Submitted:
30 January 2025
Posted:
31 January 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Results
3.1. Pathophysiology
3.2. Prognosis and Survival Rates
4. Cognitive Deficits
4.1. Prevalence and Nature of Cognitive Deficits
4.2. Impact of Tumor Location on Cognition
4.3. Factors Influencing Cognitive Function
- Tumor Characteristics: Tumor size, histology, WHO grade, and location are significantly linked to cognitive functioning [32,33,34]. Additionally, larger and more infiltrative tumors are associated with worse cognitive outcomes in untreated patients due to increased mass effect and disruption of adjacent brain regions. Treated patients with smaller residual tumors after resection generally demonstrate better cognitive presentation [120]. Furthermore, patients with IDH-mutant GBM typically demonstrate longer survival and better prognosis, as well as better cognitive outcomes, regardless of treatment [121].
- Patient Characteristics: Age, education level, and genetic markers like IDH mutation status influence cognitive deficit [34,35,36]. Additionally, younger patients undergoing treatment generally exhibit better cognitive resilience compared to untreated older patients, who may in comparison experience more rapid and global cognitive decline [122].
- Treatment Modalities: Surgical resection remains a cornerstone of GBM management.
- Medication Use: The overall effect of medication on cognitive outcomes in the treatment of GBM is complex because some medications can improve cognitive function by reducing tumor-related symptoms, on the other hand, other treatments have potential adverse effects that can worsen cognitive decline [37,38,39]. For example, Antiepileptic drugs (AEDs) and corticosteroids can improve cognitive function in GBM patients by decreasing tumor-related edema and controlling seizures, however, they have some potential side effects. Older AEDs such as Phenytoin are related to sedation and memory deficits, while newer options such as Levetiracetam have a more favorable cognitive profile. Similarly, corticosteroids reduce peritumoral edema, and then improve neurological symptoms temporarily, but prolonged use can lead to adverse effects such as mood changes and memory impairments [123,124].
- Clinical Symptoms: Depression, anxiety, and other neuropsychiatric symptoms can impact or increase cognitive dysfunction [40,41]. Untreated patients are more likely to experience severe psychological distress, including anxiety and depression, due to direct and indirect effects of tumor progression, which may further exacerbate cognitive function. Treated patients, however, may benefit from improved mood and mental health, which has been associated with improved cognitive outcomes [125,126].
5. Cognitive Impairment and Survival
6. Follow-Up Timing for Patients with GBM After Treatment Options
7. Treatment Options and Their Cognitive Effects
7.1. Surgical Interventions
7.1.1. Benefits and Risks
7.1.2. Techniques to Preserve Cognition
7.2. Chemotherapy
7.2.1. Common Agents Used
7.2.2. Neurotoxic Effects
7.3. Radiotherapy
7.3.1. Radiotherapy Approaches
7.3.2. Cognitive Side Effects
7.4. Combination Therapies
8. Comparative Analysis of Cognitive Outcomes
8.1. Treated vs. Untreated Patients
8.2. Factors Influencing Outcomes
- Several factors can predict cognitive outcomes in GBM patients. This includes age (older patients are more severely affected), baseline cognitive function (individuals with pre-existing cognitive declines may be more susceptible), tumor characteristics such as size, location within critical areas (the frontal lobe), and molecular profile.
8.3. Importance of Neuropsychological Evaluation
9. Mitigation Strategies for Cognitive Decline
9.1. Advanced Surgical Techniques
- Functional Brain Mapping: Guides surgical planning to minimize cognitive risks [58].
9.2. Pharmacological Interventions
9.3. Rehabilitation Programs
9.3.1. Cognitive Rehabilitation
9.3.2. Multidisciplinary Support
10. Quality of Life Considerations
10.1. Psychological Impact
10.2. Caregiver Burden
11. Future Directions and Research Opportunities
11.1. Novel Therapies
11.1.1. Immunotherapy
11.1.2. Targeted Molecular Therapies
11.1.3. Gene Therapy
11.2. Personalized Medicine
11.3. Neuroprotective Strategies
11.4. Rehabilitation Innovations
11.5. Clinical Trials and Collaborative Research
12. Conclusion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| GBM | Glioblastoma multiform |
| WHO | World health organization |
| MSR | Maximal safe surgical resection |
| BBB | Blood-brain barrier |
| CSF | Cerebrospinal fluid |
| QoL | Quality of life |
References
- Grochans, S.; Cybulska, A.M.; Simińska, D.; Korbecki, J.; Kojder, K.; Chlubek, D.; Baranowska-Bosiacka, I. Epidemiology of Glioblastoma Multiforme–Literature Review. Cancers 2022, 14, 2412. [CrossRef]
- Thakkar, J. P., Peruzzi, P. P., & Prabhu, V. C. Glioblastoma multiforme. 2021.
- Ostrom, Q.T.; Gittleman, H.; Truitt, G.; Boscia, A.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2011–2015. Neuro-Oncol. 2018, 20, iv1–iv86. [CrossRef]
- Louis, D.N.; Perry, A.; Reifenberger, G.; Von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary. Acta Neuropathol. 2016, 131, 803–820. [CrossRef]
- Omuro A, DeAngelis LM. Glioblastoma and Other Malignant Gliomas: A Clinical Review. JAMA. 2013;310(17):1842–1850.
- Ostrom, Q.T.; Bauchet, L.; Davis, F.G.; Deltour, I.; Fisher, J.L.; Langer, C.E.; Pekmezci, M.; Schwartzbaum, J.A.; Turner, M.C.; Walsh, K.M.; et al. The epidemiology of glioma in adults: A "state of the science" review. Neuro Oncol. 2014, 16, 896–913. [CrossRef]
- Thakkar, J.P.; Dolecek, T.A.; Horbinski, C.; Ostrom, Q.T.; Lightner, D.D.; Barnholtz-Sloan, J.S.; Villano, J.L. Epidemiologic and Molecular Prognostic Review of Glioblastoma. Cancer Epidemiology Biomarkers Prev. 2014, 23, 1985–1996. [CrossRef]
- Brennan, C.W.; Verhaak, R.G.W.; McKenna, A.; Campos, B.; Noushmehr, H.; Salama, S.R.; Zheng, S.; Chakravarty, D.; Sanborn, J.Z.; Berman, S.H.; et al. The Somatic Genomic Landscape of Glioblastoma. Cell 2013, 155, 462–477. [CrossRef]
- Ohgaki, H.; Kleihues, P. The Definition of Primary and Secondary Glioblastoma. Clin. Cancer Res. 2013, 19, 764–772. [CrossRef]
- Furnari, F.B.; Fenton, T.; Bachoo, R.M.; Mukasa, A.; Stommel, J.M.; Stegh, A.; Hahn, W.C.; Ligon, K.L.; Louis, D.N.; Brennan, C.; et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 2007, 21, 2683–2710. [CrossRef]
- DeAngelis LM. Brain Tumors. New England Journal of Medicine. 2001;344(2):114–123.
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [CrossRef]
- Hegi ME, Diserens AC, Gorlia T, et al. MGMT Gene Silencing and Benefit from Temozolomide in Glioblastoma. New England Journal of Medicine. 2005;352(10):997–1003.
- Johnson, D.R.; O’neill, B.P. Glioblastoma survival in the United States before and during the temozolomide era. J. Neuro-Oncology 2011, 107, 359–364. [CrossRef]
- Weller, M.; van den Bent, M.; Hopkins, K.; Tonn, J.C.; Stupp, R.; Falini, A.; Cohen-Jonathan-Moyal, E.; Frappaz, D.; Henriksson, R.; Balana, C.; et al. EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma. Lancet Oncol. 2014, 15, e395–e403. [CrossRef]
- Reardon, D.A.; Wen, P.Y. Therapeutic Advances in the Treatment of Glioblastoma: Rationale and Potential Role of Targeted Agents. Oncol. 2006, 11, 152–164. [CrossRef]
- Tucha, O.; Smely, C.; Preier, M.; Lange, K.W. Cognitive Deficits before Treatment among Patients with Brain Tumors. Neurosurgery 2000, 47, 324–334. [CrossRef]
- Zucchella, C.; Bartolo, M.; Di Lorenzo, C.; Villani, V.; Pace, A. Cognitive impairment in primary brain tumors outpatients: a prospective cross-sectional survey. J. Neuro-Oncology 2013, 112, 455–460. [CrossRef]
- Johnson, D.R.; Wefel, J.S. Relationship between cognitive function and prognosis in glioblastoma. CNS Oncol. 2013, 2, 195–201. [CrossRef]
- Noll, K.R.; E Bradshaw, M.; Weinberg, J.S.; Wefel, J.S. Neurocognitive functioning is associated with functional independence in newly diagnosed patients with temporal lobe glioma. Neuro-Oncology Pr. 2017, 5, 184–193. [CrossRef]
- Guariglia, L.; Ieraci, S.; Villani, V.; Tanzilli, A.; Benincasa, D.; Sperati, F.; Terrenato, I.; Pace, A. Coping Style in Glioma Patients and Their Caregiver: Evaluation During Disease Trajectory. Front. Neurol. 2021, 12. [CrossRef]
- Habets EJJ, Taphoorn MJB, Nederend S, et al. Cognitive Functioning in Patients with Low-Grade Glioma: Effects of Hemispheric Tumor Location and Surgical Procedure. Journal of Neurosurgery. 2019;131(6):1713–1721.
- Barzilai, O.; Ben Moshe, S.; Sitt, R.; Sela, G.; Shofty, B.; Ram, Z. Improvement in cognitive function after surgery for low-grade glioma. J. Neurosurg. 2019, 130, 426–434. [CrossRef]
- Tucha, O.; Smely, C.; Preier, M.; Lange, K.W. Cognitive Deficits before Treatment among Patients with Brain Tumors. Neurosurgery 2000, 47, 324–334. [CrossRef]
- Acevedo-Vergara, K.; Perez-Florez, M.; Ramirez, A.; Torres-Bayona, S.; Dau, A.; Salva, S.; Maloof, D.; Garcia, C.; Luque, M.; Guillen-Burgos, H.F. Cognitive deficits in adult patients with high-grade glioma: A systematic review. Clin. Neurol. Neurosurg. 2022, 219, 107296. [CrossRef]
- Aabedi AA, Lipkin B, Kaur J, Kakaizada S, Valdivia C, Reihl S, Young JS, Lee AT, Krishna S, Berger MS, Chang EF. Functional alterations in cortical processing of speech in glioma-infiltrated cortex. Proceedings of the National Academy of Sciences. 2021 Nov 16;118(46): e2108959118.
- Rijnen, S.J.M.; Kaya, G.; Gehring, K.; Verheul, J.B.; Wallis, O.C.; Sitskoorn, M.M.; Rutten, G.-J.M. Cognitive functioning in patients with low-grade glioma: effects of hemispheric tumor location and surgical procedure. J. Neurosurg. 2020, 133, 1671–1682. [CrossRef]
- Duffau H. A New Concept of Diffuse (Low-Grade) Glioma Surgery. Advances and Technical Standards in Neurosurgery. 2003; 28:137–188. [CrossRef]
- O'Brien BJ, Villano JL. Glioblastoma Multiforme: Evidence-Based Approach to Therapy. Expert Review of Anticancer Therapy. 2006;6(11):1595–1606.
- Hart, M.G.; Romero-Garcia, R.; Price, S.J.; Suckling, J. Global Effects of Focal Brain Tumors on Functional Complexity and Network Robustness: A Prospective Cohort Study. Neurosurgery 2018, 84, 1201–1213. [CrossRef]
- van Kessel, E.; Baumfalk, A.E.; van Zandvoort, M.J.E.; Robe, P.A.; Snijders, T.J. Tumor-related neurocognitive dysfunction in patients with diffuse glioma: a systematic review of neurocognitive functioning prior to anti-tumor treatment. J. Neuro-Oncology 2017, 134, 9–18. [CrossRef]
- Wang, Q.; Xiao, F.; Qi, F.; Song, X.; Yu, Y. Risk Factors for Cognitive Impairment in High-Grade Glioma Patients Treated with Postoperative Radiochemotherapy. Cancer Res. Treat. 2020, 52, 586–593. [CrossRef]
- Coomans, M.B., Dirven, L. and Taphoorn, M.J., 2019. Quality of life and cognition. Oncology of CNS tumors, pp.769-786.
- Rijnen SJM, Meskal I, Emons WHM, et al. Cognitive Functioning in Patients with Low-Grade Glioma: Effects of Hemispheric Tumor Location and Surgical Procedure. Journal of Neurosurgery. 2019;131(6):1713–1721.
- Duffau H. Surgery of low-grade gliomas: towards a ‘functional neurooncology’. Current opinion in oncology. 2009 Nov 1;21(6):543-9.
- Johnson, D.R.; Sawyer, A.M.; Meyers, C.A.; O'Neill, B.P.; Wefel, J.S. Early measures of cognitive function predict survival in patients with newly diagnosed glioblastoma. Neuro-Oncology 2012, 14, 808–816. [CrossRef]
- Wefel JS, Noll KR, Scheurer ME. Neurocognitive Functioning and Genetic Variation in Patients with Primary Brain Tumours. The Lancet Oncology. 2016;17(4) e108.
- Klein, M.; Engelberts, N.H.J.; van der Ploeg, H.M.; Trenité, D.G.A.K.; Aaronson, N.K.; Taphoorn, M.J.B.; Baaijen, H.; Vandertop, W.P.; Muller, M.; Postma, T.J.; et al. Epilepsy in low-grade gliomas: The impact on cognitive function and quality of life. Ann. Neurol. 2003, 54, 514–520. [CrossRef]
- Olson, R.A.; Chhanabhai, T.; McKenzie, M. Feasibility study of the Montreal Cognitive Assessment (MoCA) in patients with brain metastases. Support. Care Cancer 2008, 16, 1273–1278. [CrossRef]
- Armstrong, C.L.; Goldstein, B.; Shera, D.; Ledakis, G.E.; Tallent, E.M. The predictive value of longitudinal neuropsychologic assessment in the early detection of brain tumor recurrence. Cancer 2003, 97, 649–656. [CrossRef]
- Boele, F.W.; Klein, M.; Reijneveld, J.C.; Leeuw, I.M.V.-D.; Heimans, J.J. Symptom management and quality of life in glioma patients. CNS Oncol. 2014, 3, 37–47. [CrossRef]
- Meyers, C.A.; Hess, K.R.; Yung, W.A.; Levin, V.A. Cognitive Function as a Predictor of Survival in Patients With Recurrent Malignant Glioma. J. Clin. Oncol. 2000, 18, 646–646. [CrossRef]
- Gorlia T, van den Bent MJ, Hegi ME, et al. Nomograms for Predicting Survival of Patients with Newly Diagnosed Glioblastoma: Prognostic Factor Analysis of EORTC and NCIC Trial 26981-22981/CE.3. The Lancet Oncology. 2008;9(1):29–38.
- Klein, M.; Postma, T.; Taphoorn, M.; Aaronson, N.; Vandertop, W.; Muller, M.; van der Ploeg, H.; Heimans, J. The prognostic value of cognitive functioning in the survival of patients with high-grade glioma. Neurology 2003, 61, 1796–1798. [CrossRef]
- Li, J.; Bentzen, S.M.; Li, J.; Renschler, M.F.; Mehta, M.P. Relationship Between Neurocognitive Function and Quality of Life After Whole-Brain Radiotherapy in Patients With Brain Metastasis. Int. J. Radiat. Oncol. 2008, 71, 64–70. [CrossRef]
- Meyers, C.A.; Hess, K.R.; Yung, W.A.; Levin, V.A. Cognitive Function as a Predictor of Survival in Patients With Recurrent Malignant Glioma. J. Clin. Oncol. 2000, 18, 646–646. [CrossRef]
- Johnson, D.R.; Sawyer, A.M.; Meyers, C.A.; O'Neill, B.P.; Wefel, J.S. Early measures of cognitive function predict survival in patients with newly diagnosed glioblastoma. Neuro-Oncology 2012, 14, 808–816. [CrossRef]
- Klein, M.; Postma, T.; Taphoorn, M.; Aaronson, N.; Vandertop, W.; Muller, M.; van der Ploeg, H.; Heimans, J. The prognostic value of cognitive functioning in the survival of patients with high-grade glioma. Neurology 2003, 61, 1796–1798. [CrossRef]
- Weller, M.; van den Bent, M.; Hopkins, K.; Tonn, J.C.; Stupp, R.; Falini, A.; Cohen-Jonathan-Moyal, E.; Frappaz, D.; Henriksson, R.; Balana, C.; et al. EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma. Lancet Oncol. 2014, 15, e395–e403. [CrossRef]
- Douw, L.; Klein, M.; Fagel, S.S.; van den Heuvel, J.; Taphoorn, M.J.; Aaronson, N.K.; Postma, T.J.; Vandertop, W.P.; Mooij, J.J.; Boerman, R.H.; et al. Cognitive and radiological effects of radiotherapy in patients with low-grade glioma: long-term follow-up. Lancet Neurol. 2009, 8, 810–818. [CrossRef]
- Sanai, N.; Berger, M.S. GLIOMA EXTENT OF RESECTION AND ITS IMPACT ON PATIENT OUTCOME. Neurosurgery 2008, 62, 753–766. [CrossRef]
- Duffau H. Surgery of Low-Grade Gliomas: Towards a "Functional Neurooncology". Current Opinion in Oncology. 2009;21(6):543–549.
- Meskal, I.; Gehring, K.; Rutten, G.-J.M.; Sitskoorn, M.M. Cognitive functioning in meningioma patients: a systematic review. J. Neuro-Oncol. 2016, 128, 195–205. [CrossRef]
- Taphoorn, M.J.; Klein, M. Cognitive deficits in adult patients with brain tumours. 2004, 3, 159–168. [CrossRef]
- Gempt, J.; Förschler, A.; Buchmann, N.; Pape, H.; Ryang, Y.-M.; Krieg, S.M.; Zimmer, C.; Meyer, B.; Ringel, F. Postoperative ischemic changes following resection of newly diagnosed and recurrent gliomas and their clinical relevance. J. Neurosurg. 2013, 118, 801–808. [CrossRef]
- De Witt Hamer, P.C.; Robles, S.G.; Zwinderman, A.H.; Duffau, H.; Berger, M.S. Impact of Intraoperative Stimulation Brain Mapping on Glioma Surgery Outcome: A Meta-Analysis. J. Clin. Oncol. 2012, 30, 2559–2565. [CrossRef]
- Duffau, H. Awake Surgery for Nonlanguage Mapping. Neurosurgery 2010, 66, 523–529. [CrossRef]
- Berger, M.S.; Hadjipanayis, C.G. Surgery of Intrinsic Cerebral Tumors. Neurosurgery 2007, 61, 305–SHC-305. [CrossRef]
- Nimsky C, Ganslandt O, Buchfelder M, Fahlbusch R. Intraoperative Visualization for Resection of Gliomas: The Role of Functional Neuronavigation and Intraoperative 3D Ultrasonography. Child's Nervous System. 2002;18(3-4):445–451.
- Sanai, N.; Berger, M.S. Surgical oncology for gliomas: the state of the art. Nat. Rev. Clin. Oncol. 2017, 15, 112–125. [CrossRef]
- Stupp, R.; Hegi, M.E.; Mason, W.P.; van den Bent, M.J.; Taphoorn, M.J.B.; Janzer, R.C.; Ludwin, S.K.; Allgeier, A.; Fisher, B.; Belanger, K.; et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009, 10, 459–466. [CrossRef]
- Hegi ME, Diserens AC, Gorlia T, et al. MGMT Gene Silencing and Benefit from Temozolomide in Glioblastoma. New England Journal of Medicine. 2005;352(10):997–1003.
- Aygün C, Yıldırım Altınok A, Çakır A, Ağan AF, Balaban Y. Acute temozolomide induced liver injury: mixed type hepatocellular and cholestatic toxicity. Acta gastro-enterologica Belgica. 2016.
- Batchelor, T.T.; Betensky, R.A.; Esposito, J.M.; Pham, L.-D.D.; Dorfman, M.V.; Piscatelli, N.; Jhung, S.; Rhee, D.; Louis, D.N. Age-Dependent Prognostic Effects of Genetic Alterations in Glioblastoma. Clin. Cancer Res. 2004, 10, 228–233. [CrossRef]
- Walker, M.D.; Green, S.B.; Byar, D.P.; Alexander, E.J.; Batzdorf, U.; Brooks, W.H.; Hunt, W.E.; MacCarty, C.S.; Mahaley, M.S.J.; Mealey, J.J.; et al. Randomized Comparisons of Radiotherapy and Nitrosoureas for the Treatment of Malignant Glioma after Surgery. New Engl. J. Med. 1980, 303, 1323–1329. [CrossRef]
- Brown, P.D.; Buckner, J.C.; O’fallon, J.R.; Iturria, N.L.; Brown, C.A.; O’neill, B.P.; Scheithauer, B.W.; Dinapoli, R.P.; Arusell, R.M.; Curran, W.J.; et al. Effects of Radiotherapy on Cognitive Function in Patients With Low-Grade Glioma Measured by the Folstein Mini-Mental State Examination. J. Clin. Oncol. 2003, 21, 2519–2524. [CrossRef]
- A Giordano, F.; Brehmer, S.; Abo-Madyan, Y.; Welzel, G.; Sperk, E.; Keller, A.; Schneider, F.; Clausen, S.; Herskind, C.; Schmiedek, P.; et al. INTRAGO: intraoperative radiotherapy in glioblastoma multiforme – a Phase I/II dose escalation study. BMC Cancer 2014, 14, 992. [CrossRef]
- Monje ML, Palmer T. Radiation Injury and Neurogenesis. Current Opinion in Neurology. 2003;16(2):129–134.
- Greene-Schloesser, D.; Robbins, M.E. Radiation-induced cognitive impairment-from bench to bedside. Neuro-Oncology 2012, 14, iv37–iv44. [CrossRef]
- Makale, M.T.; McDonald, C.R.; Hattangadi-Gluth, J.A.; Kesari, S. Mechanisms of radiotherapy-associated cognitive disability in patients with brain tumours. Nat. Rev. Neurol. 2016, 13, 52–64. [CrossRef]
- Crossen JR, Garwood D, Glatstein E, Neuwelt EA. Neurobehavioral Sequelae of Cranial Irradiation in Adults: A Review of Radiation-Induced Encephalopathy. Journal of Clinical Oncology. 1994;12(3):627–642.
- Gondi, V.; Pugh, S.L.; Tome, W.A.; Caine, C.; Corn, B.; Kanner, A.; Rowley, H.; Kundapur, V.; DeNittis, A.; Greenspoon, J.N.; et al. Preservation of Memory With Conformal Avoidance of the Hippocampal Neural Stem-Cell Compartment During Whole-Brain Radiotherapy for Brain Metastases (RTOG 0933): A Phase II Multi-Institutional Trial. J. Clin. Oncol. 2014, 32, 3810–3816. [CrossRef]
- Redmond, K.J.; Mehta, M. Stereotactic Radiosurgery for Glioblastoma. Cureus 2015, 7, e413. [CrossRef]
- Bae, S.H.; Park, M.-J.; Lee, M.M.; Kim, T.M.; Lee, S.-H.; Cho, S.Y.; Kim, Y.-H.; Kim, Y.J.; Park, C.-K.; Kim, C.-Y. Toxicity Profile of Temozolomide in the Treatment of 300 Malignant Glioma Patients in Korea. J. Korean Med Sci. 2014, 29, 980–984. [CrossRef]
- Taphoorn, M.J.; Klein, M. Cognitive deficits in adult patients with brain tumours. 2004, 3, 159–168. [CrossRef]
- Armstrong, T.S.; Wefel, J.S.; Wang, M.; Gilbert, M.R.; Won, M.; Bottomley, A.; Mendoza, T.R.; Coens, C.; Werner-Wasik, M.; Brachman, D.G.; et al. Net Clinical Benefit Analysis of Radiation Therapy Oncology Group 0525: A Phase III Trial Comparing Conventional Adjuvant Temozolomide With Dose-Intensive Temozolomide in Patients With Newly Diagnosed Glioblastoma. J. Clin. Oncol. 2013, 31, 4076–4084. [CrossRef]
- Tucha, O.; Smely, C.; Preier, M.; Lange, K.W. Cognitive Deficits before Treatment among Patients with Brain Tumors. Neurosurgery 2000, 47, 324–334. [CrossRef]
- Meyers, C.A.; Brown, P.D. Role and Relevance of Neurocognitive Assessment in Clinical Trials of Patients With CNS Tumors. J. Clin. Oncol. 2006, 24, 1305–1309. [CrossRef]
- Deutsch, M.B. and DeAngelis, L.M., 2014. Neurologic complications of chemotherapy and radiation therapy. Aminoff's Neurology and General Medicine, pp.591-609. [CrossRef]
- Batchelor, T.T.; Betensky, R.A.; Esposito, J.M.; Pham, L.-D.D.; Dorfman, M.V.; Piscatelli, N.; Jhung, S.; Rhee, D.; Louis, D.N. Age-Dependent Prognostic Effects of Genetic Alterations in Glioblastoma. Clin. Cancer Res. 2004, 10, 228–233. [CrossRef]
- Klein, M.; Engelberts, N.H.J.; van der Ploeg, H.M.; Trenité, D.G.A.K.; Aaronson, N.K.; Taphoorn, M.J.B.; Baaijen, H.; Vandertop, W.P.; Muller, M.; Postma, T.J.; et al. Epilepsy in low-grade gliomas: The impact on cognitive function and quality of life. Ann. Neurol. 2003, 54, 514–520. [CrossRef]
- Noll, K.R.; E Bradshaw, M.; Weinberg, J.S.; Wefel, J.S. Neurocognitive functioning is associated with functional independence in newly diagnosed patients with temporal lobe glioma. Neuro-Oncology Pr. 2017, 5, 184–193. [CrossRef]
- Sanai, N.; Berger, M.S. GLIOMA EXTENT OF RESECTION AND ITS IMPACT ON PATIENT OUTCOME. Neurosurgery 2008, 62, 753–766. [CrossRef]
- Klein, M.; Heimans, J.; Aaronson, N.; van der Ploeg, H.; Grit, J.; Muller, M.; Postma, T.; Mooij, J.; Boerman, R.; Beute, G.; et al. Effect of radiotherapy and other treatment-related factors on mid-term to long-term cognitive sequelae in low-grade gliomas: a comparative study. Lancet 2002, 360, 1361–1368. [CrossRef]
- Meyers, C.A.; Brown, P.D. Role and Relevance of Neurocognitive Assessment in Clinical Trials of Patients With CNS Tumors. J. Clin. Oncol. 2006, 24, 1305–1309. [CrossRef]
- Gehring, K.; Sitskoorn, M.M.; Aaronson, N.K.; Taphoorn, M.J. Interventions for cognitive deficits in adults with brain tumours. Lancet Neurol. 2008, 7, 548–560. [CrossRef]
- Brown, P.D.; Pugh, S.; Laack, N.N.; Wefel, J.S.; Khuntia, D.; Meyers, C.; Choucair, A.; Fox, S.; Suh, J.H.; Roberge, D.; et al. Memantine for the prevention of cognitive dysfunction in patients receiving whole-brain radiotherapy: a randomized, double-blind, placebo-controlled trial. Neuro-Oncology 2013, 15, 1429–1437. [CrossRef]
- Shaw, E.G.; Rosdhal, R.; D'Agostino, R.B.; Lovato, J.; Naughton, M.J.; Robbins, M.E.; Rapp, S.R. Phase II Study of Donepezil in Irradiated Brain Tumor Patients: Effect on Cognitive Function, Mood, and Quality of Life. J. Clin. Oncol. 2006, 24, 1415–1420. [CrossRef]
- Gehring, K.; Sitskoorn, M.M.; Aaronson, N.K.; Taphoorn, M.J. Interventions for cognitive deficits in adults with brain tumours. Lancet Neurol. 2008, 7, 548–560. [CrossRef]
- Zucchella C, Capone L, Codella V, et al. Cognitive Rehabilitation for Early Post-Surgery Cognitive Decline in Patients with Brain Tumours: A Randomized, Controlled Trial. Journal of Neuro-Oncology. 2013;114(1):93–100.
- Kesler SR, Lacayo NJ, Jo B. A Pilot Study of an Online Cognitive Rehabilitation Program for Executive Function Skills in Children with Cancer-Related Brain Injury. Brain Injury. 2011;25(1):101–112.
- Locke, D.E.C.; Cerhan, J.H.; Wu, W.; Malec, J.F.; Clark, M.M.; A Rummans, T.; Brown, P.D. Cognitive rehabilitation and problem-solving to improve quality of life of patients with primary brain tumors: a pilot study.. 2009, 6, 383–91.
- Gehring, K.; Sitskoorn, M.M.; Gundy, C.M.; Sikkes, S.A.; Klein, M.; Postma, T.J.; Bent, M.J.v.D.; Beute, G.N.; Enting, R.H.; Kappelle, A.C.; et al. Cognitive Rehabilitation in Patients With Gliomas: A Randomized, Controlled Trial. J. Clin. Oncol. 2009, 27, 3712–3722. [CrossRef]
- Bartolo, M.; Zucchella, C.; Pace, A.; Lanzetta, G.; Vecchione, C.; Bartolo, M.; Grillea, G.; Serrao, M.; Tassorelli, C.; Sandrini, G.; et al. Early rehabilitation after surgery improves functional outcome in inpatients with brain tumours. J. Neuro-Oncology 2011, 107, 537–544. [CrossRef]
- Moore, G.; Collins, A.; Brand, C.; Gold, M.; Lethborg, C.; Murphy, M.; Sundararajan, V.; Philip, J. Palliative and supportive care needs of patients with high-grade glioma and their carers: A systematic review of qualitative literature. Patient Educ. Couns. 2013, 91, 141–153. [CrossRef]
- Aaronson, N.K.; Taphoorn, M.J.; Heimans, J.J.; Postma, T.J.; Gundy, C.M.; Beute, G.N.; Slotman, B.J.; Klein, M. Compromised Health-Related Quality of Life in Patients With Low-Grade Glioma. J. Clin. Oncol. 2011, 29, 4430–4435. [CrossRef]
- Armstrong, T.; Mendoza, T.; Gring, I.; Coco, C.; Cohen, M.; Eriksen, L.; Hsu, M.-A.; Gilbert, M.; Cleeland, C. Validation of the M.D. Anderson Symptom Inventory Brain Tumor Module (MDASI-BT). J. Neuro-Oncology 2006, 80, 27–35. [CrossRef]
- Rooney, A.G.; Carson, A.; Grant, R. Depression in Cerebral Glioma Patients: A Systematic Review of Observational Studies. JNCI J. Natl. Cancer Inst. 2010, 103, 61–76. [CrossRef]
- Cavers, D.; Hacking, B.; Erridge, S.E.; Kendall, M.; Morris, P.G.; Murray, S.A. Social, psychological and existential well-being in patients with glioma and their caregivers: a qualitative study. Can. Med Assoc. J. 2012, 184, E373–E382. [CrossRef]
- Ownsworth, T.; Hawkes, A.; Steginga, S.; Walker, D.; Shum, D. A biopsychosocial perspective on adjustment and quality of life following brain tumor: A systematic evaluation of the literature. Disabil. Rehabilitation 2009, 31, 1038–1055. [CrossRef]
- Sherwood, P.R.; Given, B.A.; Given, C.W.; Schiffman, R.F.; Murman, D.L.; Lovely, M.; von Eye, A.; Rogers, L.R.; Remer, S. Predictors of distress in caregivers of persons with a primary malignant brain tumor. Res. Nurs. Heal. 2006, 29, 105–120. [CrossRef]
- Peeters, M.; Ottenheijm, G.; Bienfait, P.; Eekers, D.; Gijtenbeek, A.; Hanse, M.; Koekkoek, J.; van Leeuwen, L.; Tijssen, C.; Dirven, L.; et al. Glioma patient-reported outcomes: patients and clinicians. BMJ Support. Palliat. Care 2021, 13, e205–e212. [CrossRef]
- Sherwood, P.R.; Given, B.A.; Given, C.W.; Schiffman, R.F.; Murman, D.L.; Lovely, M.; von Eye, A.; Rogers, L.R.; Remer, S. Predictors of distress in caregivers of persons with a primary malignant brain tumor. Res. Nurs. Heal. 2006, 29, 105–120. [CrossRef]
- Reardon DA, Brandes AA, Omuro A, et al. Effect of Nivolumab vs Bevacizumab in Patients with Recurrent Glioblastoma: The CheckMate 143 Phase 3 Randomized Clinical Trial. JAMA Oncology. 2020;6(7):1003–1010.
- Jackson, C.M.; Lim, M.; Drake, C.G. Immunotherapy for Brain Cancer: Recent Progress and Future Promise. Clin. Cancer Res. 2014, 20, 3651–3659. [CrossRef]
- Cloughesy, T.; Finocchiaro, G.; Belda-Iniesta, C.; Recht, L.; Brandes, A.A.; Pineda, E.; Mikkelsen, T.; Chinot, O.L.; Balana, C.; Macdonald, D.R.; et al. Randomized, Double-Blind, Placebo-Controlled, Multicenter Phase II Study of Onartuzumab Plus Bevacizumab Versus Placebo Plus Bevacizumab in Patients With Recurrent Glioblastoma: Efficacy, Safety, and Hepatocyte Growth Factor and O 6 -Methylguanine–DNA Methyltransferase Biomarker Analyses. J. Clin. Oncol. 2017, 35, 343–351. [CrossRef]
- Touat, M.; Idbaih, A.; Sanson, M.; Ligon, K.L. Glioblastoma targeted therapy: updated approaches from recent biological insights. Ann. Oncol. 2017, 28, 1457–1472. [CrossRef]
- Friedman, H.S.; Prados, M.D.; Wen, P.Y.; Mikkelsen, T.; Schiff, D.; Abrey, L.E.; Yung, W.A.; Paleologos, N.; Nicholas, M.K.; Jensen, R.; et al. Bevacizumab Alone and in Combination With Irinotecan in Recurrent Glioblastoma. J. Clin. Oncol. 2009, 27, 4733–4740. [CrossRef]
- Han, J.; Alvarez-Breckenridge, C.A.; Wang, Q.-E.; Yu, J. TGF-β signaling and its targeting for glioma treatment. American Journal of Cancer Research. 2015, 5, 945–955.
- Verhaak, R.G.W.; Hoadley, K.A.; Purdom, E.; Wang, V.; Wilkerson, M.D.; Miller, C.R.; Ding, L.; Golub, T.; Jill, P.; Alexe, G.; et al. Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010, 17, 98–110. [CrossRef]
- Beroukhim, R.; Mermel, C.H.; Porter, D.; Wei, G.; Raychaudhuri, S.; Donovan, J.; Barretina, J.; Boehm, J.S.; Dobson, J.; Urashima, M.; et al. The landscape of somatic copy-number alteration across human cancers. Nature 2010, 463, 899–905. [CrossRef]
- Dietrich, J.; Rao, K.; Pastorino, S.; Kesari, S. Corticosteroids in brain cancer patients: benefits and pitfalls. Expert Rev. Clin. Pharmacol. 2011, 4, 233–242. [CrossRef]
- Greene-Schloesser, D.; Moore, E.; Robbins, M.E. Molecular Pathways: Radiation-Induced Cognitive Impairment. Clin. Cancer Res. 2013, 19, 2294–2300. [CrossRef]
- Willard VW, Cox LE, Russell KM, Kenney A, Jurbergs N, Molnar Jr AE, Harman JL. Cognitive and psychosocial functioning of preschool-aged children with cancer. Journal of Developmental & Behavioral Pediatrics. 2017 Oct 1;38(8):638-45.
- Kannan, S.; Murugan, A.K.; Balasubramanian, S.; Munirajan, A.K.; Alzahrani, A.S. Gliomas: Genetic alterations, mechanisms of metastasis, recurrence, drug resistance, and recent trends in molecular therapeutic options. Biochem. Pharmacol. 2022, 201, 115090. [CrossRef]
- O'Connor JPB, Rose CJ, Jackson A, et al. DCE-MRI Biomarkers of Tumor Heterogeneity Predict CRC Liver Metastasis Shrinkage Following Combination Chemotherapy. Cancer Research. 2011;71(3):666–675.
- Stupp R, Taillibert S, Kanner AA, et al. Effect of Tumor-Treating Fields Plus Maintenance Temozolomide vs Maintenance Temozolomide Alone on Survival in Patients with Glioblastoma: A Randomized Clinical Trial. JAMA. 2015;314(23):2535–2543.
- Duffau, H. Brain plasticity: From pathophysiological mechanisms to therapeutic applications. J. Clin. Neurosci. 2006, 13, 885–897. [CrossRef]
- Noll, K.R.; Ziu, M.; Weinberg, J.S. Neurocognitive functioning in patients with glioma of the left and right temporal lobes. J. Neuro-Oncology 2016, 128, 323–331. [CrossRef]
- Tucha, O.; Smely, C.; Preier, M.; Lange, K.W. Cognitive Deficits before Treatment among Patients with Brain Tumors. Neurosurgery 2000, 47, 324–334. [CrossRef]
- Weller, M.; Wick, W.; Aldape, K.; Brada, M.; Berger, M.; Pfister, S.M.; Nishikawa, R.; Rosenthal, M.; Wen, P.Y.; Stupp, R.; et al. Glioma. Nat. Rev. Dis. Prim. 2015, 1, 15017. [CrossRef]
- Taphoorn, M.J.; Klein, M. Cognitive deficits in adult patients with brain tumours. 2004, 3, 159–168. [CrossRef]
- Bootsma, H.R.; Aldenkamp, A.P.; Diepman, L.; Hulsman, J.; Lambrechts, D.; Leenen, L.; Majoie, M.; Schellekens, A.; De Krom, M. The Effect of Antiepileptic Drugs on Cognition: Patient Perceived Cognitive Problems of Topiramate versus Levetiracetam in Clinical Practice. Epilepsia 2006, 47, 24–27. [CrossRef]
- Weller, M.; Cloughesy, T.; Perry, J.R.; Wick, W. Standards of care for treatment of recurrent glioblastoma—Are we there yet? Neuro-Oncology 2013, 15, 4–27. [CrossRef]
- Renovanz, M.; Maurer, D.; Lahr, H.; Weimann, E.; Deininger, M.; Wirtz, C.R.; Ringel, F.; Singer, S.; Coburger, J. Supportive Care Needs in Glioma Patients and Their Caregivers in Clinical Practice: Results of a Multicenter Cross-Sectional Study. Front. Neurol. 2018, 9, 763. [CrossRef]
- Noll, K.R.; Bradshaw, M.E.; Parsons, M.W.; Dawson, E.L.; Rexer, J.; Wefel, J.S. Monitoring of Neurocognitive Function in the Care of Patients with Brain Tumors. Curr. Treat. Options Neurol. 2019, 21, 33. [CrossRef]
- Sanai, N.; Berger, M.S. Surgical oncology for gliomas: the state of the art. Nat. Rev. Clin. Oncol. 2017, 15, 112–125. [CrossRef]
- Hardesty, D.A.; Sanai, N. The Value of Glioma Extent of Resection in the Modern Neurosurgical Era. Front. Neurol. 2012, 3, 33329. [CrossRef]
- Brown, P.D.; Gondi, V.; Pugh, S.; Tome, W.A.; Wefel, J.S.; Armstrong, T.S.; Bovi, J.A.; Robinson, C.; Konski, A.; Khuntia, D.; et al. Hippocampal Avoidance During Whole-Brain Radiotherapy Plus Memantine for Patients With Brain Metastases: Phase III Trial NRG Oncology CC001. J. Clin. Oncol. 2020, 38, 1019–1029. [CrossRef]
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [CrossRef]
- Johnson, D.R.; Wefel, J.S. Relationship between cognitive function and prognosis in glioblastoma. CNS Oncol. 2013, 2, 195–201. [CrossRef]
- Chamberlain, M.C.; A Kormanik, P. Practical guidelines for the treatment of malignant gliomas.. 1998, 168, 114–20.
- Butterbrod, E.; Synhaeve, N.; Rutten, G.-J.; Schwabe, I.; Gehring, K.; Sitskoorn, M. Cognitive impairment three months after surgery is an independent predictor of survival time in glioblastoma patients. J. Neuro-Oncology 2020, 149, 103–111. [CrossRef]
- Sharma, P.; Medhi, P.P.; Kalita, A.K.; Bhattacharyya, M.; Nath, J.; Sarma, G.; Yanthan, Y. Factors Associated With Neurocognitive Impairment Following Chemoradiotherapy in Patients With High-Grade Glioma: Results of a Prospective Trial. Brain Tumor Res. Treat. 2023, 11, 183–190. [CrossRef]
- Schagen, S.B.; Wefel, J.S. Chemotherapy-related changes in cognitive functioning. Eur. J. Cancer Suppl. 2013, 11, 225–232. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
| COGNITIVE DOMAIN | COMMON IMPAIRMENTS | INFLUENCING FACTORS | REFERENCES |
|---|---|---|---|
| MEMORY | Short-term memory loss, difficulty recalling | Temporal lobe involvement, tumor size | [17,18,25] |
| ATTENTION | Reduced concentration, distractibility | Frontal and parietal lobe involvement | [22,24,27] |
| EXECUTIVE FUNCTIONS | Impaired planning, decision-making, inhibitory control | Frontal lobe tumors, patient age, treatment effects | [26,27,31] |
| LANGUAGE | Aphasia, word-finding difficulties | Left hemisphere tumors, surgical impact | [28,29,30] |
| VISUOSPATIAL SKILLS | Difficulty with spatial orientation and perception | Parietal and occipital lobe involvement | [22,29] |
| PROCESSING SPEED | Slowed cognitive processing | Treatment effects, overall disease burden | [25,33,77] |
| EMOTIONAL PROCESSING | Depression, anxiety, altered affect | Tumor location, corticosteroid use | [21,40,41] |
| TREATMENT MODALITY | POTENTIAL COGNITIVE BENEFITS | POTENTIAL COGNITIVE RISKS | STRATEGIES TO MITIGATE RISKS | REFERENCES |
|---|---|---|---|---|
| SURGICAL RESECTION | Reduces mass effect, alleviates symptoms | Risk of damage to eloquent brain areas | Awake craniotomy, intraoperative mapping | [51,52,56] |
| RADIOTHERAPY | Controls residual tumor growth | White matter damage, neuroinflammation | Fractionation schedules, hippocampal-sparing techniques | [66,68,70] |
| CHEMOTHERAPY(TEMOZOLOMIDE) | Crosses blood-brain barrier prolongs survival | Fatigue, concentration difficulties | Dose management, supportive care | [61,63,64] |
| COMBINED MODALITY THERAPY | Increased efficacy against tumor cells | Compounded neurotoxicity | Personalized treatment plans | [74,75,76] |
| EXPERIMENTAL THERAPIES | Potential for targeted treatment | Unknown long-term cognitive effects | Clinical trials, close monitoring | [104,106,108] |
| COGNITIVE REHABILITATION | Improves specific cognitive deficits | Requires sustained patient engagement | Personalized rehabilitation programs | [89,93,94] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
