Submitted:
29 January 2025
Posted:
31 January 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. In silico methods available for ADME predictions
2.1. Quantum mechanics (QM) methods
- the OMx family (orthogonalization-corrected methods - OM1, OM2, OM3), which have been shown to be roughly equivalent or slightly inferior in performance when compared with standard DFT methods (BPE, B3LYP), which will be discussed below [23];
- the density-functional tight-binding (DFTB) method which, with strong theoretical underpinnings, is closely connected to the DFT. However, it is as computationally efficient as empirical tight-binding methods and is used for big molecules, including those present in biological systems [24].
- a)
- Defining the QM region: the accuracy of QM/MM calculations is generally enhanced when the QM region includes larger and less polar functional groups at the frontier between the QM and MM zones;
- b)
- Handling the QM/MM interface: in biomacromolecular studies, covalent bonds at the QM/MM interface, such as those between protein residues in a receptor, require careful attention. Errors introduced by embedding the QM region into the classical force field of the bulk protein are minimized when the net atomic charges of the boundary atoms are low.
- c)
- Addressing multiple local minima: the challenge of numerous local minima can be mitigated by performing extensive sampling of protein and ligand conformations and by ensuring the biomacromolecular system is accurately prepared and modeled [59].
2.2. Molecular docking
2.3. Pharmacophore modeling
2.4. Quantitative Structure-Activity Relationship (QSAR) models
2.5. Molecular dynamics (MD) simulations
2.6. Physiologically-Based Pharmacokinetics (PBPK) Modeling
- At the clinical trial design stage, they can predict how drug formulation and food intake will influence pharmacokinetics, guiding initial human studies and forecast drug-drug interactions mediated by enzymes or transporters, informing inclusion/exclusion criteria, dose selection, and potentially waiving unnecessary clinical interaction studies or studies where enrolling subjects is anticipated to be difficult;
- They can predict appropriate dosing regimens for different pediatric subsets, from newborns to adolescents, by enabling informed selection of sampling timepoints and proposing suitable doses.
- They can predict exposure to the drug in patients with impaired renal or hepatic function, guiding organ impairment studies or supporting decisions to waive such studies.
- They can estimate the drug disposition in the mother and fetus, aiding in optimizing the therapeutic benefit-risk ratio during pregnancy.
- They can predict pH-mediated drug-drug interactions in patients receiving proton pump inhibitors or antacids, guiding formulation development and efforts to minimize food-drug interactions [181].
3. Comprehensive ADME Tools
3.1. SwissADME
- Simple Submission: single or multiple molecules can be uploaded for analysis with ease.
- Clear Results: straightforward visualizations are available for the predictions made for each molecule.
- Data Sharing: the results for individual molecules can be saved and shared, or can be used to generate comprehensive, interactive graphs for deeper analysis.
- Integrated CADD Tools: the application seamlessly connects to the SwissDrugDesign workspace, granting the user access to a suite of other useful applications developed by the SIB Swiss Institute of Bioinformatics, to identify promising drug candidates based on their similarity to known active compounds (ligand-based virtual screening), to predict potential biological targets for a specific ligand, to perform ligand-protein docking, to create bioisosteric replacement of functional groups, or to perform molecular mechanics (e.g., to analyze the 3D structure and energy of a molecule) [192].
3.1.1. Biovailability radar
3.1.2. Physicochemical properties
3.1.3. Lipophilicity
3.1.4. Water solubility
3.1.5. The skin permeability coefficient
3.1.6. Passive HIA and BBB permeability
3.1.7. Pgp substrate property
3.1.8. CYP fraction substrate
3.1.9. Drug likeness and medicinal chemistry properties
3.2. QikProp
3.2.1. Total Solvent-Accessible Molecular Surface (Smol or SASA, solvent-accessible surface area)
3.2.2. Hydrophobic Portion of the Solvent-Accessible Molecular Surface (Smol, hfob)
3.2.3. Total Volume of Molecule Enclosed by Solvent-Accessible Molecular Surface (Vmol, hfob).
3.2.4. Logarithm of Aqueous Solubility (log Swat)
3.2.5. Predicted octanol / water partition coefficient (QPlogPo/w).
3.2.6. Logarithm of Predicted Binding Constant to Human Serum Albumin (log K HSA or logKhsa)
3.2.7. Logarithm of Predicted Blood/Brain Barrier Partition Coefficient (log B/B).
3.2.8. Predicted Apparent Caco-2 Cell Membrane Permeability (BIP caco-2)
3.2.9. Predicted Apparent Madin-Darby Canine Kidney (MDCK) Cell Permeability (QPMDCK)
3.2.10. Index of Cohesion Interaction in Solids (Indcoh)
3.2.11. Globularity Descriptor (Glob)
3.2.12. Predicted Polarizability (QPpolrz)
3.2.13. Predicted Skin Permeability (log Kp)
3.2.14. Number of Likely Metabolic Reactions (#metab)
3.3. pkCSM
- Quantitative models: 14 regression models are available to forecast numerical values for various pharmacokinetic and toxicity properties.
- Qualitative models: 16 classification models are available to predict the likelihood of a specific outcome falling into one of two categories.
- a)
- Absorption: numeric predictions are available for water solubility, Caco2 permeability, HIA (%), skin permeability (log Kp), and binary categorical predictions are made for P-glycoprotein substrates (yes/no), P-glycoprotein I inhibitors and I P-glycoprotein II inhibitors (inhibitors of P-glycoprotein and P-glycoprotein transport, respectively).
- b)
- Distribution: numeric predictions are available for VDss (human), fraction unbound (human), BBB permeability and CNS permeability. BBB permeability predictions are derived from in vivo measurements conducted in animal models. In contrast, CNS permeability predictions are based on data obtained through direct carotid artery injection, eliminating the influence of systemic distribution effects [193].
- c)
- Metabolism: only binary categorical predictions are available under this heading. The application predicts whether a substance is a substrate for the CYP2D6 or CYP3A4 fractions, and whether it is an inhibitor of one or all of the CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4 fractions.
- d)
- Excretion: total clearance is predicted numerically, whereas the property of a substance to be a renal OCT2 substrate is predicted categorically (yes/no).
3.4. ProTox-II
3.5. admetSAR
- a)
- Physicochemical properties - molecular weight, nAtom (number of atoms), nHet (number of heteroatoms), nRing (number of rings), nRot (number of rotable bounds), HBA (hydrogen bound acceptors), HBD (hydroen bound donors), TPSA, SlogP, „application domain” (applicability domain, i.e., the range of chemical space or feature space where a predictive model is reliable and valid, in other words, a measure about how trustful should be one in the validity of the predictions performed).
- b)
- Absorption – logS, logP, pka, acidic pKa, basic pKa, Caco-2 (two predictions, one for the permeability value, the other to classify a substance as of high or low permeability), HIA, MDCK, F50%, F30%, F20% (oral bioavailability, a compound will be classified as belonging to one of the three and not belonging to the other two).
- c)
- Distribution – BBB; inhibition of OATP1B1, OATP1B3, OATP2B1, OCT1, OCT2, BCRP, BSEP, MATE1, and Pgp; property of being a Pgp substrate; plasma protein binding ratio and VDss (only the last two are numeric values, all others are based on categorical models).
- d)
- Metabolism – inhibition of different CYP fractions (CYP1A2, CYP3A4, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP1A2, CYP3A4, CYP2B6, CYP2C9, CYP2C19, and CYP2D6), human liver microsomal stability (HLM), rat liver microsomal stability (RLM), and being a UGT substrate (all are binary predictions).
- e)
- Excretion – plasma clearance (CLp), renal clearance (CLr), half-life (t1/2), and mean retention time (MRT).
3.6. ADMETlab
- a)
- Physicochemical Properties (21 endpoints): molecular weight, van der Waals volume, density, nHA (number of hydrogen acceptors), nHD (number of hydrogen donors), nRot (number of rotatable bonds), nRing (number of rings), MaxRing (number of atoms in the largest ring), nHet (number of heteroatoms), fChar (formal charge), nRig (number of rigid bonds), Flexibility (ratio of rotatable bonds and rigid bonds), Stereo Centers, TPSA, logS, logD7.4, logP, melting point, boiling point, pKa (acidic), pKa (basic).
- b)
- Medical Chemistry Properties (20 endpoints): QED (Quantitative Estimate of Drug-likeness, a metric to assess how likely a compound is to have the necessary features to become a drug), SAscore (synthetic accessibility score, estimating the easiness or difficulty of synthesizing the chemical compound), GASA (Graph Attention-based assessment of Synthetic Accessibility), Fsp3 (the ratio between the count of sp3 hybridized carbon atoms and all atom carbons in the molecule), MCE-18 (Medicinal Chemistry Evolution, a descriptor evaluating the novelty of organic molecules through their tetrahedral carbon atoms), NPscore (Natural product likeness score), Lipinski Rule, Pfizer Rule, GSK Rule, GoldenTriangle, PAINS, Alarm_NMR Rule (used to predict thiol reactive compounds), BMS Rule, Chelating Rule, Colloidal aggregators, FLuc inhibitors (predict inhibitors of firefly luciferase), Blue fluorescence, Green fluorescence, Reactive compounds, Promiscuous compounds.
- c)
- Absorption Properties (9 endpoints): Caco-2 Permeability, MDCK Permeability, PAMPA, Pgp inhibitor, Pgp substrate, HIA, F20%, F30%, and F50%.
- d)
- Distribution Properties (9 endpoints): PPB (Plasma Protein Binding), VDss, BBB, Fu (fraction unbound in the plasm), OATP1B1 inhibitor, OATP1B3 inhibitor, BCRP inhibitor, MRP1 inhibitor, BSEP inhibitor.
- e)
- Metabolism Properties (14 endpoints): the property of being an inhibitor or substrate of CYP1A2, CYP2C19, CYP2C9, CYP2D6, CYP3A4, CYP2B6, CYP2C8, as well as HLM stability.
- f)
- Excretion Properties (2 endpoints): CLplasma (plasma clearance) and T1/2.
4. Conclusions
- Pre-2020: Fewer than 100 publications containing the phrase “in silico” in the title or abstract.
- 2021: Approximately 200 such publications.
- 2023-2024: Over 270 such publications annually.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ADMET | Asorption, distribution, metabolism, excretion, and toxicity |
| ADME | Asorption, distribution, metabolism, and excretion |
| QSAR | Quantitative structure-activity relationship |
| PBPK | Physiologically-based pharmacokinetics |
| PAINS | Pan-assay interference compounds |
| cLogP | Calculated partition coefficient |
| LLE | Lipophilicity ligand efficiency |
| SFI | Solubility forecast index |
| PFI | Property forecast index |
| QM | Quantum mechanics |
| MNDO | Modified neglect of diatomic overlap |
| AM1 | Austin model 1 |
| PMn | Parametric method n |
| OMn | Orthogonalization-corrected method n |
| DFTB | Density-functional tight-binding |
| HF | Hartree-Fock |
| SCF | Self-consistent field |
| MPPT | Møller-Plesset perturbation theory |
| MP | Møller-Plesset perturbation theory |
| CI | Configuration interaction theory |
| CC | Coupled cluster |
| CASSCF | Complete active space self-consistent field |
| CASPT2 | Complete active space perturbation theory |
| MCSCF | Multi-configurational self-consistent field |
| DMRG | Density matrix renormalization group method |
| DFT | Density functional theory |
| DFT-D | Dispersion-corrected DFT |
| GGA | Generalized gradient approximation |
| MM | Molecular mechanics |
| OTC | Organic cation transporter |
| IUPAC | International Union of Pure and Applied Chemistry |
| SBP | Structure-based pharmacophore |
| PDB | Protein Data Bank |
| OATn | Organic anion transporter n |
| URAT1 | Urate transporter 1 |
| CoMFA | Comparative Molecular Field Analysis |
| HQSAR | Hologram QSAR |
| PAMPA | Parallel artificial membrane permeation assay |
| QSPR | Quantitative structure-property relationship |
| RMS | Root mean square |
| HIA | Human intestinal absorption |
| CV | Cross-validation |
| CCR | Correct classification rate |
| MCC | Matthews correlation coefficient |
| AAE | Average Absolute Error |
| RMSE | Root mean square error |
| AME | Absolute mean error |
| BBB | Blood - brain barrier |
| DMPC | Dimyristoylphosphatidylcholine |
| EGCG | Epigallocatechin gallate |
| MD | Molecular dynamics |
| MM | PBSA - Molecular Mechanics Poisson - Boltzmann Surface Area |
| MM | GBSA - Molecular Mechanics Generalized Born Surface Area |
| CADD | Computer - aided drug design |
| Kp | Skin permeation coefficient |
| PK | Pharmacokinetics |
| Smol | Solvent - Accessible Molecular Surface |
| SASA | Solvent - Accessible Molecular Surface |
| Vmol, hfob | Total Volume of Molecule Enclosed by Solvent - Accessible Molecular Surface |
| log Swat | Logarithm of Aqueous Solubility |
| QPlogPo/w | Predicted octanol / water partition coefficient |
| logKhsa | Logarithm of Predicted Binding Constant to Human Serum Albumin |
| log B/B | Logarithm of Predicted Blood/Brain Barrier Partition Coefficient |
| BIP caco2 | Predicted Apparent Caco - 2 Cell Membrane Permeability |
| MDCK | Madin - Darby Canine Kidney |
| QPMDCK | Apparent MDCK Cell Permeability |
| Indcoh | Index of Cohesion Interaction in Solids |
| Glob | Globularity Descriptor |
| QPpolrz | Predicted Polarizability |
| VDss | Volume of distribution at steady state |
| HLM | Human liver microsomal stability |
| RLM | Rat liver microsomal stability |
| CLp | Plasma clearance |
| CLr | Renal clearance |
| MRT | Mean retention time |
| AUC | Area Under the Curve |
| DMPNN | Deep message passing neural networks |
| nHA | Number of hydrogen acceptors |
| nHD | Number of hydrogen donors |
| nRot | Number of rotatable bonds |
| nRing | Number of rings |
| MaxRing | Number of atoms in the largest ring |
| nHet | Number of heteroatoms |
| fChar | Formal charge |
| nRig | Number of rigid bonds |
| FLuc | Firefly luciferase |
| PPB | Plasma Protein Binding |
References
- Lin, J.; Sahakian, D.; De Morais, S.; Xu, J.; Polzer, R.; Winter, S. The Role of Absorption, Distribution, Metabolism, Excretion and Toxicity in Drug Discovery. CTMC 2003, 3, 1125–1154. [CrossRef]
- Ferreira, L.L.G.; Andricopulo, A.D. ADMET Modeling Approaches in Drug Discovery. Drug Discovery Today 2019, 24, 1157–1165. [CrossRef]
- Baell, J.B.; Nissink, J.W.M. Seven Year Itch: Pan-Assay Interference Compounds (PAINS) in 2017—Utility and Limitations. ACS Chem. Biol. 2018, 13, 36–44. [CrossRef]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; the International Natural Product Sciences Taskforce; Orhan, I.E.; Banach, M.; Rollinger, J.M.; Barreca, D.; Weckwerth, W.; Bauer, R.; et al. Natural Products in Drug Discovery: Advances and Opportunities. Nat Rev Drug Discov 2021, 20, 200–216. [CrossRef]
- Feher, M.; Schmidt, J.M. Property Distributions: Differences between Drugs, Natural Products, and Molecules from Combinatorial Chemistry. J. Chem. Inf. Comput. Sci. 2003, 43, 218–227. [CrossRef]
- Chaachouay, N.; Zidane, L. Plant-Derived Natural Products: A Source for Drug Discovery and Development. DDC 2024, 3, 184–207. [CrossRef]
- Simoben, C.V.; Babiaka, S.B.; Moumbock, A.F.A.; Namba-Nzanguim, C.T.; Eni, D.B.; Medina-Franco, J.L.; Günther, S.; Ntie-Kang, F.; Sippl, W. Challenges in Natural Product-Based Drug Discovery Assisted with in silico -Based Methods. RSC Adv. 2023, 13, 31578–31594. [CrossRef]
- Barnes, E.C.; Kumar, R.; Davis, R.A. The Use of Isolated Natural Products as Scaffolds for the Generation of Chemically Diverse Screening Libraries for Drug Discovery. Nat. Prod. Rep. 2016, 33, 372–381. [CrossRef]
- Patil, B.S.; Jayaprakasha, G.K.; Chidambara Murthy, K.N.; Vikram, A. Bioactive Compounds: Historical Perspectives, Opportunities, and Challenges. J. Agric. Food Chem. 2009, 57, 8142–8160. [CrossRef]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.-M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; et al. Discovery and Resupply of Pharmacologically Active Plant-Derived Natural Products: A Review. Biotechnology Advances 2015, 33, 1582–1614. [CrossRef]
- Jia, C.-Y.; Li, J.-Y.; Hao, G.-F.; Yang, G.-F. A Drug-Likeness Toolbox Facilitates ADMET Study in Drug Discovery. Drug discovery today 2020, 25, 248–258.
- Labuschagne, P. Impact of Wall Material Physicochemical Characteristics on the Stability of Encapsulated Phytochemicals: A Review. Food Research International 2018, 107, 227–247. [CrossRef]
- Bilia, A.R.; Piazzini, V.; Risaliti, L.; Vanti, G.; Casamonti, M.; Wang, M.; Bergonzi, M.C. Nanocarriers: A Successful Tool to Increase Solubility, Stability and Optimise Bioefficacy of Natural Constituents. CMC 2019, 26, 4631–4656. [CrossRef]
- Alshamrani, M.; Khan, M.K.; Khan, B.A.; Salawi, A.; Almoshari, Y. Technologies for Solubility, Dissolution and Permeation Enhancement of Natural Compounds. Pharmaceuticals 2022, 15, 653. [CrossRef]
- Moroy, G.; Martiny, V.Y.; Vayer, P.; Villoutreix, B.O.; Miteva, M.A. Toward in silico Structure-Based ADMET Prediction in Drug Discovery. Drug Discovery Today 2012, 17, 44–55. [CrossRef]
- Pozzan, A. QM Calculations in ADMET Prediction. In Quantum Mechanics in Drug Discovery; Heifetz, A., Ed.; Methods in Molecular Biology; Springer US: New York, NY, 2020; Vol. 2114, pp. 285–305 ISBN 978-1-07-160281-2.
- Bowen, J.P.; Guner, O.F. A Perspective on Quantum Mechanics Calculations in ADMET Predictions. Current Topics in Medicinal Chemistry 2013, 13, 1257–1272.
- F. Silva-Júnior, E.; M. Aquino, T.; X. Araujo-Junior, J. Quantum Mechanical (QM) Calculations Applied to ADMET Drug Prediction: A Review. Current Drug Metabolism 2017, 18, 511–526.
- Voityuk, A. Application of the MNDO Method to Investigation of Properties and Reactivity of Molecules. Journal of Structural Chemistry 1988, 29, 120–146.
- Stewart, J.J.P. Optimization of Parameters for Semiempirical Methods V: Modification of NDDO Approximations and Application to 70 Elements. J Mol Model 2007, 13, 1173–1213. [CrossRef]
- Sulimov, A.V.; Kutov, D.C.; Katkova, E.V.; Sulimov, V.B. Combined Docking with Classical Force Field and Quantum Chemical Semiempirical Method PM7. Advances in Bioinformatics 2017, 2017, 1–6. [CrossRef]
- Stewart, J.J. Optimization of Parameters for Semiempirical Methods VI: More Modifications to the NDDO Approximations and Re-Optimization of Parameters. Journal of molecular modeling 2013, 19, 1–32.
- Korth, M.; Thiel, W. Benchmarking Semiempirical Methods for Thermochemistry, Kinetics, and Noncovalent Interactions: OMx Methods Are Almost As Accurate and Robust As DFT-GGA Methods for Organic Molecules. J. Chem. Theory Comput. 2011, 7, 2929–2936. [CrossRef]
- Seifert, G.; Joswig, J. Density-functional Tight Binding—an Approximate Density-functional Theory Method. WIREs Comput Mol Sci 2012, 2, 456–465. [CrossRef]
- Estácio, S.P.; Mendes, F.R.D.S.; Marinho, E.; Campos, O.; Marinho, M.M.; Marinho, E.S. Electronic, Structural and Pharmacocinetic Characterization of Tricyclic Alkaloid Alternamide a: A Semi-Empirical Quantum Study and Admet. Iinternational J. Res.-Granthaalayah 2019, 12, 429–447.
- Marcucci, M.C.; Oliveira, C.R.; Spindola, D.; Antunes, A.A.; Santana, L.Y.K.; Cavalaro, V.; Costa, I.B.; De Carvalho, A.C.; Veiga, T.A.M.; Medeiros, L.S.; et al. Molecular Dereplication and In Vitro and In silico Pharmacological Evaluation of Coriandrum Sativum against Neuroblastoma Cells. Molecules 2022, 27, 5389. [CrossRef]
- Ali, H.M.; Elgat, W.A.A.A.; EL-Hefny, M.; Salem, M.Z.M.; Taha, A.S.; Al Farraj, D.A.; Elshikh, M.S.; Hatamleh, A.A.; Abdel-Salam, E.M. New Approach for Using of Mentha Longifolia L. and Citrus Reticulata L. Essential Oils as Wood-Biofungicides: GC-MS, SEM, and MNDO Quantum Chemical Studies. Materials 2021, 14, 1361. [CrossRef]
- Taher, M.A.; Kundu, R.; Laboni, A.A.; Shompa, S.A.; Moniruzzaman, Md.; Hasan, M.M.; Hasnat, H.; Hasan, Md.M.; Khan, M. Unlocking the Medicinal Arsenal of Cissus Assamica : GC-MS/MS, FTIR, and Molecular Docking Insights. Health Science Reports 2024, 7, e70091. [CrossRef]
- Hung, N.H.; Quan, P.M.; Satyal, P.; Dai, D.N.; Hoa, V.V.; Huy, N.G.; Giang, L.D.; Ha, N.T.; Huong, L.T.; Hien, V.T.; et al. Acetylcholinesterase Inhibitory Activities of Essential Oils from Vietnamese Traditional Medicinal Plants. Molecules 2022, 27, 7092. [CrossRef]
- Apeh, V.O.; Okafor, K.C.; Chukwuma, I.F.; Uzoeto, H.O.; Chinebu, T.I.; Nworah, F.N.; Edache, E.I.; Okafor, I.P.; Anthony, O.C. Exploring the Potential of Aqueous Extracts of Artemisia annua ANAMED ( A3 ) for Developing New Anti-malarial Agents: In vivo and Silico Computational Approach. Engineering Reports 2024, 6, e12831. [CrossRef]
- Barhouchi, B.; Menacer, R.; Bouchkioua, S.; Mansour, A.; Belattar, N. Compounds from Myrtle Flowers as Antibacterial Agents and SARS-CoV-2 Inhibitors: In-Vitro and Molecular Docking Studies. Arabian Journal of Chemistry 2023, 16, 104939. [CrossRef]
- Cremer, D. Møller–Plesset Perturbation Theory: From Small Molecule Methods to Methods for Thousands of Atoms. Wiley Interdisciplinary Reviews: Computational Molecular Science 2011, 1, 509–530.
- Ramachandran, K.I.; Deepa, G.; Namboori, K. The Ab Initio Method. In Computational Chemistry and Molecular Modeling; Springer Berlin Heidelberg: Berlin, Heidelberg, 2008; pp. 155–170 ISBN 978-3-540-77302-3.
- Cremer, D. From Configuration Interaction to Coupled Cluster Theory: The Quadratic Configuration Interaction Approach. WIREs Comput Mol Sci 2013, 3, 482–503. [CrossRef]
- Ouma, R.B.O.; Ngari, S.M.; Kibet, J.K. A Review of the Current Trends in Computational Approaches in Drug Design and Metabolism. Discov Public Health 2024, 21, 108. [CrossRef]
- Austin, B.M.; Zubarev, D.Yu.; Lester, W.A. Quantum Monte Carlo and Related Approaches. Chem. Rev. 2012, 112, 263–288. [CrossRef]
- Dreuw, A.; Head-Gordon, M. Single-Reference Ab Initio Methods for the Calculation of Excited States of Large Molecules. Chem. Rev. 2005, 105, 4009–4037. [CrossRef]
- Von Lilienfeld, O.A.; Müller, K.-R.; Tkatchenko, A. Exploring Chemical Compound Space with Quantum-Based Machine Learning. Nat Rev Chem 2020, 4, 347–358. [CrossRef]
- Arodola, O.A.; Soliman, M.E. Quantum Mechanics Implementation in Drug-Design Workflows: Does It Really Help? Drug design, development and therapy 2017, 2551–2564.
- Park, J.W.; Al-Saadon, R.; MacLeod, M.K.; Shiozaki, T.; Vlaisavljevich, B. Multireference Electron Correlation Methods: Journeys along Potential Energy Surfaces. Chem. Rev. 2020, 120, 5878–5909. [CrossRef]
- Ishikawa, K.L.; Sato, T. A Review on Ab Initio Approaches for Multielectron Dynamics. IEEE Journal of Selected Topics in Quantum Electronics 2015, 21, 1–16.
- Lüchow, A. Quantum Monte Carlo Methods. Wiley Interdisciplinary Reviews: Computational Molecular Science 2011, 1, 388–402.
- Kong, L.; Bischoff, F.A.; Valeev, E.F. Explicitly Correlated R12/F12 Methods for Electronic Structure. Chem. Rev. 2012, 112, 75–107. [CrossRef]
- Yanai, T.; Kurashige, Y.; Mizukami, W.; Chalupskỳ, J.; Lan, T.N.; Saitow, M. Density Matrix Renormalization Group for Ab Initio Calculations and Associated Dynamic Correlation Methods: A Review of Theory and Applications. International Journal of Quantum Chemistry 2015, 115, 283–299.
- Zhang, I.Y.; Xu, X. On the Top Rung of Jacob’s Ladder of Density Functional Theory: Toward Resolving the Dilemma of SIE and NCE. WIREs Comput Mol Sci 2021, 11, e1490. [CrossRef]
- Yilmazer, N.; Korth, M. Recent Progress in Treating Protein–Ligand Interactions with Quantum-Mechanical Methods. IJMS 2016, 17, 742. [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [CrossRef]
- Tirado-Rives, J.; Jorgensen, W.L. Performance of B3LYP Density Functional Methods for a Large Set of Organic Molecules. J. Chem. Theory Comput. 2008, 4, 297–306. [CrossRef]
- Sousa, S.F.; Ribeiro, A.J.M.; Neves, R.P.P.; Brás, N.F.; Cerqueira, N.M.F.S.A.; Fernandes, P.A.; Ramos, M.J. Application of Quantum Mechanics/Molecular Mechanics Methods in the Study of Enzymatic Reaction Mechanisms. WIREs Comput Mol Sci 2017, 7, e1281. [CrossRef]
- Khanal, M.; Acharya, A.; Maharjan, R.; Gyawali, K.; Adhikari, R.; Mulmi, D.D.; Lamichhane, T.R.; Lamichhane, H.P. Identification of Potent Inhibitors of HDAC2 from Herbal Products for the Treatment of Colon Cancer: Molecular Docking, Molecular Dynamics Simulation, MM/GBSA Calculations, DFT Studies, and Pharmacokinetic Analysis. PLoS ONE 2024, 19, e0307501. [CrossRef]
- Hossain, A. Molecular Docking, Drug-Likeness and ADMET Analysis, Application of Density Functional Theory (DFT) and Molecular Dynamics (MD) Simulation to the Phytochemicals from Withania Somnifera as Potential Antagonists of Estrogen Receptor Alpha (ER- α). Curr Comput Aided Drug Des 2021, 17, 797–805. [CrossRef]
- Anza, M.; Endale, M.; Cardona, L.; Cortes, D.; Eswaramoorthy, R.; Zueco, J.; Rico, H.; Trelis, M.; Abarca, B. Antimicrobial Activity, in silico Molecular Docking, ADMET and DFT Analysis of Secondary Metabolites from Roots of Three Ethiopian Medicinal Plants. Advances and Applications in Bioinformatics and Chemistry 2021, 117–132.
- Eswaramoorthy, R.; Hailekiros, H.; Kedir, F.; Endale, M. In silico Molecular Docking, DFT Analysis and ADMET Studies of Carbazole Alkaloid and Coumarins from Roots of Clausena Anisata: A Potent Inhibitor for Quorum Sensing. Advances and Applications in Bioinformatics and Chemistry 2021, 13–24.
- Qaddir, I.; Rasool, N.; Hussain, W.; Mahmood, S. Computer-Aided Analysis of Phytochemicals as Potential Dengue Virus Inhibitors Based on Molecular Docking, ADMET and DFT Studies. J Vector Borne Dis 2017, 54, 255. [CrossRef]
- Bitew, M.; Desalegn, T.; Demissie, T.B.; Belayneh, A.; Endale, M.; Eswaramoorthy, R. Pharmacokinetics and Drug-Likeness of Antidiabetic Flavonoids: Molecular Docking and DFT Study. Plos one 2021, 16, e0260853.
- Macalalad, M.A.B.; Gonzales, A.A. In silico Screening and Identification of Antidiabetic Inhibitors Sourced from Phytochemicals of Philippine Plants against Four Protein Targets of Diabetes (PTP1B, DPP-4, SGLT-2, and FBPase). Molecules 2023, 28, 5301. [CrossRef]
- Zhang, Y.-J.; Khorshidi, A.; Kastlunger, G.; Peterson, A.A. The Potential for Machine Learning in Hybrid QM/MM Calculations. The Journal of Chemical Physics 2018, 148, 241740. [CrossRef]
- Kar, R.K. Benefits of Hybrid QM/MM over Traditional Classical Mechanics in Pharmaceutical Systems. Drug Discovery Today 2023, 28, 103374. [CrossRef]
- Kollar, J.; Frecer, V. How Accurate Is the Description of Ligand–Protein Interactions by a Hybrid QM/MM Approach? J Mol Model 2018, 24, 11. [CrossRef]
- Hou, J.; Zou, Q.; Wang, Y.; Gao, Q.; Yao, W.; Yao, Q.; Zhang, J. Screening for the Selective Inhibitors of MMP-9 from Natural Products Based on Pharmacophore Modeling and Molecular Docking in Combination with Bioassay Experiment, Hybrid QM/MM Calculation, and MD Simulation. Journal of Biomolecular Structure and Dynamics 2019, 37, 3135–3149. [CrossRef]
- Khodarahmi, G.; Asadi, P.; Farrokhpour, H.; Hassanzadeh, F.; Dinari, M. Design of Novel Potential Aromatase Inhibitors via Hybrid Pharmacophore Approach: Docking Improvement Using the QM/MM Method. RSC Adv. 2015, 5, 58055–58064. [CrossRef]
- Phonglo, A.; Dowerah, D.; Sarma, S.; Ahmed, N.; Dutta, P.; Basumutary, M.; Deka, R.C. Essential Oil Constituents of Regional Ethnomedicinal Plants as Potential Inhibitors of SARS-CoV-2 Mpro: An Integrated Molecular Docking, Molecular Dynamics and QM/MM Study. Journal of Biomolecular Structure and Dynamics 2024, 1–23.
- Bharadwaj, S.; Rao, A.K.; Dwivedi, V.D.; Mishra, S.K.; Yadava, U. Structure-Based Screening and Validation of Bioactive Compounds as Zika Virus Methyltransferase (MTase) Inhibitors through First-Principle Density Functional Theory, Classical Molecular Simulation and QM/MM Affinity Estimation. Journal of Biomolecular Structure and Dynamics 2021, 39, 2338–2351.
- Pinzi, L.; Rastelli, G. Molecular Docking: Shifting Paradigms in Drug Discovery. IJMS 2019, 20, 4331. [CrossRef]
- Stanzione, F.; Giangreco, I.; Cole, J.C. Use of Molecular Docking Computational Tools in Drug Discovery. In Progress in Medicinal Chemistry; Elsevier, 2021; Vol. 60, pp. 273–343 ISBN 978-0-323-85056-8.
- Asiamah, I.; Obiri, S.A.; Tamekloe, W.; Armah, F.A.; Borquaye, L.S. Applications of Molecular Docking in Natural Products-Based Drug Discovery. Scientific African 2023, 20, e01593. [CrossRef]
- Mohanty, M.; Mohanty, P.S. Molecular Docking in Organic, Inorganic, and Hybrid Systems: A Tutorial Review. Monatsh Chem 2023, 154, 683–707. [CrossRef]
- Pagadala, N.S.; Syed, K.; Tuszynski, J. Software for Molecular Docking: A Review. Biophys Rev 2017, 9, 91–102. [CrossRef]
- Zou, W.; Shi, B.; Zeng, T.; Zhang, Y.; Huang, B.; Ouyang, B.; Cai, Z.; Liu, M. Drug Transporters in the Kidney: Perspectives on Species Differences, Disease Status, and Molecular Docking. Front. Pharmacol. 2021, 12, 746208. [CrossRef]
- Ren, T.; Li, M.; Zheng, H.; Liu, W.; Zhang, J. Microdialysis Combined with RRLC-MS/MS for the Pharmacokinetics of Two Major Alkaloids of Bi Qi Capsule and the Potential Roles of P-Gp and BCRP on Their Penetration. J Chromatogr B Analyt Technol Biomed Life Sci 2018, 1092, 72–81. [CrossRef]
- Saeed, M.E.M.; Boulos, J.C.; Elhaboub, G.; Rigano, D.; Saab, A.; Loizzo, M.R.; Hassan, L.E.A.; Sugimoto, Y.; Piacente, S.; Tundis, R.; et al. Cytotoxicity of Cucurbitacin E from Citrullus Colocynthis against Multidrug-Resistant Cancer Cells. Phytomedicine 2019, 62, 152945. [CrossRef]
- Bai, J.; Zhao, S.; Fan, X.; Chen, Y.; Zou, X.; Hu, M.; Wang, B.; Jin, J.; Wang, X.; Hu, J.; et al. Inhibitory Effects of Flavonoids on P-Glycoprotein in Vitro and in vivo: Food/Herb-Drug Interactions and Structure–Activity Relationships. Toxicology and Applied Pharmacology 2019, 369, 49–59. [CrossRef]
- Bi, Y.; Wang, X.; Han, L.; Tian, Y.; Bo, T.; Li, C.; Shi, B.; Gui, C.; Zhang, Y. Selective Inhibition of Organic Cation Transporter 1 by Benzoylpaeoniflorin Attenuates Hepatic Lipid Accumulation through AMPK Activation. J Nat Prod 2023, 86, 191–198. [CrossRef]
- Feng, J.; Zhao, X.; Yan, Y.; Chen, H.; Liu, J.; Li, X.; Na, R.; Li, Q.X. Interactions between Stipuol Enantiomers and Human Serum Albumin. Food Chem 2022, 385, 132686. [CrossRef]
- Ai, N.; Fan, X.; Ekins, S. In silico Methods for Predicting Drug-Drug Interactions with Cytochrome P-450s, Transporters and Beyond. Adv Drug Deliv Rev 2015, 86, 46–60. [CrossRef]
- Raju, B.; Verma, H.; Narendra, G.; Sapra, B.; Silakari, O. Multiple Machine Learning, Molecular Docking, and ADMET Screening Approach for Identification of Selective Inhibitors of CYP1B1. J Biomol Struct Dyn 2022, 40, 7975–7990. [CrossRef]
- Lu, J.; Liu, D.; Zhou, X.; Chen, A.; Jiang, Z.; Ye, X.; Liu, M.; Wang, X. Plant Natural Product Plumbagin Presents Potent Inhibitory Effect on Human Cytochrome P450 2J2 Enzyme. Phytomedicine 2018, 39, 137–145. [CrossRef]
- Shukla, R.; Chetri, P.B.; Sonkar, A.; Pakharukova, M.Y.; Mordvinov, V.A.; Tripathi, T. Identification of Novel Natural Inhibitors of Opisthorchis Felineus Cytochrome P450 Using Structure-Based Screening and Molecular Dynamic Simulation. J Biomol Struct Dyn 2018, 36, 3541–3556. [CrossRef]
- Wang, Q.; Kuang, Y.; He, J.; Li, K.; Song, W.; Jin, H.; Qiao, X.; Ye, M. The Prenylated Phenolic Natural Product Isoglycycoumarin Is a Highly Selective Probe for Human Cytochrome P450 2A6. Eur J Pharm Sci 2017, 109, 472–479. [CrossRef]
- Yang, S.-Y. Pharmacophore Modeling and Applications in Drug Discovery: Challenges and Recent Advances. Drug Discovery Today 2010, 15, 444–450. [CrossRef]
- Kumar, S.; Deepika, D.; Kumar, V. Pharmacophore Modeling Using Machine Learning for Screening the Blood-Brain Barrier Permeation of Xenobiotics. Int J Environ Res Public Health 2022, 19, 13471. [CrossRef]
- Szwabowski, G.L.; Cole, J.A.; Baker, D.L.; Parrill, A.L. Structure-Based Pharmacophore Modeling 1. Automated Random Pharmacophore Model Generation. J Mol Graph Model 2023, 121, 108429. [CrossRef]
- Sanders, M.P.A.; McGuire, R.; Roumen, L.; De Esch, I.J.P.; De Vlieg, J.; Klomp, J.P.G.; De Graaf, C. From the Protein’s Perspective: The Benefits and Challenges of Protein Structure-Based Pharmacophore Modeling. Med. Chem. Commun. 2012, 3, 28–38. [CrossRef]
- Giordano, D.; Biancaniello, C.; Argenio, M.A.; Facchiano, A. Drug Design by Pharmacophore and Virtual Screening Approach. Pharmaceuticals 2022, 15, 646. [CrossRef]
- Temml, V.; Kutil, Z. Structure-Based Molecular Modeling in SAR Analysis and Lead Optimization. Comput Struct Biotechnol J 2021, 19, 1431–1444. [CrossRef]
- Muhammed, M.T.; Aki-Yalcin, E. Pharmacophore Modeling in Drug Discovery: Methodology and Current Status. Journal of the Turkish Chemical Society Section A: Chemistry 2021, 8, 749–762. [CrossRef]
- Wang, F.-H.; Tan, H.-X.; Hu, J.-H.; Duan, X.-Y.; Bai, W.-T.; Wang, X.-B.; Wang, B.-L.; Su, Y.; Hu, J.-P. Inhibitory Interaction of Flavonoids with Organic Anion Transporter 3 and Their Structure-Activity Relationships for Predicting Nephroprotective Effects. J Asian Nat Prod Res 2024, 26, 353–371. [CrossRef]
- Bai, W.; Tan, H.; Duan, X.; Hu, J.; Wang, F.; Wu, J.; Bai, J.; Hu, J. Inhibitory Effects of Flavonoids on Organic Cation Transporter 1: Implications for Food/Herb-Drug Interactions and Hepatoprotective Effects. Food Chem Toxicol 2024, 193, 114983. [CrossRef]
- Tan, H.; Wang, F.; Hu, J.; Duan, X.; Bai, W.; Wang, X.; Wang, B.; Su, Y.; Hu, J. Inhibitory Interaction of Flavonoids with Organic Cation Transporter 2 and Their Structure-Activity Relationships for Predicting Nephroprotective Effects. J Appl Toxicol 2023, 43, 1421–1435. [CrossRef]
- Komaniecka, N.; Maroszek, S.; Drozdzik, M.; Oswald, S.; Drozdzik, M. Transporter Proteins as Therapeutic Drug Targets-With a Focus on SGLT2 Inhibitors. Int J Mol Sci 2024, 25, 6926. [CrossRef]
- Du, C.; Yin, H.; Xie, A.; Yu, J.; Wang, Y.; Yao, F.; Zhang, S.; Zhang, Y.; Liu, L.; Wang, P.; et al. Virtual Screening and Biological Evaluation of Natural Products as Urate Transporter 1 (URAT1) Inhibitors. J Biomol Struct Dyn 2024, 1–14. [CrossRef]
- Hao, M.; Zhao, Y.; Chen, P.; Huang, H.; Liu, H.; Jiang, H.; Zhang, R.; Wang, H. Structure-Activity Relationship and Substrate-Dependent Phenomena in Effects of Ginsenosides on Activities of Drug-Metabolizing P450 Enzymes. PLoS One 2008, 3, e2697. [CrossRef]
- Bai, J.; Li, L.; Zhao, S.; Fan, X.; Zhang, J.; Hu, M.; Chen, Y.; Sun, Y.; Wang, B.; Jin, J.; et al. Heterotropic Activation of Flavonoids on Cytochrome P450 3A4: A Case Example of Alleviating Dronedarone-Induced Cytotoxicity. Toxicol Lett 2020, 319, 187–196. [CrossRef]
- Tahir, R.A.; Hassan, F.; Kareem, A.; Iftikhar, U.; Sehgal, S.A. Ligand-Based Pharmacophore Modeling and Virtual Screening to Discover Novel CYP1A1 Inhibitors. Curr Top Med Chem 2019, 19, 2782–2794. [CrossRef]
- Goyal, N.; Liu, J.; Lovings, L.; Dupart, P.; Taylor, S.; Bellow, S.; Mensah, L.; McClain, E.; Dotson, B.; Sridhar, J.; et al. Ethynylflavones, Highly Potent, and Selective Inhibitors of Cytochrome P450 1A1. Chem Res Toxicol 2014, 27, 1431–1439. [CrossRef]
- Muratov, E.N.; Bajorath, J.; Sheridan, R.P.; Tetko, I.V.; Filimonov, D.; Poroikov, V.; Oprea, T.I.; Baskin, I.I.; Varnek, A.; Roitberg, A.; et al. QSAR without Borders. Chem. Soc. Rev. 2020, 49, 3525–3564. [CrossRef]
- Neves, B.J.; Braga, R.C.; Melo-Filho, C.C.; Moreira-Filho, J.T.; Muratov, E.N.; Andrade, C.H. QSAR-Based Virtual Screening: Advances and Applications in Drug Discovery. Frontiers in Pharmacology 2018, 9. [CrossRef]
- Zhang, S.; Wang, N.; Su, L.; Xu, X.; Li, C.; Qin, W.; Zhao, Y. MOA-Based Linear and Nonlinear QSAR Models for Predicting the Toxicity of Organic Chemicals to Vibrio Fischeri. Environ Sci Pollut Res 2020, 27, 9114–9125. [CrossRef]
- Ramandi, M.; Riahi, S.; Rahimi, H.; Mohammadi-Khanaposhtani, M. Molecular Docking, Linear and Nonlinear QSAR Studies on Factor Xa Inhibitors. Struct Chem 2020, 31, 2023–2040. [CrossRef]
- Zhao, Y.; Xia, Y.; Yu, Y.; Liang, G. QSAR in Natural Non-Peptidic Food-Related Compounds: Current Status and Future Perspective. Trends in Food Science & Technology 2023, 140, 104165. [CrossRef]
- Olotu, F.A.; Agoni, C.; Soremekun, O.; Soliman, M.E.S. The Recent Application of 3D-QSAR and Docking Studies to Novel HIV-Protease Inhibitor Drug Discovery. Expert Opinion on Drug Discovery 2020, 15, 1095–1109. [CrossRef]
- Hopfinger, A.J.; Wang, S.; Tokarski, J.S.; Jin, B.; Albuquerque, M.; Madhav, P.J.; Duraiswami, C. Construction of 3D-QSAR Models Using the 4D-QSAR Analysis Formalism. J. Am. Chem. Soc. 1997, 119, 10509–10524. [CrossRef]
- Wang, T.; Yuan, X.; Wu, M.-B.; Lin, J.-P.; Yang, L.-R. The Advancement of Multidimensional QSAR for Novel Drug Discovery - Where Are We Headed? Expert Opinion on Drug Discovery 2017, 1–16. [CrossRef]
- Vedani, A.; Dobler, M. 5D-QSAR: The Key for Simulating Induced Fit? J Med Chem 2002, 45, 2139–2149. [CrossRef]
- Suay-Garcia, B.; Bueso-Bordils, J.I.; Falcó, A.; Pérez-Gracia, M.T.; Antón-Fos, G.; Alemán-López, P. Quantitative Structure–Activity Relationship Methods in the Discovery and Development of Antibacterials. WIREs Comput Mol Sci 2020, 10, e1472. [CrossRef]
- Vedani, A.; Dobler, M.; Lill, M.A. Combining Protein Modeling and 6D-QSAR. Simulating the Binding of Structurally Diverse Ligands to the Estrogen Receptor. J. Med. Chem. 2005, 48, 3700–3703. [CrossRef]
- Leo, A.J.; Hansch, C. Role of Hydrophobic Effects in Mechanistic QSAR. Perspectives in Drug Discovery and Design 1999, 17, 1–25.
- Benigni, R.; Bossa, C.; Netzeva, T.; Rodomonte, A.; Tsakovska, I. Mechanistic QSAR of Aromatic Amines: New Models for Discriminating between Homocyclic Mutagens and Nonmutagens, and Validation of Models for Carcinogens. Environ and Mol Mutagen 2007, 48, 754–771. [CrossRef]
- Chaudhry, Q.; Piclin, N.; Cotterill, J.; Pintore, M.; Price, N.R.; Chrétien, J.R.; Roncaglioni, A. Global QSAR Models of Skin Sensitisers for Regulatory Purposes. Chemistry Central Journal 2010, 4, S5. [CrossRef]
- Doucet, J.P.; Doucet-Panaye, A.; Papa, E. Topological QSAR Modelling of Carboxamides Repellent Activity to Aedes Aegypti. Molecular Informatics 2019, 38, 1900029. [CrossRef]
- Hall, L.H.; Hall, L.M. QSAR Modeling Based on Structure-Information for Properties of Interest in Human Health. SAR and QSAR in Environmental Research 2005, 16, 13–41. [CrossRef]
- Holder, A.J.; Ye, L.; Eick, J.D.; Chappelow, C.C. A Quantum-Mechanical QSAR Model to Predict the Refractive Index of Polymer Matrices. QSAR Comb. Sci. 2006, 25, 905–911. [CrossRef]
- Trossini, G.; Maltarollo, V.; Schmidt, T. Hologram QSAR Studies of Antiprotozoal Activities of Sesquiterpene Lactones. Molecules 2014, 19, 10546–10562. [CrossRef]
- Su, B.-H.; Shen, M.; Esposito, E.X.; Hopfinger, A.J.; Tseng, Y.J. In silico Binary Classification QSAR Models Based on 4D-Fingerprints and MOE Descriptors for Prediction of hERG Blockage. J. Chem. Inf. Model. 2010, 50, 1304–1318. [CrossRef]
- Sahlin, U.; Filipsson, M.; Öberg, T. A Risk Assessment Perspective of Current Practice in Characterizing Uncertainties in QSAR Regression Predictions. Molecular Informatics 2011, 30, 551–564. [CrossRef]
- Price, E.; Kalvass, J.C.; DeGoey, D.; Hosmane, B.; Doktor, S.; Desino, K. Global Analysis of Models for Predicting Human Absorption: QSAR, In Vitro , and Preclinical Models. J. Med. Chem. 2021, 64, 9389–9403. [CrossRef]
- Linnankoski, J.; Ranta, V.-P.; Yliperttula, M.; Urtti, A. Passive Oral Drug Absorption Can Be Predicted More Reliably by Experimental than Computational Models--Fact or Myth. Eur J Pharm Sci 2008, 34, 129–139. [CrossRef]
- Kansy, M.; Senner, F.; Gubernator, K. Physicochemical High Throughput Screening: Parallel Artificial Membrane Permeation Assay in the Description of Passive Absorption Processes. J Med Chem 1998, 41, 1007–1010. [CrossRef]
- Akamatsu, M.; Fujikawa, M.; Nakao, K.; Shimizu, R. In silico Prediction of Human Oral Absorption Based on QSAR Analyses of PAMPA Permeability. Chemistry & Biodiversity 2009, 6, 1845–1866. [CrossRef]
- Diukendjieva, A.; Alov, P.; Tsakovska, I.; Pencheva, T.; Richarz, A.; Kren, V.; Cronin, M.T.D.; Pajeva, I. In Vitro and in silico Studies of the Membrane Permeability of Natural Flavonoids from Silybum Marianum (L.) Gaertn. and Their Derivatives. Phytomedicine 2019, 53, 79–85. [CrossRef]
- Boik, J.C.; Newman, R.A. Structure-Activity Models of Oral Clearance, Cytotoxicity, and LD50: A Screen for Promising Anticancer Compounds. BMC Pharmacol 2008, 8, 12. [CrossRef]
- Wessel, M.D.; Jurs, P.C.; Tolan, J.W.; Muskal, S.M. Prediction of Human Intestinal Absorption of Drug Compounds from Molecular Structure. J Chem Inf Comput Sci 1998, 38, 726–735. [CrossRef]
- Moda, T.L.; Andricopulo, A.D. Consensus Hologram QSAR Modeling for the Prediction of Human Intestinal Absorption. Bioorganic & Medicinal Chemistry Letters 2012, 22, 2889–2893. [CrossRef]
- Yoshida, F.; Topliss, J.G. QSAR Model for Drug Human Oral Bioavailability. J. Med. Chem. 2000, 43, 2575–2585. [CrossRef]
- Suenderhauf, C.; Hammann, F.; Maunz, A.; Helma, C.; Huwyler, J. Combinatorial QSAR Modeling of Human Intestinal Absorption. Mol. Pharmaceutics 2011, 8, 213–224. [CrossRef]
- Zhao, Y.H.; Le, J.; Abraham, M.H.; Hersey, A.; Eddershaw, P.J.; Luscombe, C.N.; Boutina, D.; Beck, G.; Sherborne, B.; Cooper, I.; et al. Evaluation of Human Intestinal Absorption Data and Subsequent Derivation of a Quantitative Structure–Activity Relationship (QSAR) with the Abraham Descriptors. Journal of Pharmaceutical Sciences 2001, 90, 749–784. [CrossRef]
- Niwa, T. Using General Regression and Probabilistic Neural Networks To Predict Human Intestinal Absorption with Topological Descriptors Derived from Two-Dimensional Chemical Structures. J. Chem. Inf. Comput. Sci. 2003, 43, 113–119. [CrossRef]
- Bai, J.P.F.; Utis, A.; Crippen, G.; He, H.-D.; Fischer, V.; Tullman, R.; Yin, H.-Q.; Hsu, C.-P.; Jiang, L.; Hwang, K.-K. Use of Classification Regression Tree in Predicting Oral Absorption in Humans. J. Chem. Inf. Comput. Sci. 2004, 44, 2061–2069. [CrossRef]
- Liu, H.X.; Hu, R.J.; Zhang, R.S.; Yao, X.J.; Liu, M.C.; Hu, Z.D.; Fan, B.T. The Prediction of Human Oral Absorption for Diffusion Rate-Limited Drugs Based on Heuristic Method and Support Vector Machine. J Comput Aided Mol Des 2005, 19, 33–46. [CrossRef]
- Jones, R.; Connolly, P.C.; Klamt, A.; Diedenhofen, M. Use of Surface Charges from DFT Calculations To Predict Intestinal Absorption. J. Chem. Inf. Model. 2005, 45, 1337–1342. [CrossRef]
- Deconinck, E.; Hancock, T.; Coomans, D.; Massart, D.L.; Heyden, Y.V. Classification of Drugs in Absorption Classes Using the Classification and Regression Trees (CART) Methodology. Journal of Pharmaceutical and Biomedical Analysis 2005, 39, 91–103. [CrossRef]
- Iyer, S.S.; Cheng, G. Role of Interleukin 10 Transcriptional Regulation in Inflammation and Autoimmune Disease. Crit. Rev. Immunol. 2012, 32, 23–63.
- Hou, T.; Wang, J.; Zhang, W.; Xu, X. ADME Evaluation in Drug Discovery. 7. Prediction of Oral Absorption by Correlation and Classification. J. Chem. Inf. Model. 2007, 47, 208–218. [CrossRef]
- Yan, A.; Wang, Z.; Cai, Z. Prediction of Human Intestinal Absorption by GA Feature Selection and Support Vector Machine Regression. Int J Mol Sci 2008, 9, 1961–1976. [CrossRef]
- Reynolds, D.P.; Lanevskij, K.; Japertas, P.; Didziapetris, R.; Petrauskas, A. Ionization-Specific Analysis of Human Intestinal Absorption. Journal of Pharmaceutical Sciences 2009, 98, 4039–4054. [CrossRef]
- Obrezanova, O.; Segall, M.D. Gaussian Processes for Classification: QSAR Modeling of ADMET and Target Activity. J. Chem. Inf. Model. 2010, 50, 1053–1061. [CrossRef]
- Shen, J.; Cheng, F.; Xu, Y.; Li, W.; Tang, Y. Estimation of ADME Properties with Substructure Pattern Recognition. J. Chem. Inf. Model. 2010, 50, 1034–1041. [CrossRef]
- Guerra, A.; Campillo, N.E.; Páez, J.A. Neural Computational Prediction of Oral Drug Absorption Based on CODES 2D Descriptors. European Journal of Medicinal Chemistry 2010, 45, 930–940. [CrossRef]
- Basant, N.; Gupta, S.; Singh, K.P. Predicting Human Intestinal Absorption of Diverse Chemicals Using Ensemble Learning Based QSAR Modeling Approaches. Computational Biology and Chemistry 2016, 61, 178–196. [CrossRef]
- Wang, Z. Bst: Gradient Boosting; 2016;
- Czub, N.; Szlęk, J.; Pacławski, A.; Klimończyk, K.; Puccetti, M.; Mendyk, A. Artificial Intelligence-Based Quantitative Structure-Property Relationship Model for Predicting Human Intestinal Absorption of Compounds with Serotonergic Activity. Mol Pharm 2023, 20, 2545–2555. [CrossRef]
- Talevi, A.; Goodarzi, M.; Ortiz, E.V.; Duchowicz, P.R.; Bellera, C.L.; Pesce, G.; Castro, E.A.; Bruno-Blanch, L.E. Prediction of Drug Intestinal Absorption by New Linear and Non-Linear QSPR. European Journal of Medicinal Chemistry 2011, 46, 218–228. [CrossRef]
- Agatonovic-Kustrin, S.; Beresford, R.; Yusof, A.P.M. Theoretically-Derived Molecular Descriptors Important in Human Intestinal Absorption. Journal of Pharmaceutical and Biomedical Analysis 2001, 25, 227–237. [CrossRef]
- Klopman, G.; Stefan, L.R.; Saiakhov, R.D. ADME Evaluation. European Journal of Pharmaceutical Sciences 2002, 17, 253–263. [CrossRef]
- Toma, C.; Gadaleta, D.; Roncaglioni, A.; Toropov, A.; Toropova, A.; Marzo, M.; Benfenati, E. QSAR Development for Plasma Protein Binding: Influence of the Ionization State. Pharm Res 2018, 36, 28. [CrossRef]
- Khaouane, A.; Khaouane, L.; Ferhat, S.; Hanini, S. Deep Learning for Drug Development: Using CNNs in MIA-QSAR to Predict Plasma Protein Binding of Drugs. AAPS PharmSciTech 2023, 24, 232. [CrossRef]
- Khaouane, A.; Ferhat, S.; Hanini, S. A Quantitative Structure-Activity Relationship for Human Plasma Protein Binding: Prediction, Validation and Applicability Domain. Adv Pharm Bull 2023, 13, 784–791. [CrossRef]
- Zhivkova, Z.D. Quantitative Structure - Pharmacokinetics Relationships for Plasma Protein Binding of Basic Drugs. J Pharm Pharm Sci 2017, 20, 349–359. [CrossRef]
- Riedl, M.; Mukherjee, S.; Gauthier, M. Descriptor-Free Deep Learning QSAR Model for the Fraction Unbound in Human Plasma. Mol Pharm 2023, 20, 4984–4993. [CrossRef]
- Mathew, S.; Tess, D.; Burchett, W.; Chang, G.; Woody, N.; Keefer, C.; Orozco, C.; Lin, J.; Jordan, S.; Yamazaki, S.; et al. Evaluation of Prediction Accuracy for Volume of Distribution in Rat and Human Using In Vitro, In vivo, PBPK and QSAR Methods. J Pharm Sci 2021, 110, 1799–1823. [CrossRef]
- Luque Ruiz, I.; Gómez-Nieto, M.Á. Robust QSAR Prediction Models for Volume of Distribution at Steady State in Humans Using Relative Distance Measurements. SAR QSAR Environ Res 2018, 29, 529–550. [CrossRef]
- Simeon, S.; Montanari, D.; Gleeson, M.P. Investigation of Factors Affecting the Performance of in silico Volume Distribution QSAR Models for Human, Rat, Mouse, Dog & Monkey. Mol Inform 2019, 38, e1900059. [CrossRef]
- Faramarzi, S.; Kim, M.T.; Volpe, D.A.; Cross, K.P.; Chakravarti, S.; Stavitskaya, L. Development of QSAR Models to Predict Blood-Brain Barrier Permeability. Front Pharmacol 2022, 13, 1040838. [CrossRef]
- Janicka, M.; Sztanke, M.; Sztanke, K. Modeling the Blood-Brain Barrier Permeability of Potential Heterocyclic Drugs via Biomimetic IAM Chromatography Technique Combined with QSAR Methodology. Molecules 2024, 29, 0. [CrossRef]
- Toropov, A.A.; Toropova, A.P.; Beeg, M.; Gobbi, M.; Salmona, M. QSAR Model for Blood-Brain Barrier Permeation. J Pharmacol Toxicol Methods 2017, 88, 7–18. [CrossRef]
- Yu, R.; Wang, J.; Wang, R.; Lin, Y.; Hu, Y.; Wang, Y.; Shu, M.; Lin, Z. Combined Pharmacophore Modeling, 3D-QSAR, Homology Modeling and Docking Studies on CYP11B1 Inhibitors. Molecules 2015, 20, 1014–1030. [CrossRef]
- Yu, T.; Huang, T.; Yu, L.; Nantasenamat, C.; Anuwongcharoen, N.; Piacham, T.; Ren, R.; Chiang, Y.-C. Exploring the Chemical Space of CYP17A1 Inhibitors Using Cheminformatics and Machine Learning. Molecules 2023, 28, 1679. [CrossRef]
- Li, Y.; Ning, J.; Wang, Y.; Wang, C.; Sun, C.; Huo, X.; Yu, Z.; Feng, L.; Zhang, B.; Tian, X.; et al. Drug Interaction Study of Flavonoids toward CYP3A4 and Their Quantitative Structure Activity Relationship (QSAR) Analysis for Predicting Potential Effects. Toxicol Lett 2018, 294, 27–36. [CrossRef]
- Gonzalez, E.; Jain, S.; Shah, P.; Torimoto-Katori, N.; Zakharov, A.; Nguyễn, Ð.-T.; Sakamuru, S.; Huang, R.; Xia, M.; Obach, R.S.; et al. Development of Robust Quantitative Structure-Activity Relationship Models for CYP2C9, CYP2D6, and CYP3A4 Catalysis and Inhibition. Drug Metab Dispos 2021, 49, 822–832. [CrossRef]
- Wongrattanakamon, P.; Lee, V.S.; Nimmanpipug, P.; Jiranusornkul, S. 3D-QSAR Modelling Dataset of Bioflavonoids for Predicting the Potential Modulatory Effect on P-Glycoprotein Activity. Data Brief 2016, 9, 35–42. [CrossRef]
- Prachayasittikul, V.; Worachartcheewan, A.; Shoombuatong, W.; Prachayasittikul, V.; Nantasenamat, C. Classification of P-Glycoprotein-Interacting Compounds Using Machine Learning Methods. EXCLI J 2015, 14, 958–970. [CrossRef]
- Ghaemian, P.; Shayanfar, A. Image-Based QSAR Model for the Prediction of P-Gp Inhibitory Activity of Epigallocatechin and Gallocatechin Derivatives. Curr Comput Aided Drug Des 2019, 15, 212–224. [CrossRef]
- Xiang, Y.; Liu, S.; Yang, J.; Wang, Z.; Zhang, H.; Gui, C. Investigation of the Interactions between Flavonoids and Human Organic Anion Transporting Polypeptide 1B1 Using Fluorescent Substrate and 3D-QSAR Analysis. Biochim Biophys Acta Biomembr 2020, 1862, 183210. [CrossRef]
- Gui, C.; Li, Y.; Peng, T. Development of Predictive QSAR Models for the Substrates/Inhibitors of OATP1B1 by Deep Neural Networks. Toxicol Lett 2023, 376, 20–25. [CrossRef]
- Ni, Y.; Duan, Z.; Zhou, D.; Liu, S.; Wan, H.; Gui, C.; Zhang, H. Identification of Structural Features for the Inhibition of OAT3-Mediated Uptake of Enalaprilat by Selected Drugs and Flavonoids. Front Pharmacol 2020, 11, 802. [CrossRef]
- Bi, Y.; Wang, X.; Li, H.; Tian, Y.; Han, L.; Gui, C.; Zhang, Y. 3D-QSAR Analysis of the Interactions of Flavonoids with Human Organic Cation Transporter 2. Toxicol Lett 2022, 368, 1–8. [CrossRef]
- Sheng, M.; Ma, L.; Li, Z.; Peng, X.; Cen, S.; Feng, M.; Tian, Y.; Dai, X.; Shi, X. A Hybrid Evaluation of the Intestinal Absorption Performance of Compounds from Molecular Structure. Chem Biol Drug Des 2024, 104, e14576. [CrossRef]
- Hildebrand, P.W.; Rose, A.S.; Tiemann, J.K.S. Bringing Molecular Dynamics Simulation Data into View. Trends in Biochemical Sciences 2019, 44, 902–913. [CrossRef]
- Hollingsworth, S.A.; Dror, R.O. Molecular Dynamics Simulation for All. Neuron 2018, 99, 1129–1143.
- McCammon, J.A.; Gelin, B.R.; Karplus, M. Dynamics of Folded Proteins. Nature 1977, 267, 585–590. [CrossRef]
- Liu, X.; Shi, D.; Zhou, S.; Liu, H.; Liu, H.; Yao, X. Molecular Dynamics Simulations and Novel Drug Discovery. Expert Opinion on Drug Discovery 2018, 13, 23–37. [CrossRef]
- Venable, R.M.; Krämer, A.; Pastor, R.W. Molecular Dynamics Simulations of Membrane Permeability. Chem. Rev. 2019, 119, 5954–5997. [CrossRef]
- Wan, G.; Dai, X.; Yin, Q.; Shi, X.; Qiao, Y. Interaction of Menthol with Mixed-Lipid Bilayer of Stratum Corneum: A Coarse-Grained Simulation Study. J Mol Graph Model 2015, 60, 98–107. [CrossRef]
- Wang, H.; Meng, F. The Permeability Enhancing Mechanism of Menthol on Skin Lipids: A Molecular Dynamics Simulation Study. J Mol Model 2017, 23, 279. [CrossRef]
- Dai, X.; Yin, Q.; Wan, G.; Wang, R.; Shi, X.; Qiao, Y. Effects of Concentrations on the Transdermal Permeation Enhancing Mechanisms of Borneol: A Coarse-Grained Molecular Dynamics Simulation on Mixed-Bilayer Membranes. IJMS 2016, 17, 1349. [CrossRef]
- Wimley, W.C.; Hristova, K. Antimicrobial Peptides: Successes, Challenges and Unanswered Questions. J Membr Biol 2011, 239, 27–34. [CrossRef]
- Sager, J.E.; Yu, J.; Ragueneau-Majlessi, I.; Isoherranen, N. Physiologically Based Pharmacokinetic (PBPK) Modeling and Simulation Approaches: A Systematic Review of Published Models, Applications, and Model Verification. Drug Metab Dispos 2015, 43, 1823–1837. [CrossRef]
- Kuepfer, L.; Niederalt, C.; Wendl, T.; Schlender, J.-F.; Willmann, S.; Lippert, J.; Block, M.; Eissing, T.; Teutonico, D. Applied Concepts in PBPK Modeling: How to Build a PBPK/PD Model. CPT Pharmacometrics Syst Pharmacol 2016, 5, 516–531. [CrossRef]
- Upton, R.N.; Foster, D.J.R.; Abuhelwa, A.Y. An Introduction to Physiologically-Based Pharmacokinetic Models. Paediatr Anaesth 2016, 26, 1036–1046. [CrossRef]
- Lin, L.; Wong, H. Predicting Oral Drug Absorption: Mini Review on Physiologically-Based Pharmacokinetic Models. Pharmaceutics 2017, 9, 41. [CrossRef]
- Lin, W.; Chen, Y.; Unadkat, J.D.; Zhang, X.; Wu, D.; Heimbach, T. Applications, Challenges, and Outlook for PBPK Modeling and Simulation: A Regulatory, Industrial and Academic Perspective. Pharm Res 2022, 39, 1701–1731. [CrossRef]
- Maharaj, A.R.; Edginton, A.N. Physiologically Based Pharmacokinetic Modeling and Simulation in Pediatric Drug Development. CPT Pharmacometrics Syst Pharmacol 2014, 3, e150. [CrossRef]
- Jones, H.; Rowland-Yeo, K. Basic Concepts in Physiologically Based Pharmacokinetic Modeling in Drug Discovery and Development. CPT Pharmacometrics Syst Pharmacol 2013, 2, e63. [CrossRef]
- Pumkathin, S.; Hanlumyuang, Y.; Wattanathana, W.; Laomettachit, T.; Liangruksa, M. Investigating Pharmacokinetic Profiles of Centella Asiatica Using Machine Learning and PBPK Modelling. Journal of Biopharmaceutical Statistics 2024, 1–16. [CrossRef]
- Jin, J.; Xu, X.; Li, F.; Weng, F.; Zou, B.; Li, Y.; Zhao, J.; Zhang, S.; Yan, D.; Qiu, F. Physiologically Based Pharmacokinetic Modeling for Confirming the Role of CYP3A1/2 and P-Glycoprotein in Detoxification Mechanism between Glycyrrhizic Acid and Aconitine in Rats. J Appl Toxicol 2024, 44, 978–989. [CrossRef]
- Tanveer, A.; Hussain, K.; Tasneem, H.; Arif, I.; Rashid, M.; Abbas, N.; Shamim, R.; Shah, P.A.; Bukhari, N.I. Prediction of CYP-Mediated Silybin A-Losartan Pharmacokinetic Interactions Using Physiological Based Pharmacokinetic Modeling. J Pharmacokinet Pharmacodyn 2022, 49, 311–323. [CrossRef]
- Chen, L.; Ji, N.; Zhang, M.; Chen, W. The Influence of Wuzhi Capsule on the Pharmacokinetics of Cyclophosphamide. Recent Pat Anticancer Drug Discov 2022, 17, 195–203. [CrossRef]
- Pilla Reddy, V.; Jo, H.; Neuhoff, S. Food Constituent- and Herb-Drug Interactions in Oncology: Influence of Quantitative Modelling on Drug Labelling. Br J Clin Pharmacol 2021, 87, 3988–4000. [CrossRef]
- Lehmann, A.; Geburek, I.; Hessel-Pras, S.; Enge, A.-M.; Mielke, H.; Müller-Graf, C.; Kloft, C.; Hethey, C. PBTK Model-Based Analysis of CYP3A4 Induction and the Toxicokinetics of the Pyrrolizidine Alkaloid Retrorsine in Man. Arch Toxicol 2024, 98, 1757–1769. [CrossRef]
- Rivero-Segura, N.A.; Gomez-Verjan, J.C. In silico Screening of Natural Products Isolated from Mexican Herbal Medicines against COVID-19. Biomolecules 2021, 11, 216. [CrossRef]
- Li, X.; Chen, C.; Ding, N.; Zhang, T.; Zheng, P.; Yang, M. Physiologically Based Pharmacokinetic Modelling and Simulation to Predict the Plasma Concentration Profile of Schaftoside after Oral Administration of Total Flavonoids of Desmodium Styracifolium. Front Pharmacol 2022, 13, 1073535. [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci Rep 2017, 7, 42717. [CrossRef]
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015, 58, 4066–4072. [CrossRef]
- Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A Webserver for the Prediction of Toxicity of Chemicals. Nucleic acids research 2018, 46, W257–W263.
- Banerjee, P.; Kemmler, E.; Dunkel, M.; Preissner, R. ProTox 3.0: A Webserver for the Prediction of Toxicity of Chemicals. Nucleic Acids Research 2024, 52, W513–W520. [CrossRef]
- Ntie-Kang, F. An in silico Evaluation of the ADMET Profile of the StreptomeDB Database. SpringerPlus 2013, 2, 353. [CrossRef]
- Gu, Y.; Yu, Z.; Wang, Y.; Chen, L.; Lou, C.; Yang, C.; Li, W.; Liu, G.; Tang, Y. admetSAR3.0: A Comprehensive Platform for Exploration, Prediction and Optimization of Chemical ADMET Properties. Nucleic Acids Research 2024, 52, W432–W438. [CrossRef]
- Fu, L.; Shi, S.; Yi, J.; Wang, N.; He, Y.; Wu, Z.; Peng, J.; Deng, Y.; Wang, W.; Wu, C.; et al. ADMETlab 3.0: An Updated Comprehensive Online ADMET Prediction Platform Enhanced with Broader Coverage, Improved Performance, API Functionality and Decision Support. Nucleic Acids Research 2024, 52, W422–W431. [CrossRef]
- Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; et al. ADMETlab 2.0: An Integrated Online Platform for Accurate and Comprehensive Predictions of ADMET Properties. Nucleic Acids Res 2021, 49, W5–W14. [CrossRef]
- Sohlenius-Sternbeck, A.-K.; Terelius, Y. Evaluation of ADMET Predictor in Early Discovery Drug Metabolism and Pharmacokinetics Project Work. Drug Metab Dispos 2022, 50, 95–104. [CrossRef]
- Lagorce, D.; Bouslama, L.; Becot, J.; Miteva, M.A.; Villoutreix, B.O. FAF-Drugs4: Free ADME-Tox Filtering Computations for Chemical Biology and Early Stages Drug Discovery. Bioinformatics 2017, 33, 3658–3660. [CrossRef]
- Chen, F.; Yin, X.; Wang, Y.; Lv, Y.; Sheng, S.; Ouyang, S.; Zhong, Y. Pharmacokinetics, Tissue Distribution, and Druggability Prediction of the Natural Anticancer Active Compound Cytisine N-Isoflavones Combined with Computer Simulation. Biol Pharm Bull 2020, 43, 976–984. [CrossRef]
- Tian, H.; Ketkar, R.; Tao, P. ADMETboost: A Web Server for Accurate ADMET Prediction. J Mol Model 2022, 28, 408. [CrossRef]
- Wei, Y.; Li, S.; Li, Z.; Wan, Z.; Lin, J. Interpretable-ADMET: A Web Service for ADMET Prediction and Optimization Based on Deep Neural Representation. Bioinformatics 2022, 38, 2863–2871. [CrossRef]
- Zhai, J.; Man, V.H.; Ji, B.; Cai, L.; Wang, J. Comparison and Summary of in silico Prediction Tools for CYP450-Mediated Drug Metabolism. Drug Discovery Today 2023, 28, 103728. [CrossRef]
- Testa, B.; Crivori, P.; Reist, M.; Carrupt, P.-A. The Influence of Lipophilicity on the Pharmacokinetic Behavior of Drugs: Concepts and Examples. Perspectives in Drug Discovery and Design 2000, 19, 179–211.
- Chen, L.; Lian, G.; Han, L. Prediction of Human Skin Permeability Using Artificial Neural Network (ANN) Modeling. Acta Pharmacologica Sinica 2007, 28, 591–600. [CrossRef]
- Chang, Y.-C.; Chen, C.-P.; Chen, C.-C. Predicting Skin Permeability of Chemical Substances Using a Quantitative Structure-Activity Relationship. Procedia Engineering 2012, 45, 875–879. [CrossRef]
- Potts, R.O.; Guy, R.H. Predicting Skin Permeability. Pharm Res 1992, 9, 663–669. [CrossRef]
- An, N.; Machado, J.-H.; Tang, Y.; Kostal, J.; Voutchkova-Kostal, A. Predicting Skin Permeation Rate from Nuclear Magnetic Resonance Spectra. Green Chem. 2016, 18, 4468–4474. [CrossRef]
- Daina, A.; Zoete, V. A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem 2016, 11, 1117–1121. [CrossRef]
- Sharom, F.J. The P-Glycoprotein Multidrug Transporter. Essays Biochem 2011, 50, 161–178. [CrossRef]
- Swiss Institute of Bioinformatics. SwissADME. Frequently Asked Questions.
- Walters, W.P. Going Further than Lipinski’s Rule in Drug Design. Expert Opinion on Drug Discovery 2012, 7, 99–107. [CrossRef]
- Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A Knowledge-Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative and Quantitative Characterization of Known Drug Databases. Journal of combinatorial chemistry 1999, 1, 55–68.
- Ursu, O.; Rayan, A.; Goldblum, A.; Oprea, T.I. Understanding Drug-likeness. WIREs Comput Mol Sci 2011, 1, 760–781. [CrossRef]
- Egan, W.J.; Merz, K.M.; Baldwin, J.J. Prediction of Drug Absorption Using Multivariate Statistics. Journal of medicinal chemistry 2000, 43, 3867–3877.
- Muegge, I.; Heald, S.L.; Brittelli, D. Simple Selection Criteria for Drug-like Chemical Matter. Journal of medicinal chemistry 2001, 44, 1841–1846.
- Martin, Y.C. A Bioavailability Score. Journal of medicinal chemistry 2005, 48, 3164–3170.
- Baell, J.B.; Holloway, G.A. New Substructure Filters for Removal of Pan Assay Interference Compounds (PAINS) from Screening Libraries and for Their Exclusion in Bioassays. J. Med. Chem. 2010, 53, 2719–2740. [CrossRef]
- Brenk, R.; Schipani, A.; James, D.; Krasowski, A.; Gilbert, I.H.; Frearson, J.; Wyatt, P.G. Lessons Learnt from Assembling Screening Libraries for Drug Discovery for Neglected Diseases. ChemMedChem 2008, 3, 435–444. [CrossRef]
- Teague, S.J.; Davis, A.M.; Leeson, P.D.; Oprea, T. The Design of Leadlike Combinatorial Libraries. Angew Chem Int Ed Engl 1999, 38, 3743–3748. [CrossRef]
- Duffy, E.M.; Jorgensen, W.L. Prediction of Properties from Simulations: Free Energies of Solvation in Hexadecane, Octanol, and Water. J. Am. Chem. Soc. 2000, 122, 2878–2888. [CrossRef]
- Jorgensen, W.L.; Duffy, E.M. Prediction of Drug Solubility from Structure. Advanced Drug Delivery Reviews 2002, 54, 355–366. [CrossRef]
- Jorgensen, W.L.; Duffy, E.M. Prediction of Drug Solubility from Monte Carlo Simulations. Bioorganic & Medicinal Chemistry Letters 2000, 10, 1155–1158. [CrossRef]
- Fioravanzo, E.; Cazzolla, N.; Durando, L.; Ferrari, C.; Mabilia, M.; Ombrato, R.; Parenti, M.D. General and Independent Approaches to Predict HERG Affinity Values. Internet Electron J Mol Des 2005, 4, 625–646.
- Wang, J.; Du, H.; Yao, X.; Hu, Z. Using Classification Structure Pharmacokinetic Relationship (SCPR) Method to Predict Drug Bioavailability Based on Grid-Search Support Vector Machine. Analytica Chimica Acta 2007, 601, 156–163. [CrossRef]
- Oja, M.; Maran, U. Quantitative Structure–Permeability Relationships at Various pH Values for Neutral and Amphoteric Drugs and Drug-like Compounds. SAR and QSAR in Environmental Research 2016, 27, 813–832. [CrossRef]
- Fatima, S.; Gupta, P.; Sharma, S.; Sharma, A.; Agarwal, S.M. ADMET Profiling of Geographically Diverse Phytochemical Using Chemoinformatic Tools. Future Med. Chem. 2020, 12, 69–87. [CrossRef]
- Athar, M.; Sona, A.N.; Bekono, B.D.; Ntie-Kang, F. Fundamental Physical and Chemical Concepts behind “Drug-Likeness” and “Natural Product-Likeness.” Physical Sciences Reviews 2019, 4. [CrossRef]
- Wang, J.; Hou, T. Recent Advances on in silico ADME Modeling. Annual reports in computational chemistry 2009, 5, 101–127.
- Bhat, J.; Chatterjee, S. Skeleton Selectivity in Complexation of Chelerythrine and Chelerythrine-like Natural Plant Alkaloids with the G-Quadruplex Formed at the Promoter of c-MYC Oncogene: In silico Exploration. RSC Adv. 2016, 6, 36667–36680. [CrossRef]
- Anna Malinowska, M.; Billet, K.; Drouet, S.; Munsch, T.; Unlubayir, M.; Tungmunnithum, D.; Giglioli-Guivarc’h, N.; Hano, C.; Lanoue, A. Grape Cane Extracts as Multifunctional Rejuvenating Cosmetic Ingredient: Evaluation of Sirtuin Activity, Tyrosinase Inhibition and Bioavailability Potential. Molecules 2020, 25. [CrossRef]
- Skolnik, S.; Lin, X.; Wang, J.; Chen, X.-H.; He, T.; Zhang, B. Towards Prediction of In vivo Intestinal Absorption Using a 96-Well Caco-2 Assay. Journal of Pharmaceutical Sciences 2010, 99, 3246–3265. [CrossRef]
- Ntie-Kang, F.; Lifongo, L.L.; Judson, P.N.; Sippl, W.; Efange, S.M.N. How “Drug-like” Are Naturally Occurring Anti-Cancer Compounds? J Mol Model 2014, 20, 2069. [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002, 45, 2615–2623. [CrossRef]
- Avdeef, A.; Tam, K.Y. How Well Can the Caco-2/Madin−Darby Canine Kidney Models Predict Effective Human Jejunal Permeability? J. Med. Chem. 2010, 53, 3566–3584. [CrossRef]
- Ibezim, A.; Debnath, B.; Ntie-Kang, F.; Mbah, C.J.; Nwodo, N.J. Binding of Anti-Trypanosoma Natural Products from African Flora against Selected Drug Targets: A Docking Study. Med Chem Res 2017, 26, 562–579. [CrossRef]
- Bolelli, K.; Ertan-Bolelli, T.; Unsalan, O.; Altunayar-Unsalan, C. Fenoterol and Dobutamine as SARS-CoV-2 Main Protease Inhibitors: A Virtual Screening Study. Journal of Molecular Structure 2021, 1228, 129449. [CrossRef]
- Ntie-Kang, F.; Zofou, D.; Babiaka, S.B.; Meudom, R.; Scharfe, M.; Lifongo, L.L.; Mbah, J.A.; Mbaze, L.M.; Sippl, W.; Efange, S.M.N. AfroDb: A Select Highly Potent and Diverse Natural Product Library from African Medicinal Plants. PLoS ONE 2013, 8, e78085. [CrossRef]
- Malik, R.; Bunkar, D.; Choudhary, B.S.; Srivastava, S.; Mehta, P.; Sharma, M. High Throughput Virtual Screening and in silico ADMET Analysis for Rapid and Efficient Identification of Potential PAP248-286 Aggregation Inhibitors as Anti-HIV Agents. Journal of Molecular Structure 2016, 1122, 239–246. [CrossRef]
- Shelke, S.M.; Bhosale, S.H. Synthesis, Antidepressant Evaluation and QSAR Studies of Novel 2-(5H-[1,2,4]Triazino [5,6-b]Indol-3-Ylthio)-N-(Substituted Phenyl)Acetamides. Bioorganic & Medicinal Chemistry Letters 2010, 20, 4661–4664. [CrossRef]
- West, C.; Zhang, Y.; Morin-Allory, L. Insights into Chiral Recognition Mechanisms in Supercritical Fluid Chromatography. I. Non-Enantiospecific Interactions Contributing to the Retention on Tris-(3,5-Dimethylphenylcarbamate) Amylose and Cellulose Stationary Phases. Journal of Chromatography A 2011, 1218, 2019–2032. [CrossRef]
- Wang, J.; Xie, X.-Q.; Hou, T.; Xu, X. Fast Approaches for Molecular Polarizability Calculations. J. Phys. Chem. A 2007, 111, 4443–4448. [CrossRef]
- Janicka, M.; Mycka, A.; Sztanke, M.; Sztanke, K. Predicting Pharmacokinetic Properties of Potential Anticancer Agents via Their Chromatographic Behavior on Different Reversed Phase Materials. IJMS 2021, 22, 4257. [CrossRef]
- Tandon, H.; Ranjan, P.; Chakraborty, T.; Suhag, V. Polarizability: A Promising Descriptor to Study Chemical–Biological Interactions. Mol Divers 2021, 25, 249–262. [CrossRef]
- Pitsillou, E.; Liang, J.J.; Beh, R.C.; Prestedge, J.; Catak, S.; Hung, A.; Karagiannis, T.C. Identification of Novel Bioactive Compounds from Olea Europaea by Evaluation of Chemical Compounds in the OliveNetTM Library: In silico Bioactivity and Molecular Modelling, and in Vitro Validation of hERG Activity. Computers in Biology and Medicine 2022, 142, 105247. [CrossRef]
- Onguéné, P.A.; Ntie-Kang, F.; Mbah, J.A.; Lifongo, L.L.; Ndom, J.C.; Sippl, W.; Mbaze, L.M. The Potential of Anti-Malarial Compounds Derived from African Medicinal Plants, Part III: An in silico Evaluation of Drug Metabolism and Pharmacokinetics Profiling. Org Med Chem Lett 2014, 4, 6. [CrossRef]
- Banerjee, P.; Dehnbostel, F.O.; Preissner, R. Prediction Is a Balancing Act: Importance of Sampling Methods to Balance Sensitivity and Specificity of Predictive Models Based on Imbalanced Chemical Data Sets. Frontiers in Chemistry 2018, 6. [CrossRef]
- Lombardo, F.; Desai, P.V.; Arimoto, R.; Desino, K.E.; Fischer, H.; Keefer, C.E.; Petersson, C.; Winiwarter, S.; Broccatelli, F. In silico Absorption, Distribution, Metabolism, Excretion, and Pharmacokinetics (ADME-PK): Utility and Best Practices. An Industry Perspective from the International Consortium for Innovation through Quality in Pharmaceutical Development: Miniperspective. J. Med. Chem. 2017, 60, 9097–9113. [CrossRef]
| Type of model | Dataset size (training, test sets) | Performance (best model) | Outcome variable | Reference |
|---|---|---|---|---|
| Regression QSAR | 86 (67, 9, 10*) | RMS - 9.4% HIA units (training), 19.7% HIA units (CV), 16.0% HIA units (external set) | Human intestinal absorption (%) | [122] |
| Hologram QSAR, regression | 638 (50, 128) | R2 – 0.79, Q2 – 0.63 | Human intestinal absorption (%) | [123] |
| Classification | 272 (232, 40) | Accuracy (train set) – 71%, accuracy (test set): 60%. | Bioavailability data in healthy human subjects (4 classes of bioavailability: class 1 (<20%), class 2 (20-49%), class 3 (50-79%), class 4 (80-100%). | [124] |
| Regression and classification models | 458 | Regression: R2 – 0.60 Classification: CCR – 0.88, MCC – 0.75 (10-fold cross-validation) |
Human intestinal absorption (%). Three ordinal classes of absorption (class 1 - >80%, class 2 – 30% - <80%, class 3 - < 30%). | [125] |
| Regression models based on Abraham descriptors | 169 (38 + 131; 31+138) | 0.85 (train set); 0.78 (cross-validation) | Human intestinal absorption (%) | [126] |
| Regression and classification | 96 (67 + 9+12*) | RMS – 6.5 (train set), 27.7 (test set), 22.8 (external prediction set). For classification, sensitivity 100%, specificity 50%. |
Human intestinal absorption (%). For classification purposes, a 50% HIA threshold was used to define two classes. | [125,127] |
| Classification QSAR, using structural descriptors | 1262 (899+362) | AAE – 0.12 (12%); Accuracy: 79-86% | Human intestinal absorption (%, divided in six classes of about 16% per class) | [128] |
| Regression models using five classes of descriptors | 169 (113 + 56) | R2 – 0.86 (training set), 0.73 (test set)s | Human intestinal absorption (%) | [129] |
| Regression model using descriptors computed based on DFT | 241 (38 + 203) | RMSE – 12.8 (% HIA) (15 on the entire test set) | Human intestinal absorption (%) | [130] |
| Classification QSAR using a variety of descriptor classes | 141 (+ an external data set of 27 compounds) | Accuracy: 88.9% (external data set), 65.71% (10-fold CV) | Human intestinal absorption (%) (5 classes) | [131] |
| MI-QSAR (QSAR based on “descriptors explicitly derived from simulations of solutes [drugs] interacting with phospholipid membrane models”) |
188 (164 + 24) | R2 = 0.68 (train set), 0.65 (test set). | Human intestinal absorption (%) and | [132] |
| Regression and classification models (using a variety of descriptor classes) | 553 (455 +98) | R2 - 0.76** (train set), R2 - 0.79** (test set), AMEa – 7.3% (test set), Accuracy > 96.8%. | Human intestinal absorption (%) | [133] |
| Multiple regression models using a variety of descriptors | 552 (380+172) | R2 – 0.64** (train set), R2 – 0.79** (test set) | Human intestinal absorption (%) | [134] |
| Regression models using descriptors computed with two commercial products and predicted pKa | 567 (+25 + 22***) | R2 for log Peffb - 0.72-0.84; RMSE - 0.35–0.45 log units (equivalent to 2.24-2.82%) | Human intestinal absorption (%) | [135] |
| Classification QSAR using multiple classification algorithms and 166 descriptors | 225 (158+67) | Accuracy – 94% (training set), 91% (test set)c. κ statistic – 0.58 | Human intestinal absorption (%). Two classes: high (> 30%) and low (< 30%). | [136] |
| Classification QSAR using FP4 and MACCS fingerprints | 578 (480+98, (+634***) | Accuracy – 98.5% (training set), 98.8% (test set), 94% (validation set) | Human intestinal absorption (%). Two classes: high (> 30%) and low (< 30%). | [137] |
| Regression and classification QSAR using topological descriptors (computed with the CODES program) | 367 (202 + 165)d | R2 = 0.93 (train set), Q2 = 0.92 (LOO cross-validation). Global accuracy: 74%. | Human intestinal absorption (%). Three classes (cut-offs: 30%, 50% and 70%). | [138] |
| Classification and regression QSAR models build with different descriptors and algorithms | 577 (78+489) | Accuracy: 99.37%, 99.58% (train set), 95.92%, 94.90% (test set). RMSE – 6.39 (train set), 5.71 (test), R2 – 0.972 (train set), 0.953 (test set) | Human intestinal absorption (%). Two classes, using a 30% threshold. | [139] |
| Regression QSPR models using 2D and 3D descriptors | 1272 (1017+255) | R2 = 0.97, Q2= 0.83, RMSE CV = 0.31 (training test), R2 = 0.81, RMSE T = 0.31 (test set) |
Caco-2 cell permeability (permeability coefficient of Caco-2 monolayer cell - Papp) | [140] |
| Classification and regression QSAR/QSPR models | 141 (98, +43) | Accuracy: 0.77 (10-fold CV), 0.70 (external data set) R2: 0.38 (training set), 0.05 (external data set) |
Human intestinal absorption (%). Two classes, using an 85% threshold. | [141] |
| Regression QSAR using a variety of descriptors computed with the Dragon software | 160 (90 + 30 + 40) | R2 – 0.771 (training set), 0.716 (test set). RMSE – 0.182 (training set), 0.189 (test set) | Human intestinal absorption (%) – more precisely, log10 (HIA% + 10). | [142] |
| Regression QSAR using artificial neural networks | 86 (67 + 9 + 10) | R2 – 0.802 (test set); RMS – 0.59 (train set), RMS – 0.42 (test set). | Human intestinal absorption (%). | [143] |
| Regression QSAR using mainly structural descriptors | 467 (417+50) | R2 – 0.79 (train set), 0.79 (test set), RMSE – 12.3% HIA | Human intestinal absorption (%). | [144] |
| Features | SwissADME | pkCSM | ADMETlab 3.0 | admetSAR 3.0 |
|---|---|---|---|---|
| Physicochemical properties | 12 | 7* | 21 | 10 |
| Medicinal chemistry endpoints | 10** | 0 | 20 | 4** |
| Absorption*** endpoints | 3 (C) | 3 (N) | 9 (2N, 7C) | 14 (6N, 6C) |
| Distribution endpoints | 1 (C) | 4 (N) | 9 (3N, 6 C) | 11 (1N, 12C) |
| Metabolism endpoints | 5 (C) | 7 (C) | 14 (C) | 15 (C) |
| Excretion endpoints | 0 | 2 (1N, 1C) | 2 (N) | 4 (2N, 2C) |
| PAINS included | Yes | No | Yes | No |
| Batch evaluation/API support | Multiple smiles allowed | Limit to 100 smiles | Input limited to one smile, but API available | Batch prediction allowed for 1000 molecules. |
| Interpretation help | ++ | ++ | +++ | ++ |
| Uncertainty estimation | No | No | Yes (prediction probabilities for categorical predictions converted into six symbols) | Yes (prediction probabilities for categorical predictions) |
| Availability | Free | Free | Free | Free |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).