding to the Fungus and Preventing Excessive Inflammation. Front Immunol 2019, 10, 283. [Google Scholar] [CrossRef]
- Ballard, E.; Yucel, R.; Melchers, W.J.G.; Brown, A.J.P.; Verweij, P.E.; Warris, A. Antifungal Activity of Antimicrobial Peptides and Proteins against Aspergillus fumigatus. J Fungi (Basel) 2020, 6. [Google Scholar] [CrossRef]
- Oguiura, N.; Corrêa, P.G.; Rosmino, I.L.; de Souza, A.O.; Pasqualoto, K.F.M. Antimicrobial Activity of Snake β-Defensins and Derived Peptides. Toxins (Basel) 2021, 14. [Google Scholar] [CrossRef]
- Alekseeva, L.; Huet, D.; Féménia, F.; Mouyna, I.; Abdelouahab, M.; Cagna, A.; Guerrier, D.; Tichanné-Seltzer, V.; Baeza-Squiban, A.; Chermette, R.; et al. Inducible expression of beta defensins by human respiratory epithelial cells exposed to Aspergillus fumigatus organisms. BMC Microbiol 2009, 9, 33. [Google Scholar] [CrossRef] [PubMed]
- Elhabal, S.F.; Ghaffar, S.A.; Hager, R.; Elzohairy, N.A.; Khalifa, M.M.; Mohie, P.M.; Gad, R.A.; Omar, N.N.; Elkomy, M.H.; Khasawneh, M.A.; et al. Development of thermosensitive hydrogel of Amphotericin-B and Lactoferrin combination-loaded PLGA-PEG-PEI nanoparticles for potential eradication of ocular fungal infections: In-vitro, ex-vivo and in-vivo studies. International journal of pharmaceutics: X 2023, 5, 100174. [Google Scholar] [CrossRef]
- Zarember, K.A.; Sugui, J.A.; Chang, Y.C.; Kwon-Chung, K.J.; Gallin, J.I. Human polymorphonuclear leukocytes inhibit Aspergillus fumigatus conidial growth by lactoferrin-mediated iron depletion. Journal of immunology (Baltimore, Md. : 1950) 2007, 178, 6367–6373. [Google Scholar] [CrossRef]
- Mambula, S.S.; Simons, E.R.; Hastey, R.; Selsted, M.E.; Levitz, S.M. Human neutrophil-mediated nonoxidative antifungal activity against Cryptococcus neoformans. Infect Immun 2000, 68, 6257–6264. [Google Scholar] [CrossRef]
- Datta, A.; Yadav, V.; Ghosh, A.; Choi, J.; Bhattacharyya, D.; Kar, R.K.; Ilyas, H.; Dutta, A.; An, E.; Mukhopadhyay, J.; et al. Mode of Action of a Designed Antimicrobial Peptide: High Potency against Cryptococcus neoformans. Biophys J 2016, 111, 1724–1737. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Ye, L.; Zhao, F.; Zhang, L.; Lu, Z.; Chu, T.; Wang, S.; Liu, Z.; Sun, Y.; Chen, M.; et al. Cryptococcus neoformans, a global threat to human health. Infectious diseases of poverty 2023, 12, 20. [Google Scholar] [CrossRef] [PubMed]
- Conti, S.; Radicioni, G.; Ciociola, T.; Longhi, R.; Polonelli, L.; Gatti, R.; Cabras, T.; Messana, I.; Castagnola, M.; Vitali, A. Structural and functional studies on a proline-rich peptide isolated from swine saliva endowed with antifungal activity towards Cryptococcus neoformans. Biochimica et biophysica acta 2013, 1828, 1066–1074. [Google Scholar] [CrossRef]
- Xue, A.; Robbins, N.; Cowen, L.E. Advances in fungal chemical genomics for the discovery of new antifungal agents. Annals of the New York Academy of Sciences 2021, 1496, 5–22. [Google Scholar] [CrossRef]
- Deng, H.; Song, J.; Huang, Y.; Yang, C.; Zang, X.; Zhou, Y.; Li, H.; Dai, B.; Xue, X. Combating increased antifungal drug resistance in Cryptococcus, what should we do in the future? Acta biochimica et biophysica Sinica 2023, 55, 540–547. [Google Scholar] [CrossRef]
- Iyer, K.R.; Revie, N.M.; Fu, C.; Robbins, N.; Cowen, L.E. Treatment strategies for cryptococcal infection: challenges, advances and future outlook. Nature reviews. Microbiology 2021, 19, 454–466. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Zhao, L.; Meng, F.; Wang, Q.; Yao, Y.; Luo, J. Silver nanoparticles decorated lipase-sensitive polyurethane micelles for on-demand release of silver nanoparticles. Colloids and Surfaces B: Biointerfaces 2017, 152, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Xu, K.; Liu, L.; Tan, J.P.K.; Chen, Y.; Li, Y.; Fan, W.; Wei, Z.; Sheng, J.; Yang, Y.-Y.; et al. The efficacy of self-assembled cationic antimicrobial peptide nanoparticles against Cryptococcus neoformans for the treatment of meningitis. Biomaterials 2010, 31, 2874–2881. [Google Scholar] [CrossRef] [PubMed]
- Araúz, A.B.; Papineni, P. Histoplasmosis. Infectious disease clinics of North America 2021, 35, 471–491. [Google Scholar] [CrossRef]
- Barros, N.; Wheat, J.L.; Hage, C. Pulmonary Histoplasmosis: A Clinical Update. J Fungi (Basel) 2023, 9. [Google Scholar] [CrossRef]
- Gugnani, H.C.; Denning, D.W. Infection of bats with Histoplasma species. Medical mycology 2023, 61. [Google Scholar] [CrossRef]
- Couto, M.A.; Liu, L.; Lehrer, R.I.; Ganz, T. Inhibition of intracellular Histoplasma capsulatum replication by murine macrophages that produce human defensin. Infect Immun 1994, 62, 2375–2378. [Google Scholar] [CrossRef]
- Gomez, F.J.; Allendoerfer, R.; Deepe, G.S., Jr. Vaccination with recombinant heat shock protein 60 from Histoplasma capsulatum protects mice against pulmonary histoplasmosis. Infect Immun 1995, 63, 2587–2595. [Google Scholar] [CrossRef]
- Milewski, S.; Mignini, F.; Micossi, L.; Borowski, E. Antihistoplasmal in vitro and in vivo effect of Lys-Nva-FMDP. Medical mycology 1998, 36, 177–180. [Google Scholar] [CrossRef]
- Milewski, S.; Andruszkiewicz, R.; Kasprzak, L.; Mazerski, J.; Mignini, F.; Borowski, E. Mechanism of action of anticandidal dipeptides containing inhibitors of glucosamine-6-phosphate synthase. Antimicrob Agents Chemother 1991, 35, 36–43. [Google Scholar] [CrossRef]
- de la Salud Bea, R.; North, L.J.; Horiuchi, S.; Frawley, E.R.; Shen, Q. Antimicrobial Activity and Toxicity of Analogs of Wasp Venom EMP Peptides. Potential Influence of Oxidized Methionine. Antibiotics (Basel, Switzerland) 2021, 10. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Fang, W.; Deng, W.; Yu, Z.; Li, J.; Chen, M.; Liao, W.; Xie, J.; Pan, W. Global profiling of lysine acetylation in human histoplasmosis pathogen Histoplasma capsulatum. Int J Biochem Cell Biol 2016, 73, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Woo, P.C.; Tam, E.W.; Chong, K.T.; Cai, J.J.; Tung, E.T.; Ngan, A.H.; Lau, S.K.; Yuen, K.Y. High diversity of polyketide synthase genes and the melanin biosynthesis gene cluster in Penicillium marneffei. The FEBS journal 2010, 277, 3750–3758. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, H.C.; Assato, P.A.; Marcos, C.M.; Scorzoni, L.; de Paula, E.S.A.C.; Da Silva Jde, F.; Singulani Jde, L.; Alarcon, K.M.; Fusco-Almeida, A.M.; Mendes-Giannini, M.J. Paracoccidioides-host Interaction: An Overview on Recent Advances in the Paracoccidioidomycosis. Front Microbiol 2015, 6, 1319. [Google Scholar] [CrossRef]
- Pappagianis, D.; Zimmer, B.L. Serology of coccidioidomycosis. Clinical microbiology reviews 1990, 3, 247–268. [Google Scholar] [CrossRef] [PubMed]
- Saubolle, M.A. Laboratory aspects in the diagnosis of coccidioidomycosis. Annals of the New York Academy of Sciences 2007, 1111, 301–314. [Google Scholar] [CrossRef]
- Duarte-Escalante, E.; Frías-De-León, M.G.; Zúñiga, G.; Martínez-Herrera, E.; Acosta-Altamirano, G.; Reyes-Montes Mdel, R. Molecular markers in the epidemiology and diagnosis of coccidioidomycosis. Revista iberoamericana de micologia 2014, 31, 49–53. [Google Scholar] [CrossRef]
- Barker, B.M.; Jewell, K.A.; Kroken, S.; Orbach, M.J. The population biology of coccidioides: epidemiologic implications for disease outbreaks. Annals of the New York Academy of Sciences 2007, 1111, 147–163. [Google Scholar] [CrossRef]
- Klein, B.S.; Sondel, P.M.; Jones, J.M. WI-1, a novel 120-kilodalton surface protein on Blastomyces dermatitidis yeast cells, is a target antigen of cell-mediated immunity in human blastomycosis. Infect Immun 1992, 60, 4291–4300. [Google Scholar] [CrossRef]
- Klein, B.S.; Jones, J.M. Purification and characterization of the major antigen WI-1 from Blastomyces dermatitidis yeasts and immunological comparison with A antigen. Infect Immun 1994, 62, 3890–3900. [Google Scholar] [CrossRef]
- Cox, R.A.; Dolan, M.J.; Magee, D.M.; Galgiani, J.N. Production of a murine monoclonal antibody that recognizes an epitope specific to Coccidioides immitis antigen 2. Infect Immun 1993, 61, 1895–1899. [Google Scholar] [CrossRef] [PubMed]
- Steinbrink, J.M.; Miceli, M.H. Mucormycosis. Infectious disease clinics of North America 2021, 35, 435–452. [Google Scholar] [CrossRef] [PubMed]
- Lanternier, F.; Sun, H.Y.; Ribaud, P.; Singh, N.; Kontoyiannis, D.P.; Lortholary, O. Mucormycosis in organ and stem cell transplant recipients. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 2012, 54, 1629–1636. [Google Scholar] [CrossRef] [PubMed]
- Robin, C.; Alanio, A.; Cordonnier, C. Mucormycosis: a new concern in the transplant ward? Current opinion in hematology 2014, 21, 482–490. [Google Scholar] [CrossRef]
- Papon, N.; Naglik, J.R.; Hube, B.; Goldman, G.H. Fungal pathogenesis: A new venom. Current biology : CB 2021, 31, R391–r394. [Google Scholar] [CrossRef]
- Giger, G.H.; Ernst, C.; Richter, I.; Gassler, T.; Field, C.M.; Sintsova, A.; Kiefer, P.; Gäbelein, C.G.; Guillaume-Gentil, O.; Scherlach, K.; et al. Inducing novel endosymbioses by implanting bacteria in fungi. Nature 2024, 635, 415–422. [Google Scholar] [CrossRef]
- Sharma, A.; Alam, M.A.; Dhoundiyal, S.; Sharma, P.K. Review on Mucormycosis: Pathogenesis, Epidemiology, Microbiology and Diagnosis. Infectious disorders drug targets 2024, 24, e220823220209. [Google Scholar] [CrossRef]
- Lax, C.; Cánovas-Márquez, J.T.; Tahiri, G.; Navarro, E.; Garre, V.; Nicolás, F.E. Genetic Manipulation in Mucorales and New Developments to Study Mucormycosis. Int J Mol Sci 2022, 23. [Google Scholar] [CrossRef]
- Lax, C.; Nicolás, F.E.; Navarro, E.; Garre, V. Molecular mechanisms that govern infection and antifungal resistance in Mucorales. Microbiology and molecular biology reviews : MMBR 2024, 88, e0018822. [Google Scholar] [CrossRef]
- Lax, C.; Mondo, S.J.; Osorio-Concepción, M.; Muszewska, A.; Corrochano-Luque, M.; Gutiérrez, G.; Riley, R.; Lipzen, A.; Guo, J.; Hundley, H.; et al. Symmetric and asymmetric DNA N6-adenine methylation regulates different biological responses in Mucorales. Nature communications 2024, 15, 6066. [Google Scholar] [CrossRef]
- Szebenyi, C.; Gu, Y.; Gebremariam, T.; Kocsubé, S.; Kiss-Vetráb, S.; Jáger, O.; Patai, R.; Spisák, K.; Sinka, R.; Binder, U.; et al. cotH Genes Are Necessary for Normal Spore Formation and Virulence in Mucor lusitanicus. mBio 2023, 14, e0338622. [Google Scholar] [CrossRef]
- Tahiri, G.; Lax, C.; Cánovas-Márquez, J.T.; Carrillo-Marín, P.; Sanchis, M.; Navarro, E.; Garre, V.; Nicolás, F.E. Mucorales and Mucormycosis: Recent Insights and Future Prospects. J Fungi (Basel) 2023, 9. [Google Scholar] [CrossRef] [PubMed]
- Soare, A.Y.; Bruno, V.M. Mucorales fungi suppress nitric oxide production by macrophages. mBio 2024, 15, e0284823. [Google Scholar] [CrossRef] [PubMed]
- Liang, G.; Zhang, M.; Xu, W.; Wang, X.; Zheng, H.; Mei, H.; Liu, W. Characterization of mitogenomes from four Mucorales species and insights into pathogenicity. Mycoses 2022, 65, 45–56. [Google Scholar] [CrossRef]
- Liang, M.; Xu, J.; Luo, Y.; Qu, J. Epidemiology, pathogenesis, clinical characteristics, and treatment of mucormycosis: a review. Annals of medicine 2024, 56, 2396570. [Google Scholar] [CrossRef] [PubMed]
- Alqarihi, A.; Kontoyiannis, D.P.; Ibrahim, A.S. Mucormycosis in 2023: an update on pathogenesis and management. Front Cell Infect Microbiol 2023, 13, 1254919. [Google Scholar] [CrossRef]
- Lugito, N.P.H.; Cucunawangsih, C. How Does Mucorales Benefit from the Dysregulated Iron Homeostasis During SARS-CoV-2 Infection? Mycopathologia 2021, 186, 877–882. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Singh, R.; Reddy, S.; Singh, S.; Rudramurthy, S.M.; Kaur, H.; Choudhary, H.; Chakrabarti, A. Evaluation of environmental Mucorales contamination in and around the residence of COVID-19-associated mucormycosis patients. Front Cell Infect Microbiol 2022, 12, 953750. [Google Scholar] [CrossRef]
- Ahammed, K.S.; van Hoof, A. Fungi of the order Mucorales express a "sealing-only" tRNA ligase. RNA (New York, N.Y.) 2024, 30, 354–366. [Google Scholar] [CrossRef]
- Pinder, C.; Lebedinec, R.; Levine, T.P.; Birch, M.; Oliver, J.D. Characterisation of putative class 1A DHODH-like proteins from Mucorales and dematiaceous mould species. PLoS ONE 2023, 18, e0289441. [Google Scholar] [CrossRef]
- Suguna, K.; Padlan, E.A.; Smith, C.W.; Carlson, W.D.; Davies, D.R. Binding of a reduced peptide inhibitor to the aspartic proteinase from Rhizopus chinensis: implications for a mechanism of action. Proc Natl Acad Sci U S A 1987, 84, 7009–7013. [Google Scholar] [CrossRef] [PubMed]
- Gebremariam, T.; Alkhazraji, S.; Soliman, S.S.M.; Gu, Y.; Jeon, H.H.; Zhang, L.; French, S.W.; Stevens, D.A.; Edwards, J.E., Jr.; Filler, S.G.; et al. Anti-CotH3 antibodies protect mice from mucormycosis by prevention of invasion and augmenting opsonophagocytosis. Sci Adv 2019, 5, eaaw1327. [Google Scholar] [CrossRef]
- Badosa, E.; Ferré, R.; Francés, J.; Bardají, E.; Feliu, L.; Planas, M.; Montesinos, E. Sporicidal activity of synthetic antifungal undecapeptides and control of Penicillium rot of apples. Applied and environmental microbiology 2009, 75, 5563–5569. [Google Scholar] [CrossRef]
- Liu, S.H.; Chou, W.I.; Sheu, C.C.; Chang, M.D. Improved secretory production of glucoamylase in Pichia pastoris by combination of genetic manipulations. Biochemical and biophysical research communications 2005, 326, 817–824. [Google Scholar] [CrossRef] [PubMed]
- López-García, B.; Veyrat, A.; Pérez-Payá, E.; González-Candelas, L.; Marcos, J.F. Comparison of the activity of antifungal hexapeptides and the fungicides thiabendazole and imazalil against postharvest fungal pathogens. International journal of food microbiology 2003, 89, 163–170. [Google Scholar] [CrossRef]
- Wang, F.; Han, R.; Chen, S. An Overlooked and Underrated Endemic Mycosis-Talaromycosis and the Pathogenic Fungus Talaromyces marneffei. Clinical microbiology reviews 2023, 36, e0005122. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Lou, L.; Ma, S.; Wang, H.; Rong, L.; Liu, Y.; Zhang, K.; Ai, Q.; Shi, X. Disseminated Talaromyces marneffei infection initially presenting as cutaneous and subcutaneous lesion in an HIV-Negative renal transplant recipient: a case report and literature review. BMC infectious diseases 2024, 24, 473. [Google Scholar] [CrossRef]
- Chan, J.F.; Lau, S.K.; Yuen, K.Y.; Woo, P.C. Talaromyces (Penicillium) marneffei infection in non-HIV-infected patients. Emerging microbes & infections 2016, 5, e19. [Google Scholar] [CrossRef]
- Wong, S.S.Y.; Siau, H.; Yuen, K.Y. Penicilliosis marneffei--West meets East. Journal of medical microbiology 1999, 48, 973–975. [Google Scholar] [CrossRef]
- Vanittanakom, N.; Cooper, C.R., Jr.; Fisher, M.C.; Sirisanthana, T. Penicillium marneffei infection and recent advances in the epidemiology and molecular biology aspects. Clinical microbiology reviews 2006, 19, 95–110. [Google Scholar] [CrossRef]
- Xu, L.; Chen, X.; Yang, X.; Jiang, H.; Wang, J.; Chen, S.; Xu, J. Disseminated Talaromyces marneffei infection after renal transplantation: A case report and literature review. Front Cell Infect Microbiol 2023, 13, 1115268. [Google Scholar] [CrossRef]
- You, C.Y.; Hu, F.; Lu, S.W.; Pi, D.D.; Xu, F.; Liu, C.J.; Fu, Y.Q. Talaromyces Marneffei Infection in an HIV-Negative Child with a CARD9 Mutation in China: A Case Report and Review of the Literature. Mycopathologia 2021, 186, 553–561. [Google Scholar] [CrossRef]
- Ustianowski, A.P.; Sieu, T.P.; Day, J.N. Penicillium marneffei infection in HIV. Current opinion in infectious diseases 2008, 21, 31–36. [Google Scholar] [CrossRef]
- Lam, W.H.; Sze, K.H.; Ke, Y.; Tse, M.K.; Zhang, H.; Woo, P.C.Y.; Lau, S.K.P.; Lau, C.C.Y.; Xu, S.; Lai, P.M.; et al. Talaromyces marneffei Mp1 Protein, a Novel Virulence Factor, Carries Two Arachidonic Acid-Binding Domains To Suppress Inflammatory Responses in Hosts. Infect Immun 2019, 87. [Google Scholar] [CrossRef]
- Cao, L.; Chan, C.M.; Lee, C.; Wong, S.S.; Yuen, K.Y. MP1 encodes an abundant and highly antigenic cell wall mannoprotein in the pathogenic fungus Penicillium marneffei. Infect Immun 1998, 66, 966–973. [Google Scholar] [CrossRef]
- Erdem Büyükkiraz, M.; Kesmen, Z. Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds. Journal of applied microbiology 2022, 132, 1573–1596. [Google Scholar] [CrossRef]
- Zhu, Y.; Hao, W.; Wang, X.; Ouyang, J.; Deng, X.; Yu, H.; Wang, Y. Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug-resistant infections. Med Res Rev 2022, 42, 1377–1422. [Google Scholar] [CrossRef]
- Morrison, L.; Zembower, T.R. Antimicrobial Resistance. Gastrointestinal endoscopy clinics of North America 2020, 30, 619–635. [Google Scholar] [CrossRef]
- Brinkac, L.; Voorhies, A.; Gomez, A.; Nelson, K.E. The Threat of Antimicrobial Resistance on the Human Microbiome. Microbial ecology 2017, 74, 1001–1008. [Google Scholar] [CrossRef]
- Ji, S.; An, F.; Zhang, T.; Lou, M.; Guo, J.; Liu, K.; Zhu, Y.; Wu, J.; Wu, R. Antimicrobial peptides: An alternative to traditional antibiotics. Eur J Med Chem 2024, 265, 116072. [Google Scholar] [CrossRef]
- Sharma, D.; Bisht, G.S. Recent Updates on Antifungal Peptides. Mini Rev Med Chem 2020, 20, 260–268. [Google Scholar] [CrossRef]
- Luo, Y.; Song, Y. Mechanism of Antimicrobial Peptides: Antimicrobial, Anti-Inflammatory and Antibiofilm Activities. Int J Mol Sci 2021, 22. [Google Scholar] [CrossRef]
- Sani, M.A.; Separovic, F. How Membrane-Active Peptides Get into Lipid Membranes. Accounts of chemical research 2016, 49, 1130–1138. [Google Scholar] [CrossRef]
- Fabisiak, A.; Murawska, N.; Fichna, J. LL-37: Cathelicidin-related antimicrobial peptide with pleiotropic activity. Pharmacological reports : PR 2016, 68, 802–808. [Google Scholar] [CrossRef]
- Hein, M.J.A.; Kvansakul, M.; Lay, F.T.; Phan, T.K.; Hulett, M.D. Defensin-lipid interactions in membrane targeting: mechanisms of action and opportunities for the development of antimicrobial and anticancer therapeutics. Biochemical Society transactions 2022, 50, 423–437. [Google Scholar] [CrossRef]
- Gbala, I.D.; Macharia, R.W.; Bargul, J.L.; Magoma, G. Membrane Permeabilization and Antimicrobial Activity of Recombinant Defensin-d2 and Actifensin against Multidrug-Resistant Pseudomonas aeruginosa and Candida albicans. Molecules 2022, 27. [Google Scholar] [CrossRef]
- Brogden, K.A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature reviews. Microbiology 2005, 3, 238–250. [Google Scholar] [CrossRef]
- Matsuzaki, K. Membrane Permeabilization Mechanisms. Adv Exp Med Biol 2019, 1117, 9–16. [Google Scholar] [CrossRef]
- Jacob, T.; Kahn, T.W. A deep learning model to detect novel pore-forming proteins. Sci Rep 2022, 12, 2013. [Google Scholar] [CrossRef]
- Henriksen, J.R.; Andresen, T.L.; Feldborg, L.N.; Duelund, L.; Ipsen, J.H. Understanding detergent effects on lipid membranes: a model study of lysolipids. Biophys J 2010, 98, 2199–2205. [Google Scholar] [CrossRef]
- Nagaoka, I.; Tamura, H.; Reich, J. Therapeutic Potential of Cathelicidin Peptide LL-37, an Antimicrobial Agent, in a Murine Sepsis Model. Int J Mol Sci 2020, 21. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Shi, J.; Chen, C.; Wang, Z.; Liu, Y. Truncated Pleurocidin Derivative with High Pepsin Hydrolysis Resistance to Combat Multidrug-Resistant Pathogens. Pharmaceutics 2022, 14. [Google Scholar] [CrossRef]
- Mhlongo, J.T.; Waddad, A.Y.; Albericio, F.; de la Torre, B.G. Antimicrobial Peptide Synergies for Fighting Infectious Diseases. Advanced science (Weinheim, Baden-Wurttemberg, Germany) 2023, 10, e2300472. [Google Scholar] [CrossRef] [PubMed]
- Pushpanathan, M.; Gunasekaran, P.; Rajendhran, J. Antimicrobial peptides: versatile biological properties. International journal of peptides 2013, 2013, 675391. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, C.; Li, M.; Liu, C.; Wang, J.; Ou, X.; Han, Y. Antimicrobial Peptides Mediate Apoptosis by Changing Mitochondrial Membrane Permeability. Int J Mol Sci 2022, 23. [Google Scholar] [CrossRef]
- Serezani, C.H.; Ballinger, M.N.; Aronoff, D.M.; Peters-Golden, M. Cyclic AMP: master regulator of innate immune cell function. American journal of respiratory cell and molecular biology 2008, 39, 127–132. [Google Scholar] [CrossRef]
- Yang, K.; Han, W.; Jiang, X.; Piffko, A.; Bugno, J.; Han, C.; Li, S.; Liang, H.; Xu, Z.; Zheng, W.; et al. Zinc cyclic di-AMP nanoparticles target and suppress tumours via endothelial STING activation and tumour-associated macrophage reinvigoration. Nature nanotechnology 2022, 17, 1322–1331. [Google Scholar] [CrossRef]
- Akdis, C.A.; Arkwright, P.D.; Brüggen, M.C.; Busse, W.; Gadina, M.; Guttman-Yassky, E.; Kabashima, K.; Mitamura, Y.; Vian, L.; Wu, J.; et al. Type 2 immunity in the skin and lungs. Allergy 2020, 75, 1582–1605. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.M.; Son, K.N.; Shah, D.; Ali, M.; Balasubramaniam, A.; Shukla, D.; Aakalu, V.K. Histatin-1 Attenuates LPS-Induced Inflammatory Signaling in RAW264.7 Macrophages. Int J Mol Sci 2021, 22. [Google Scholar] [CrossRef]
- Ren, H.; Zhao, F.; Zhang, Q.; Huang, X.; Wang, Z. Autophagy and skin wound healing. Burns & trauma 2022, 10, tkac003. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, J.; Wu, S.; Deng, Y.; Wang, S.; Xie, L.; Li, X.; Yang, L. Exosome/antimicrobial peptide laden hydrogel wound dressings promote scarless wound healing through miR-21-5p-mediated multiple functions. Biomaterials 2024, 308, 122558. [Google Scholar] [CrossRef] [PubMed]
- Mangoni, M.L.; McDermott, A.M.; Zasloff, M. Antimicrobial peptides and wound healing: biological and therapeutic considerations. Experimental dermatology 2016, 25, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Egessa, R. Antimicrobial peptides from freshwater invertebrate species: potential for future applications. Mol Biol Rep 2022, 49, 9797–9811. [Google Scholar] [CrossRef]
- Zasloff, M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A 1987, 84, 5449–5453. [Google Scholar] [CrossRef]
- Valdez-Miramontes, C.E.; De Haro-Acosta, J.; Aréchiga-Flores, C.F.; Verdiguel-Fernández, L.; Rivas-Santiago, B. Antimicrobial peptides in domestic animals and their applications in veterinary medicine. Peptides 2021, 142, 170576. [Google Scholar] [CrossRef]
- Suarez-Jimenez, G.M.; Burgos-Hernandez, A.; Ezquerra-Brauer, J.M. Bioactive peptides and depsipeptides with anticancer potential: sources from marine animals. Mar Drugs 2012, 10, 963–986. [Google Scholar] [CrossRef]
- Nuti, R.; Goud, N.S.; Saraswati, A.P.; Alvala, R.; Alvala, M. Antimicrobial Peptides: A Promising Therapeutic Strategy in Tackling Antimicrobial Resistance. Current medicinal chemistry 2017, 24, 4303–4314. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; He, J.; Zhang, Y.; Guo, Y. Synthesis of biotin-AMP conjugate for 5' biotin labeling of RNA through one-step in vitro transcription. Nature protocols 2008, 3, 1848–1861. [Google Scholar] [CrossRef]
- Brizuela, C.A.; Liu, G.; Stokes, J.M.; de la Fuente-Nunez, C. AI Methods for Antimicrobial Peptides: Progress and Challenges. Microbial biotechnology 2025, 18, e70072. [Google Scholar] [CrossRef]
- Huang, J.; Xu, Y.; Xue, Y.; Huang, Y.; Li, X.; Chen, X.; Xu, Y.; Zhang, D.; Zhang, P.; Zhao, J.; et al. Identification of potent antimicrobial peptides via a machine-learning pipeline that mines the entire space of peptide sequences. Nature biomedical engineering 2023, 7, 797–810. [Google Scholar] [CrossRef]
- Ma, Y.; Guo, Z.; Xia, B.; Zhang, Y.; Liu, X.; Yu, Y.; Tang, N.; Tong, X.; Wang, M.; Ye, X.; et al. Identification of antimicrobial peptides from the human gut microbiome using deep learning. Nature biotechnology 2022, 40, 921–931. [Google Scholar] [CrossRef] [PubMed]
- Hegde, A.R.; Paul, M.; Kumbham, S.; Roy, A.A.; Ahmad, S.F.; Parekh, H.; Biswas, S.; Mutalik, S. Ameliorative anticancer effect of dendrimeric peptide modified liposomes of letrozole: In vitro and in vivo performance evaluations. International journal of pharmaceutics 2023, 648, 123582. [Google Scholar] [CrossRef]
- Bahar, A.A.; Liu, Z.; Totsingan, F.; Buitrago, C.; Kallenbach, N.; Ren, D. Synthetic dendrimeric peptide active against biofilm and persister cells of Pseudomonas aeruginosa. Applied microbiology and biotechnology 2015, 99, 8125–8135. [Google Scholar] [CrossRef] [PubMed]
- Batoni, G.; Casu, M.; Giuliani, A.; Luca, V.; Maisetta, G.; Mangoni, M.L.; Manzo, G.; Pintus, M.; Pirri, G.; Rinaldi, A.C.; et al. Rational modification of a dendrimeric peptide with antimicrobial activity: consequences on membrane-binding and biological properties. Amino acids 2016, 48, 887–900. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Zhang, M.; Lai, R.; Zhang, Z. Chemical modifications to increase the therapeutic potential of antimicrobial peptides. Peptides 2021, 146, 170666. [Google Scholar] [CrossRef]
- He, S.; Yang, Z.; Li, X.; Wu, H.; Zhang, L.; Shan, A.; Wang, J. Boosting stability and therapeutic potential of proteolysis-resistant antimicrobial peptides by end-tagging β-naphthylalanine. Acta Biomater 2023, 164, 175–194. [Google Scholar] [CrossRef]
- Marimuthu, S.K.; Nagarajan, K.; Perumal, S.K.; Palanisamy, S.; Subbiah, L. Structural stability of antimicrobial peptides rich in tryptophan, proline and arginine: a computational study. Journal of biomolecular structure & dynamics 2022, 40, 3551–3559. [Google Scholar] [CrossRef]
- Ghosh, A.; Zhao, Y. Site-Selective Functionalization of Molecularly Imprinted Nanoparticles to Recognize Lysine-Rich Peptides. Biomacromolecules 2024, 25, 6188–6194. [Google Scholar] [CrossRef]
- Shagaghi, N.; Palombo, E.A.; Clayton, A.H.; Bhave, M. Archetypal tryptophan-rich antimicrobial peptides: properties and applications. World J Microbiol Biotechnol 2016, 32, 31. [Google Scholar] [CrossRef]
- Du, Y.; Li, L.; Zheng, Y.; Liu, J.; Gong, J.; Qiu, Z.; Li, Y.; Qiao, J.; Huo, Y.X. Incorporation of Non-Canonical Amino Acids into Antimicrobial Peptides: Advances, Challenges, and Perspectives. Applied and environmental microbiology 2022, 88, e0161722. [Google Scholar] [CrossRef]
- Svensen, N.; Walton, J.G.; Bradley, M. Peptides for cell-selective drug delivery. Trends in pharmacological sciences 2012, 33, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xia, K.; Wang, L.; Wu, M.; Sang, X.; Wan, K.; Zhang, X.; Liu, X.; Wei, G. Peptide-Engineered Fluorescent Nanomaterials: Structure Design, Function Tailoring, and Biomedical Applications. Small (Weinheim an der Bergstrasse, Germany) 2021, 17, e2005578. [Google Scholar] [CrossRef]
- Torres, M.D.T.; Sothiselvam, S.; Lu, T.K.; de la Fuente-Nunez, C. Peptide Design Principles for Antimicrobial Applications. Journal of molecular biology 2019, 431, 3547–3567. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Hao, D.; Mei, K.; Li, X.; Li, T.; Ma, C.; Xi, X.; Li, L.; Wang, L.; Zhou, M.; et al. In Vitro and In Vivo Studies on the Antibacterial Activity and Safety of a New Antimicrobial Peptide Dermaseptin-AC. Microbiology spectrum 2021, 9, e0131821. [Google Scholar] [CrossRef]
- Li, M.; Xi, X.; Ma, C.; Chen, X.; Zhou, M.; Burrows, J.F.; Chen, T.; Wang, L. A Novel Dermaseptin Isolated from the Skin Secretion of Phyllomedusa tarsius and Its Cationicity-Enhanced Analogue Exhibiting Effective Antimicrobial and Anti-Proliferative Activities. Biomolecules 2019, 9. [Google Scholar] [CrossRef]
- Pinilla, G.; Coronado, Y.T.; Chaves, G.; Muñoz, L.; Navarrete, J.; Salazar, L.M.; Taborda, C.P.; Muñoz, J.E. In Vitro Antifungal Activity of LL-37 Analogue Peptides against Candida spp. J Fungi (Basel) 2022, 8. [Google Scholar] [CrossRef]
- Luo, Y.; McLean, D.T.; Linden, G.J.; McAuley, D.F.; McMullan, R.; Lundy, F.T. The Naturally Occurring Host Defense Peptide, LL-37, and Its Truncated Mimetics KE-18 and KR-12 Have Selected Biocidal and Antibiofilm Activities Against Candida albicans, Staphylococcus aureus, and Escherichia coli In vitro. Front Microbiol 2017, 8, 544. [Google Scholar] [CrossRef]
- Wang, B.; Lin, P.; Zhong, Y.; Tan, X.; Shen, Y.; Huang, Y.; Jin, K.; Zhang, Y.; Zhan, Y.; Shen, D.; et al. Explainable deep learning and virtual evolution identifies antimicrobial peptides with activity against multidrug-resistant human pathogens. Nature Microbiology, 1038. [Google Scholar] [CrossRef]
- Duan, X.P.; Qin, B.D.; Jiao, X.D.; Liu, K.; Wang, Z.; Zang, Y.S. New clinical trial design in precision medicine: discovery, development and direction. Signal transduction and targeted therapy 2024, 9, 57. [Google Scholar] [CrossRef]
- Pawar, S.; Markowitz, K.; Velliyagounder, K. Effect of human lactoferrin on Candida albicans infection and host response interactions in experimental oral candidiasis in mice. Archives of oral biology 2022, 137, 105399. [Google Scholar] [CrossRef]
- Lupetti, A.; Brouwer, C.P.; Bogaards, S.J.; Welling, M.M.; de Heer, E.; Campa, M.; van Dissel, J.T.; Friesen, R.H.; Nibbering, P.H. Human lactoferrin-derived peptide's antifungal activities against disseminated Candida albicans infection. The Journal of infectious diseases 2007, 196, 1416–1424. [Google Scholar] [CrossRef]
- Tanida, T.; Rao, F.; Hamada, T.; Ueta, E.; Osaki, T. Lactoferrin peptide increases the survival of Candida albicans-inoculated mice by upregulating neutrophil and macrophage functions, especially in combination with amphotericin B and granulocyte-macrophage colony-stimulating factor. Infect Immun 2001, 69, 3883–3890. [Google Scholar] [CrossRef]
- Lai, Y.W.; Pang, C.N.I.; Campbell, L.T.; Chen, S.C.A.; Wilkins, M.R.; Carter, D.A. Different Pathways Mediate Amphotericin-Lactoferrin Drug Synergy in Cryptococcus and Saccharomyces. Front Microbiol 2019, 10, 2195. [Google Scholar] [CrossRef]
- Mochon, A.B.; Liu, H. The antimicrobial peptide histatin-5 causes a spatially restricted disruption on the Candida albicans surface, allowing rapid entry of the peptide into the cytoplasm. PLoS pathogens 2008, 4, e1000190. [Google Scholar] [CrossRef]
- Koshlukova, S.E.; Lloyd, T.L.; Araujo, M.W.; Edgerton, M. Salivary histatin 5 induces non-lytic release of ATP from Candida albicans leading to cell death. The Journal of biological chemistry 1999, 274, 18872–18879. [Google Scholar] [CrossRef]
- Nikawa, H.; Jin, C.; Makihira, S.; Hamada, T.; Samaranayake, L.P. Susceptibility of Candida albicans isolates from the oral cavities of HIV-positive patients to histatin-5. The Journal of prosthetic dentistry 2002, 88, 263–267. [Google Scholar] [CrossRef]
- Tsai, H.; Bobek, L.A. Human salivary histatin-5 exerts potent fungicidal activity against Cryptococcus neoformans. Biochimica et biophysica acta 1997, 1336, 367–369. [Google Scholar] [CrossRef]
- Bobek, L.A.; Situ, H. MUC7 20-Mer: investigation of antimicrobial activity, secondary structure, and possible mechanism of antifungal action. Antimicrob Agents Chemother 2003, 47, 643–652. [Google Scholar] [CrossRef]
- Situ, H.; Bobek, L.A. In vitro assessment of antifungal therapeutic potential of salivary histatin-5, two variants of histatin-5, and salivary mucin (MUC7) domain 1. Antimicrob Agents Chemother 2000, 44, 1485–1493. [Google Scholar] [CrossRef]
- Nikawa, H.; Jin, C.; Fukushima, H.; Makihira, S.; Hamada, T. Antifungal activity of histatin-5 against non-albicans Candida species. Oral microbiology and immunology 2001, 16, 250–252. [Google Scholar] [CrossRef]
- van't Hof, W.; Reijnders, I.M.; Helmerhorst, E.J.; Walgreen-Weterings, E.; Simoons-Smit, I.M.; Veerman, E.C.; Amerongen, A.V. Synergistic effects of low doses of histatin 5 and its analogues on amphotericin B anti-mycotic activity. Antonie van Leeuwenhoek 2000, 78, 163–169. [Google Scholar] [CrossRef]
- Baev, D.; Li, X.S.; Dong, J.; Keng, P.; Edgerton, M. Human salivary histatin 5 causes disordered volume regulation and cell cycle arrest in Candida albicans. Infect Immun 2002, 70, 4777–4784. [Google Scholar] [CrossRef] [PubMed]
- Oppenheim, F.G.; Xu, T.; McMillian, F.M.; Levitz, S.M.; Diamond, R.D.; Offner, G.D.; Troxler, R.F. Histatins, a novel family of histidine-rich proteins in human parotid secretion. Isolation, characterization, primary structure, and fungistatic effects on Candida albicans. The Journal of biological chemistry 1988, 263, 7472–7477. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Lal, K.; Pollock, J.J. Histatins 2 and 4 are autoproteolytic degradation products of human parotid saliva. Oral microbiology and immunology 1992, 7, 127–128. [Google Scholar] [CrossRef]
- Moulin-Traffort, J.; Venot, C.; Regli, P. Ultrastructural study of Candida albicans yeast after application of a ribonuclease. Mycopathologia 1986, 93, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Han, C.; Sheng, J. The role of human ribonuclease A family in health and diseases: A systematic review. iScience 2022, 25, 105284. [Google Scholar] [CrossRef]
- Wang, Y.N.; Lee, H.H.; Hung, M.C. A novel ligand-receptor relationship between families of ribonucleases and receptor tyrosine kinases. Journal of biomedical science 2018, 25, 83. [Google Scholar] [CrossRef]
- Rosenberg, H.F. RNase A ribonucleases and host defense: an evolving story. Journal of leukocyte biology 2008, 83, 1079–1087. [Google Scholar] [CrossRef]
- Sheng, J.; Xu, Z. Three decades of research on angiogenin: a review and perspective. Acta biochimica et biophysica Sinica 2016, 48, 399–410. [Google Scholar] [CrossRef]
- Zhang, J.; Dyer, K.D.; Rosenberg, H.F. Human RNase 7: a new cationic ribonuclease of the RNase A superfamily. Nucleic acids research 2003, 31, 602–607. [Google Scholar] [CrossRef]
- Rademacher, F.; Simanski, M.; Harder, J. RNase 7 in Cutaneous Defense. Int J Mol Sci 2016, 17, 560. [Google Scholar] [CrossRef]
- Rademacher, F.; Dreyer, S.; Kopfnagel, V.; Gläser, R.; Werfel, T.; Harder, J. The Antimicrobial and Immunomodulatory Function of RNase 7 in Skin. Front Immunol 2019, 10, 2553. [Google Scholar] [CrossRef]
- Murakami, M.; Lopez-Garcia, B.; Braff, M.; Dorschner, R.A.; Gallo, R.L. Postsecretory processing generates multiple cathelicidins for enhanced topical antimicrobial defense. Journal of immunology (Baltimore, Md. : 1950) 2004, 172, 3070–3077. [Google Scholar] [CrossRef] [PubMed]
- Schittek, B.; Hipfel, R.; Sauer, B.; Bauer, J.; Kalbacher, H.; Stevanovic, S.; Schirle, M.; Schroeder, K.; Blin, N.; Meier, F.; et al. Dermcidin: a novel human antibiotic peptide secreted by sweat glands. Nature immunology 2001, 2, 1133–1137. [Google Scholar] [CrossRef]
- Lai, Y.; Villaruz, A.E.; Li, M.; Cha, D.J.; Sturdevant, D.E.; Otto, M. The human anionic antimicrobial peptide dermcidin induces proteolytic defence mechanisms in staphylococci. Molecular microbiology 2007, 63, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Scarsini, M.; Tomasinsig, L.; Arzese, A.; D'Este, F.; Oro, D.; Skerlavaj, B. Antifungal activity of cathelicidin peptides against planktonic and biofilm cultures of Candida species isolated from vaginal infections. Peptides 2015, 71, 211–221. [Google Scholar] [CrossRef]
- van Eijk, M.; van Dijk, A.; van der Ent, C.K.; Arets, H.G.M.; Breukink, E.; van Os, N.; Adrichem, R.; van der Water, S.; Lino Gómez, R.; Kristensen, M.; et al. PepBiotics, novel cathelicidin-inspired antimicrobials to fight pulmonary bacterial infections. Biochimica et biophysica acta. General subjects 2021, 1865, 129951. [Google Scholar] [CrossRef]
- Biswas, D.; Ambalavanan, P.; Ravins, M.; Anand, A.; Sharma, A.; Lim, K.X.Z.; Tan, R.Y.M.; Lim, H.Y.; Sol, A.; Bachrach, G.; et al. LL-37-mediated activation of host receptors is critical for defense against group A streptococcal infection. Cell reports 2021, 34, 108766. [Google Scholar] [CrossRef]
- Liu, C.; Henning-Knechtel, A.; Österlund, N.; Wu, J.; Wang, G.; Gräslund, R.A.O.; Kirmizialtin, S.; Luo, J. Oligomer Dynamics of LL-37 Truncated Fragments Probed by α-Hemolysin Pore and Molecular Simulations. Small (Weinheim an der Bergstrasse, Germany) 2023, 19, e2206232. [Google Scholar] [CrossRef]
- Durnaś, B.; Wnorowska, U.; Pogoda, K.; Deptuła, P.; Wątek, M.; Piktel, E.; Głuszek, S.; Gu, X.; Savage, P.B.; Niemirowicz, K.; et al. Candidacidal Activity of Selected Ceragenins and Human Cathelicidin LL-37 in Experimental Settings Mimicking Infection Sites. PLoS ONE 2016, 11, e0157242. [Google Scholar] [CrossRef]
- Memariani, M.; Memariani, H. Antifungal properties of cathelicidin LL-37: current knowledge and future research directions. World J Microbiol Biotechnol 2023, 40, 34. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Li, C.; Liu, J.; Yang, S.; Peng, X.; Wang, Q.; Liu, C.; Liu, X.; Luan, J.; Zhao, G.; et al. Cathelicidin boosts the antifungal activity of neutrophils and improves prognosis during Aspergillus fumigatus keratitis. Infect Immun 2024, 92, e0048323. [Google Scholar] [CrossRef] [PubMed]
- Sheehan, G.; Bergsson, G.; McElvaney, N.G.; Reeves, E.P.; Kavanagh, K. The Human Cathelicidin Antimicrobial Peptide LL-37 Promotes the Growth of the Pulmonary Pathogen Aspergillus fumigatus. Infect Immun 2018, 86. [Google Scholar] [CrossRef]
- Nemeth, E.; Ganz, T. Hepcidin-Ferroportin Interaction Controls Systemic Iron Homeostasis. Int J Mol Sci 2021, 22. [Google Scholar] [CrossRef]
- Chen, R.C.; Lan, C.Y. Human Antimicrobial Peptide Hepcidin 25-Induced Apoptosis in Candida albicans. Microorganisms 2020, 8. [Google Scholar] [CrossRef]
- Del Gaudio, G.; Lombardi, L.; Maisetta, G.; Esin, S.; Batoni, G.; Sanguinetti, M.; Senesi, S.; Tavanti, A. Antifungal Activity of the Noncytotoxic Human Peptide Hepcidin 20 against Fluconazole-Resistant Candida glabrata in Human Vaginal Fluid. Antimicrob Agents Chemother 2013, 57, 4314–4321. [Google Scholar] [CrossRef]
- Arekar, T.; Katikaneni, D.; Kasem, S.; Desai, D.; Acharya, T.; Cole, A.; Khodayari, N.; Vaulont, S.; Hube, B.; Nemeth, E.; et al. Essential role of Hepcidin in host resistance to disseminated candidiasis. bioRxiv : the preprint server for biology, 1101. [Google Scholar] [CrossRef]
- Tavanti, A.; Maisetta, G.; Del Gaudio, G.; Petruzzelli, R.; Sanguinetti, M.; Batoni, G.; Senesi, S. Fungicidal activity of the human peptide hepcidin 20 alone or in combination with other antifungals against Candida glabrata isolates. Peptides 2011, 32, 2484–2487. [Google Scholar] [CrossRef] [PubMed]
- Lugardon, K.; Chasserot-Golaz, S.; Kieffer, A.E.; Maget-Dana, R.; Nullans, G.; Kieffer, B.; Aunis, D.; Metz-Boutigue, M.H. Structural and biological characterization of chromofungin, the antifungal chromogranin A (47-66)-derived peptide. Annals of the New York Academy of Sciences 2002, 971, 359–361. [Google Scholar] [CrossRef] [PubMed]
- Lehrer, R.I.; Lu, W. α-Defensins in human innate immunity. Immunological reviews 2012, 245, 84–112. [Google Scholar] [CrossRef]
- De Lucca, A.J.; Walsh, T.J. Antifungal peptides: novel therapeutic compounds against emerging pathogens. Antimicrob Agents Chemother 1999, 43, 1–11. [Google Scholar] [CrossRef]
- Huang, L.; Leong, S.S.; Jiang, R. Soluble fusion expression and characterization of bioactive human beta-defensin 26 and 27. Applied microbiology and biotechnology 2009, 84, 301–308. [Google Scholar] [CrossRef]
- Agerberth, B.; Charo, J.; Werr, J.; Olsson, B.; Idali, F.; Lindbom, L.; Kiessling, R.; Jörnvall, H.; Wigzell, H.; Gudmundsson, G.H. The human antimicrobial and chemotactic peptides LL-37 and alpha-defensins are expressed by specific lymphocyte and monocyte populations. Blood 2000, 96, 3086–3093. [Google Scholar] [CrossRef] [PubMed]
- Vylkova, S.; Nayyar, N.; Li, W.; Edgerton, M. Human beta-defensins kill Candida albicans in an energy-dependent and salt-sensitive manner without causing membrane disruption. Antimicrob Agents Chemother 2007, 51, 154–161. [Google Scholar] [CrossRef]
- Krishnakumari, V.; Rangaraj, N.; Nagaraj, R. Antifungal activities of human beta-defensins HBD-1 to HBD-3 and their C-terminal analogs Phd1 to Phd3. Antimicrob Agents Chemother 2009, 53, 256–260. [Google Scholar] [CrossRef]
- Schneider, J.J.; Unholzer, A.; Schaller, M.; Schäfer-Korting, M.; Korting, H.C. Human defensins. Journal of molecular medicine (Berlin, Germany) 2005, 83, 587–595. [Google Scholar] [CrossRef] [PubMed]
- Kamli, M.R.; Sabir, J.S.M.; Malik, M.A.; Ahmad, A. Human β defensins-1, an antimicrobial peptide, kills Candida glabrata by generating oxidative stress and arresting the cell cycle in G0/G1 phase. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 2022, 154, 113569. [Google Scholar] [CrossRef]
- Soto, E.; Espinoza, J.; Nien, J.K.; Kusanovic, J.P.; Erez, O.; Richani, K.; Santolaya-Forgas, J.; Romero, R. Human beta-defensin-2: a natural antimicrobial peptide present in amniotic fluid participates in the host response to microbial invasion of the amniotic cavity. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet 2007, 20, 15–22. [Google Scholar] [CrossRef]
- Feng, Z.; Jiang, B.; Chandra, J.; Ghannoum, M.; Nelson, S.; Weinberg, A. Human beta-defensins: differential activity against candidal species and regulation by Candida albicans. Journal of dental research 2005, 84, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Järvå, M.; Phan, T.K.; Lay, F.T.; Caria, S.; Kvansakul, M.; Hulett, M.D. Human β-defensin 2 kills Candida albicans through phosphatidylinositol 4,5-bisphosphate-mediated membrane permeabilization. Sci Adv 2018, 4, eaat0979. [Google Scholar] [CrossRef]
- Basso, V.; Garcia, A.; Tran, D.Q.; Schaal, J.B.; Tran, P.; Ngole, D.; Aqeel, Y.; Tongaonkar, P.; Ouellette, A.J.; Selsted, M.E. Fungicidal Potency and Mechanisms of θ-Defensins against Multidrug-Resistant Candida Species. Antimicrob Agents Chemother 2018, 62. [Google Scholar] [CrossRef]
- Argimón, S.; Fanning, S.; Blankenship, J.R.; Mitchell, A.P. Interaction between the Candida albicans high-osmolarity glycerol (HOG) pathway and the response to human beta-defensins 2 and 3. Eukaryotic cell 2011, 10, 272–275. [Google Scholar] [CrossRef]
- Dümig, M.; Binder, J.; Gaculenko, A.; Daul, F.; Winandy, L.; Hasenberg, M.; Gunzer, M.; Fischer, R.; Künzler, M.; Krappmann, S. The infectious propagules of Aspergillus fumigatus are coated with antimicrobial peptides. Cellular microbiology 2021, 23, e13301. [Google Scholar] [CrossRef] [PubMed]
- Alcouloumre, M.S.; Ghannoum, M.A.; Ibrahim, A.S.; Selsted, M.E.; Edwards, J.E., Jr. Fungicidal properties of defensin NP-1 and activity against Cryptococcus neoformans in vitro. Antimicrob Agents Chemother 1993, 37, 2628–2632. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.; Wang, A. [Purification and antimicrobial activity of human neutrophil defensins]. Zhonghua yi xue za zhi 1991, 71, 616–619. [Google Scholar]
- van der Weerden, N.L.; Parisi, K.; McKenna, J.A.; Hayes, B.M.; Harvey, P.J.; Quimbar, P.; Wevrett, S.R.; Veneer, P.K.; McCorkelle, O.; Vasa, S.; et al. The Plant Defensin Ppdef1 Is a Novel Topical Treatment for Onychomycosis. J Fungi (Basel) 2023, 9. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
