Preprint
Article

This version is not peer-reviewed.

p-adic Delsarte-Goethals-Seidel-Kabatianskii-Levenshtein-Pfender Bound

Submitted:

05 February 2025

Posted:

06 February 2025

You are already at the latest version

Abstract

We introduce the notion of p-adic spherical codes (in particular, p-adic kissing number problem). We show that the one-line proof for a variant of the Delsarte-Goethals-Seidel-Kabatianskii-Levenshtein upper bound for spherical codes, obtained by Pfender, extends to p-adic Hilbert spaces.

Keywords: 
;  ;  ;  

1. Introduction

Let d N and θ [ 0 , 2 π ) . A set { τ j } j = 1 n of unit vectors in R d is said to be ( d , n , θ ) -spherical code [1] in R d if
τ j , τ k cos θ , 1 j , k n , j k .
Since
τ , ω = 2 τ ω 2 2 , τ , ω R d ,
we can rewrite Inequality (1) as
τ j τ k 2 ( 1 cos θ ) , 1 j , k n , j k .
Fundamental problem associated with spherical codes is the following.
Problem 1.1.
Given d and θ, what is the maximum n such that there exists a ( d , n , θ ) -spherical code { τ j } j = 1 n in R d ?
The case θ = π / 3 is known as the famous (Newton-Gregory) kissing number problem. With extensive efforts from many mathematicians, it is still not completely resolved in every dimension (but resolved in dimensions d = 1 ( n = 2 ), d = 2 ( n = 6 ), d = 3 ( n = 12 ), d = 4 ( n = 24 ), d = 8 ( n = 240 ), d = 24 ( n = 196560 )) [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21]. We refer [22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38] for more on spherical codes. Problem 1.1 has connection even with sphere packing [39]. Most used method for obtaining upper bounds on spherical codes is the Delsarte-Goethals-Seidel-Kabatianskii-Levenshtein bound which we recall. Let n N be fixed. The Gegenbauer polynomials are defined inductively as
G 0 ( n ) ( r ) 1 , r [ 1 , 1 ] , G 1 ( n ) ( r ) r , r [ 1 , 1 ] , G k ( n ) ( r ) ( 2 k + n 4 ) r G k 1 ( n ) ( r ) ( k 1 ) G k 2 ( n ) ( r ) k + n 3 , r [ 1 , 1 ] , k 2 .
Then the family { G k ( n ) } k = 0 is orthogonal on the interval [ 1 , 1 ] with respect to the weight
ρ ( r ) ( 1 r 2 ) n 3 2 , r [ 1 , 1 ] .
Theorem 1.2.
[22,26] (Delsarte-Goethals-Seidel-Kabatianskii-Levenshtein Linear Programming Bound) Let { τ j } j = 1 n be a ( d , n , θ ) -spherical code in R d . Let P be a real polynomial satisfying following conditions.
i 
P ( r ) 0 for all 1 r cos θ .
ii 
Coefficients in the Gegenbauer expansion
P = k = 0 m a k G k ( n )
satisfy
a 0 > 0 , a k 0 , 1 k m .
Then
n P ( 1 ) a 0 .
In 2007, Pfender gave a one-line proof for a variant of Theorem 1.2.
Theorem 1.3.
[3] (Delsarte-Goethals-Seidel-Kabatianskii-Levenshtein-Pfender Bound) Let { τ j } j = 1 n be a ( d , n , θ ) -spherical code in R d . Let c > 0 and ϕ : [ 1 , 1 ] R be a function satisfying following.
i 
j = 1 n k = 1 n ϕ ( τ j , τ k ) 0 .
ii 
ϕ ( r ) + c 0 for all 1 r cos θ .
Then
n ϕ ( 1 ) + c c .
In particular, if ϕ ( 1 ) + c 1 , then n 1 / c .
In this paper, we introduce the notion of p-adic spherical codes. We show that Theorem 1.3, can be easily extended for p-adic Hilbert spaces.

2. p-adic Spherical Codes

We begin from the definition of p-adic Hilbert space.
Definition 2.1.
[40,41,42] Let K be a non-Archimedean complete valued field (with valuation | · | ) and X be a non-Archimedean Banach space (with norm · ) over K . We say that X is a p-adic Hilbert space if there is a map (called as p-adic inner product) · , · : X × X K satisfying following.
i 
If x X is such that x , y = 0 for all y X , then x = 0 .
ii 
x , y = y , x for all x , y X .
iii 
α x + y , z = α x , z + y , z for all α K , for all x , y , z X .
iv 
| x , y | x y for all x , y X .
Following is the standard example which we consider in the paper.
Example 2.2.
[41] Let p be a prime. For d N , let Q p d be the standard p-adic Hilbert space equipped with the inner product
( a j ) j = 1 d , ( b j ) j = 1 d : = j = 1 d a j b j , ( a j ) j = 1 d , ( b j ) j = 1 d Q p d
and norm
( x j ) j = 1 d : = max 1 j d | x j | , ( x j ) j = 1 d Q p d .
We introduce p-adic spherical codes as follows.
Definition 2.3.
Let d N and θ [ 0 , 2 π ) . A set { τ j } j = 1 n of vectors in Q p d is said to be p-adic  ( d , n , θ ) -spherical code  in Q p d if following conditions hold.
i 
τ j = 1 for all 1 j n .
ii 
τ j , τ j = 1 for all 1 j n .
iii 
| 2 2 τ j , τ k | 2 ( 1 cos θ ) , 1 j , k n , j k .
We call the case θ = π / 3 as the p-adic kissing number problem.
Let { τ j } j = 1 n be a p-adic ( d , n , θ ) -spherical code in Q p d . Since
τ j τ k 2 | τ j τ k , τ j τ k | = | 2 2 τ j , τ k | , 1 j , k n ,
Inequality (2) gives
τ j τ k 2 ( 1 cos θ ) , 1 j , k n , j k .
However, note that Inequality (3) may not give Inequality (2). Note that we can formulate the definition of general p-adic ( d , n , θ ) -spherical code by replacing Inequality (2) with Inequality (3) in Definition 2.3. It is also possible to consider Definition 2.3 by removing conditions (i) or (ii). Following is the p-adic version of Theorem 1.3.
Theorem 2.4.
(p-adic Delsarte-Goethals-Seidel-Kabatianskii-Levenshtein-Pfender Spherical Codes Bound) Let { τ j } j = 1 n be a p-adic ( d , n , θ ) -spherical code in Q p d . Let c > 0 and ϕ : [ 0 , ) R be a function satisfying following.
i 
1 j , k n ϕ ( | 2 2 τ j , τ k | ) 0 .
ii 
ϕ ( r ) + c 0 for all r [ 2 ( 1 cos θ ) , ) .
Then
n ϕ ( 0 ) + c c .
In particular, if ϕ ( 0 ) + c 1 , then n 1 / c .
Proof. 
Define ψ : [ 0 , ) r ψ ( r ) ϕ ( r ) + c R . Then
1 j , k n ψ ( | 2 2 τ j , τ k | ) = j = 1 n ψ ( | 2 2 τ j , τ j | ) + 1 j , k n , j k ψ ( | 2 2 τ j , τ k | ) = j = 1 n ψ ( 0 ) + 1 j , k n , j k ψ ( | 2 2 τ j , τ k | ) = n ( ϕ ( 0 ) + c ) + 1 j , k n , j k ( ϕ ( | 2 2 τ j , τ k | + c ) n ( ϕ ( 0 ) + c ) + 0 = n ( ϕ ( 0 ) + c ) .
We also have
1 j , k n ψ ( ϕ ( | 2 2 τ j , τ k | ) ) = 1 j , k n ( ϕ ( | 2 2 τ j , τ k | ) + c ) = 1 j , k n ϕ ( | 2 2 τ j , τ k | ) + c n 2 .
Therefore
c n 2 1 j , k n ϕ ( | 2 2 τ j , τ k | ) + c n 2 n ( ϕ ( 0 ) + c ) .
Corollary 2.5.
(p-adic Delsarte-Goethals-Seidel-Kabatianskii-Levenshtein-Pfender Kissing Number Bound) Let { τ j } j = 1 n be a p-adic ( d , n , π / 3 ) -spherical code in Q p d . Let c > 0 and ϕ : [ 0 , ) R be a function satisfying following.
i 
1 j , k n ϕ ( | 2 2 τ j , τ k | ) 0 .
ii 
ϕ ( r ) + c 0 for all r [ 1 , ) .
Then
n ϕ ( 0 ) + c c .
In particular, if ϕ ( 0 ) + c 1 , then n 1 / c .
Following generalization of Theorem 2.4 is easy.
Theorem 2.6.
Let { τ j } j = 1 n be a p-adic ( d , n , θ ) -spherical code in Q p d . Let c > 0 and
ϕ : { | 2 2 τ j , τ k | : 1 j , k n } R
be a function satisfying following.
i 
1 j , k n ϕ ( | 2 2 τ j , τ k | ) 0 .
ii 
ϕ ( r ) + c 0 for all r { | 2 2 τ j , τ k | : 1 j , k n , j k } .
Then
n ϕ ( 0 ) + c c .
In particular, if ϕ ( 0 ) + c 1 , then n 1 / c .
Note that, in the paper, we can replace Q p d by any p-adic Hilbert space.

References

  1. Zong, C. Sphere packings; Universitext, Springer-Verlag, New York, 1999; pp. xiv+241.
  2. Anstreicher, K.M. The thirteen spheres: a new proof. Discrete Comput. Geom. 2004, 31, 613–625. [Google Scholar] [CrossRef]
  3. Pfender, F. Improved Delsarte bounds for spherical codes in small dimensions. J. Combin. Theory Ser. A 2007, 114, 1133–1147. [Google Scholar] [CrossRef]
  4. Casselman, B. The difficulties of kissing in three dimensions. Notices Amer. Math. Soc. 2004, 51, 884–885. [Google Scholar]
  5. Musin, O.R. The kissing problem in three dimensions. Discrete Comput. Geom. 2006, 35, 375–384. [Google Scholar] [CrossRef]
  6. Musin, O.R. The kissing number in four dimensions. Ann. of Math. (2) 2008, 168, 1–32. [Google Scholar] [CrossRef]
  7. Odlyzko, A.M.; Sloane, N.J.A. New bounds on the number of unit spheres that can touch a unit sphere in n dimensions. J. Combin. Theory Ser. A 1979, 26, 210–214. [Google Scholar] [CrossRef]
  8. Schütte, K.; van der Waerden, B.L. Das Problem der dreizehn Kugeln. Math. Ann. 1953, 125, 325–334. [Google Scholar] [CrossRef]
  9. Pfender, F.; Ziegler, G.M. Kissing numbers, sphere packings, and some unexpected proofs. Notices Amer. Math. Soc. 2004, 51, 873–883. [Google Scholar]
  10. Bachoc, C.; Vallentin, F. New upper bounds for kissing numbers from semidefinite programming. J. Amer. Math. Soc. 2008, 21, 909–924. [Google Scholar] [CrossRef]
  11. Mittelmann, H.D.; Vallentin, F. High-accuracy semidefinite programming bounds for kissing numbers. Experiment. Math. 2010, 19, 175–179. [Google Scholar] [CrossRef]
  12. Boyvalenkov, P.; Dodunekov, S.; Musin, O. A survey on the kissing numbers. Serdica Math. J. 2012, 38, 507–522. [Google Scholar]
  13. Böröczky, K. The Newton-Gregory problem revisited. In Discrete geometry; Dekker, New York, 2003; Vol. 253, pp. 103–110. [CrossRef]
  14. Maehara, H. The problem of thirteen spheres—a proof for undergraduates. European J. Combin. 2007, 28, 1770–1778. [Google Scholar] [CrossRef]
  15. Glazyrin, A. A short solution of the kissing number problem in dimension three. Discrete Comput. Geom. 2023, 69, 931–935. [Google Scholar] [CrossRef]
  16. Liberti, L. Mathematical programming bounds for kissing numbers. In Optimization and decision science: methodologies and applications; Springer, Cham, 2017; Vol. 217, Springer Proc. Math. Stat., pp. 213–222. [CrossRef]
  17. Leech, J. The problem of the thirteen spheres. Math. Gaz. 1956, 40, 22–23. [Google Scholar] [CrossRef]
  18. Kallal, K.; Kan, T.; Wang, E. Improved lower bounds for kissing numbers in dimensions 25 through 31. SIAM J. Discrete Math. 2017, 31, 1895–1908. [Google Scholar] [CrossRef]
  19. Jenssen, M.; Joos, F.; Perkins, W. On kissing numbers and spherical codes in high dimensions. Adv. Math. 2018, 335, 307–321. [Google Scholar] [CrossRef]
  20. Machado, F.C.; de Oliveira Filho, F.M. Improving the semidefinite programming bound for the kissing number by exploiting polynomial symmetry. Exp. Math. 2018, 27, 362–369. [Google Scholar] [CrossRef]
  21. Kuklin, N.A. Delsarte method in the problem on kissing numbers in high-dimensional spaces. Proc. Steklov Inst. Math. 2014, 284, S108–S123. [Google Scholar] [CrossRef]
  22. Delsarte, P.; Goethals, J.M.; Seidel, J.J. Spherical codes and designs. Geometriae Dedicata 1977, 6, 363–388. [Google Scholar] [CrossRef]
  23. Boyvalenkov, P.G.; Dragnev, P.D.; Hardin, D.P.; Saff, E.B.; Stoyanova, M.M. Bounds for spherical codes: the Levenshtein framework lifted. Math. Comp. 2021, 90, 1323–1356. [Google Scholar] [CrossRef]
  24. Barg, A.; Musin, O.R. Codes in spherical caps. Adv. Math. Commun. 2007, 1, 131–149. [Google Scholar] [CrossRef]
  25. Boyvalenkov, P.G.; Dragnev, P.D.; Hardin, D.P.; Saff, E.B.; Stoyanova, M.M. Universal lower bounds for potential energy of spherical codes. Constr. Approx. 2016, 44, 385–415. [Google Scholar] [CrossRef]
  26. Ericson, T.; Zinoviev, V. Codes on Euclidean spheres; Vol. 63, North-Holland Mathematical Library, North-Holland Publishing Co., Amsterdam, 2001; pp. xiv+549.
  27. Sardari, N.T.; Zargar, M. New upper bounds for spherical codes and packings. Math. Ann. 2024, 389, 3653–3703. [Google Scholar] [CrossRef]
  28. Musin, O.R. Bounds for codes by semidefinite programming. Tr. Mat. Inst. Steklova 2008, 263, 143–158. [Google Scholar] [CrossRef]
  29. Bannai, E.; Sloane, N.J.A. Uniqueness of certain spherical codes. Canadian J. Math. 1981, 33, 437–449. [Google Scholar] [CrossRef]
  30. Bachoc, C.; Vallentin, F. Semidefinite programming, multivariate orthogonal polynomials, and codes in spherical caps. European J. Combin. 2009, 30, 625–637. [Google Scholar] [CrossRef]
  31. Conway, J.H.; Sloane, N.J.A. Sphere packings, lattices and groups; Springer-Verlag, New York, 1999; pp. lxxiv+703. [CrossRef]
  32. Cohn, H.; Jiao, Y.; Kumar, A.; Torquato, S. Rigidity of spherical codes. Geom. Topol. 2011, 15, 2235–2273. [Google Scholar] [CrossRef]
  33. Samorodnitsky, A. On linear programming bounds for spherical codes and designs. Discrete Comput. Geom. 2004, 31, 385–394. [Google Scholar] [CrossRef]
  34. Boyvalenkov, P.; Danev, D. On maximal codes in polynomial metric spaces. In Applied algebra, algebraic algorithms and error-correcting codes; Springer, Berlin, 1997; Vol. 1255, Lecture Notes in Comput. Sci., pp. 29–38. [CrossRef]
  35. Boyvalenkov, P.; Danev, D.; Landgev, I. On maximal spherical codes. II. J. Combin. Des. 1999, 7, 316–326. [Google Scholar] [CrossRef]
  36. Sloane, N.J.A. Tables of sphere packings and spherical codes. IEEE Trans. Inform. Theory 1981, 27, 327–338. [Google Scholar] [CrossRef]
  37. Bannai, E.; Bannai, E. A survey on spherical designs and algebraic combinatorics on spheres. European J. Combin. 2009, 30, 1392–1425. [Google Scholar] [CrossRef]
  38. Böröczky, K.J.; Glazyrin, A. Stability of optimal spherical codes. Monatsh. Math. 2024, 205, 455–475. [Google Scholar] [CrossRef]
  39. Cohn, H.; Zhao, Y. Sphere packing bounds via spherical codes. Duke Math. J. 2014, 163, 1965–2002. [Google Scholar] [CrossRef]
  40. Diagana, T. Non-Archimedean linear operators and applications; Nova Science Publishers, Inc., Huntington, NY, 2007; pp. xiv+92.
  41. Kalisch, G.K. On p-adic Hilbert spaces. Ann. of Math. (2) 1947, 48, 180–192. [Google Scholar] [CrossRef]
  42. Diagana, T.; Ramaroson, F. Non-Archimedean operator theory; SpringerBriefs in Mathematics, Springer, Cham, 2016; pp. xiii+156. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated