Submitted:
17 January 2025
Posted:
18 January 2025
You are already at the latest version
Abstract
Background/Objectives: A great number of epidemiological studies have reported that hyperuricemia is associated with the development of hypertension, dyslipidemia, type 2 diabetes, chronic kidney disease (CKD), in addition to metabolic syndrome and insulin resistance. We investigated the effects of long-term treatment with the novel uricosuric drug, a highly selective inhibitor of urate transporter 1 (URAT1), on metabolic parameters and renal function. Methods: We retrospectively picked up patients who had taken dotinurad for the treatment of asymptomatic hyperuricemia, for more than 2 years. We compared metabolic parameters and renal function at baseline with the data at 6, 12, 18, and 24 months after the start of dotinurad. Results: Pharmacologically, dotinurad decreases serum uric acid (UA), by selectively inhibiting URAT1 and decreasing renal reabsorption of UA, which was supported by our result that dotinurad significantly increased urine UA and reduced serum UA. In addition to UA-lowering, dotinurad significantly improved body weight, liver function, serum lipids, and urine albumin. The ATP-binding cassette transporter G2 (ABCG2) regulates renal and intestinal excretion of UA and uremic toxins and strongly affects renal function. Our study also indicates that switching from febuxostat, which inhibits ABCG2, to dotinurad, which does not inhibit ABCG2, was beneficial for maintaining the GFR. Conclusions: Dotinurad may improve obesity, metabolic dysfunction-associated steatotic liver disease (MASLD), and CKD by blocking the entry of UA via URAT1 to adipose tissue, liver, and kidney.
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Laboratory Measurements
2.3. Statistical Analysis
3. Results
3.1. Characteristics of Patients Studied
3.1.1. Clinical and Laboratory Characteristics of Patients Studied at Baseline
3.1.2. The Daily Doses of Dotinurad Used in Patients Studied
3.1.3. The UA-Lowering Drugs Used in Patients Studied Before the Start of Dotinurad
3.2. Changes in Metabolic Parameters and Renal Function by the 2-Year-Dotinurad Treatment
3.2.1. Changes in Metabolic Parameters and Renal Function at 6, 12, 18 and 24 Months After the Start of Dotinurad in All Patients
3.2.2. Changes in Metabolic Parameters at 6, 12, 18, and 24 Months After the Start of Dotinurad in Patients Naïve to UA-Lowering Drugs
3.2.3. Changes in Metabolic Parameters at 6, 12, 18, and 24 Months After the Start of Dotinurad in Patients Who Switched from XO Inhibitors
3.2.4. Changes in Metabolic Parameters at 6, 12, 18 and 24 Months After the Start of Dotinurad in Patients Who Switched from Febuxostat
3.3. Correlations of Serum and Urine UA Levels with eGFR at Baseline and 24 Months After the Start of Dotinurad
3.3.1. Correlations Between Serum UA Levels and eGFR at Baseline and 24 Months After the Start of Dotinurad
3.3.2. Correlations Between Urine UA Levels and eGFR at Baseline and 24 Months After the Start of Dotinurad
3.3.3. Correlations of % Change in eGFR After 24 Months from Baseline with % Changes in Serum and Urine UA Levels After 24 Months from Baseline
3.4. The changes in eGFR after the start of dotinurad from baseline
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yuan, H.; Yu, C.; Li, X.; Sun, L.; Zhu, X.; Zhao, C.; Zhang, Z.; Yang, Z. Serum Uric Acid Levels and Risk of Metabolic Syndrome: A Dose-Response Meta-Analysis of Prospective Studies. J. Clin. Endocrinol. Metab. 2015, 100, 4198–4207. [Google Scholar] [CrossRef]
- Hjortnaes, J.; Algra, A.; Olijhoek, J.; Huisman, M.; Jacobs, J.; van der Graaf, Y.; Visseren, F. Serum uric acid levels and risk for vascular diseases in patients with metabolic syndrome. J. Rheumatol. 2007, 34, 1882–1887. [Google Scholar]
- Takahashi, S.; Yamamoto, T.; Tsutsumi, Z.; Moriwaki, Y.; Yamakita, J.; Higashino, K. Close correlation between visceral fat accumulation and uric acid metabolism in healthy men. Metabolism. 1997, 46, 1162–1165. [Google Scholar] [CrossRef] [PubMed]
- Facchini, F.; Chen, Y.D.; Hollenbeck, C.B.; Reaven, G.M. Relationship between resistance to insulin-mediated glucose uptake, urinary uric acid clearance, and plasma uric acid concentration. JAMA. 1991, 266, 3008–3011. [Google Scholar] [CrossRef] [PubMed]
- Kuwabara, M.; Ae, R.; Kosami, K.; Kanbay, M.; Andres-Hernando, A.; Hisatome, I.; Lanaspa, M.A. Current updates and future perspectives in uric acid research, 2024. Hypertens. Res. 2024. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, M.; Yan, H.; Zhong, S.; Xu, R.; Zhao, Z.; Yang, Q. Association Between Remnant Cholesterol and Risk of Hyperuricemia: A Cross-Sectional Study. Horm. Metab. Res. 2024, 56, 882–889. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, M.; Du, R.; Tang, F.; Xu, M.; Gu, T.; Yang, Q. The relationship between non-high-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio (NHHR) and hyperuricaemia. Lipids. Health. Dis. 2024, 23, 187. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Rong, S.; Wang, Q.; Sun, T.; Bao, W.; Chen, L.; Liu, L. Association between plasma uric acid and insulin resistance in type 2 diabetes: A Mendelian randomization analysis. Diabetes. Res. Clin. Pract. 2021, 171, 108542. [Google Scholar] [CrossRef]
- Borghi, C.; Agabiti-Rosei, E.; Johnson, R.J.; Kielstein, J.T.; Lurbe, E.; Mancia, G.; Redon, J.; Stack, A.G.; Tsioufis, K.P. Hyperuricaemia and gout in cardiovascular, metabolic and kidney disease. Eur. J. Intern. Med. 2020, 80, 1–11. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, T.; Liu, Y.; Chang, Q.; Zhao, Y.; Guo, C.; Xia, Y. Prevalence of Diabetes in Patients with Hyperuricemia and Gout: A Systematic Review and Meta-analysis. Curr. Diab. Rep. 2023, 23, 103–117. [Google Scholar] [CrossRef]
- Wu, N.; Xia, J.; Chen, S.; Yu, C.; Xu, Y.; Xu, C.; Yan, T.; Li, N.; Liu, Y.; Pan, X.F. Serum uric acid and risk of incident chronic kidney disease: a national cohort study and updated meta-analysis. Nutr. Metab (Lond). 2021, 18, 94. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Zhu, Y.; Ma, Y.; Zhang, H.; Zhao, H.; Zhang, Y.; Yang, Z.; Liu, Y. Relationship between hyperuricemia and the risk of cardiovascular events and chronic kidney disease in both the general population and hypertensive patients: A systematic review and meta-analysis. Int. J. Cardiol. 2024, 399, 131779. [Google Scholar] [CrossRef]
- Nadwa, E.H.; Morcos, G.N.B.; Salama, N.M.; Shafik, A.N. Comparing the Effects of Febuxostat and Allopurinol in an Animal Model of Metabolic Syndrome. Pharmacology. 2021, 106, 564–572. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Y.P.; Qu, Y.; Jie, L.G.; Deng, J.X.; Yu, Q.H. Efficacy of uric acid-lowering therapy on hypercholesterolemia and hypertriglyceridemia in gouty patients. Int. J. Rheum. Dis. 2019, 22, 1445–1451. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Tanaka, A.; Yoshida, H.; Nakashima, H.; Ban, N.; Matsuhisa, M.; Kobayashi, Y.; Node, K.; On Behalf Of The Prize Study Investigators. Effects of Xanthine Oxidase Inhibition by Febuxostat on Lipid Profiles of Patients with Hyperuricemia: Insights from Randomized PRIZE Study. Nutrients. 2024, 16, 2324. [Google Scholar] [CrossRef]
- Cho, I.J.; Oh, D.H.; Yoo, J.; Hwang, Y.C.; Ahn, K.J.; Chung, H.Y.; Jeong, S.W.; Moon, J.Y.; Lee, S.H.; Lim, S.J.; Jeong, I.K. Allopurinol ameliorates high fructose diet induced hepatic steatosis in diabetic rats through modulation of lipid metabolism, inflammation, and ER stress pathway. Sci. Rep. 2021, 11, 9894. [Google Scholar] [CrossRef] [PubMed]
- Al-Shargi, A.; El Kholy, A.A.; Adel, A.; Hassany, M.; Shaheen, S.M. Allopurinol versus Febuxostat: A New Approach for the Management of Hepatic Steatosis in Metabolic Dysfunction-Associated Steatotic Liver Disease. Biomedicines. 2023, 11, 3074. [Google Scholar] [CrossRef] [PubMed]
- Sharbaf, F.G.; Bakhtiari, E.; Faghihi, T.; Assadi, F. Efficacy and Safety of Allopurinol on Chronic Kidney Disease Progression: A Systematic Review and Meta-Analysis. J. Pediatr. Pharmacol. Ther. 2024, 29, 359–367. [Google Scholar] [CrossRef]
- Lin, T.C.; Hung, L.Y.; Chen, Y.C.; Lo, W.C.; Lin, C.H.; Tam, K.W.; Wu, M.Y. Effects of febuxostat on renal function in patients with chronic kidney disease: A systematic review and meta-analysis. Medicine (Baltimore). 2019, 98, e16311. [Google Scholar] [CrossRef] [PubMed]
- Mouheb, A.; Lambert, O.; Alencar de Pinho, N.; Jacquelinet, C.; Laville, M.; Combe, C.; Fouque, D.; Frimat, L.; Massy, Z.A.; Laville, S.M.; et al. Association between urate-lowering therapy and kidney failure in patients with chronic kidney disease. J. Nephrol. 2025. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, T.; Ashizawa, N.; Matsumoto, K.; Saito, R.; Motoki, K.; Sakai, M.; Chikamatsu, N.; Hagihara, C.; Hashiba, M.; Iwanaga, T. Pharmacological Evaluation of Dotinurad, a Selective Urate Reabsorption Inhibitor. J. Pharmacol. Exp. Ther. 2019, 371, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, S.; Imai, E.; Horio, M.; Yasuda, Y.; Tomita, K.; Nitta, K.; Yamagata, K.; Tomino, Y.; Yokoyama, H.; Hishida, A.; et al. Revised equations for estimated GFR from serum creatinine in Japan. Am. J. Kidney Dis. 2009, 53, 982–992. [Google Scholar] [CrossRef]
- Ran, Z.; Xue, X.; Han, L.; Terkeltaub, R.; Merriman, T.R.; Zhao, T.; He, Y.; Wang, C.; Li, X.; Liu, Z.; et al. Decrease in Serum Urate Level Is Associated With Loss of Visceral Fat in Male Gout Patients. Front. Endocrinol (Lausanne). 2021, 12, 724822. [Google Scholar] [CrossRef] [PubMed]
- Keenan, R.T. The Biology of Urate. Semin. Arthritis. Rheumatol. 2020, 50, S2–S10. [Google Scholar] [CrossRef]
- Choi, Y.J.; Shin, H.S.; Choi, H.S.; Park, J.W.; Jo, I.; Oh, E.S.; Lee, K.Y.; Lee, B.H.; Johnson, R.J.; Kang, D.H. Uric Acid Induces Fat Accumulation via Generation of Endoplasmic Reticulum Stress and SREBP-1c Activation in Hepatocytes. Lab. Invest. 2014, 94, 1114–1125. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, H.; Sekine, T.; Endou, H. The Multispecific Organic Anion Transporter Family: Properties and Pharmacological Significance. Trends. Pharmacol. Sci. 2004, 25, 654–662. [Google Scholar] [CrossRef] [PubMed]
- Su, M.; Sun, L.; Li, W.; Liu, H.; Liu, Y.; Wei, Y.; Yuan, Y.; Zheng, L.; Yin, S.; Dai, C.; et al. Metformin Alleviates Hyperuricaemia-Induced Serum FFA Elevation and Insulin Resistance by Inhibiting Adipocyte Hypertrophy and Reversing Suppressed White Adipose Tissue Beiging. Clin. Sci (Lond). 2020, 134, 1537–1553. [Google Scholar] [CrossRef]
- Liang, W.Y.; Zhu, X.Y.; Zhang, J.W.; Feng, X.R.; Wang, Y.C.; Liu, M.L. Uric acid promotes chemokine and adhesion molecule production in vascular endothelium via nuclear factor-kappa B signaling. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 187–194. [Google Scholar] [CrossRef]
- Tanaka, Y.; Nagoshi, T.; Takahashi, H.; Oi, Y.; Yoshii, A.; Kimura, H.; Ito, K.; Kashiwagi, Y.; Tanaka, T.D.; Yoshimura, M. URAT1-selective inhibition ameliorates insulin resistance by attenuating diet-induced hepatic steatosis and brown adipose tissue whitening in mice. Mol. Metab. 2022, 55, 101411. [Google Scholar] [CrossRef]
- Kwon, M.M.; O’Dwyer, S.M.; Baker, R.K.; Covey, S.D.; Kieffer, T.J. FGF21-mediated improvements in glucose clearance require uncoupling protein 1. Cell. Reports. 2015, 13, 1521–1527. [Google Scholar] [CrossRef]
- Sautin, Y.Y.; Nakagawa, T.; Zharikov, S.; Johnson, R.J. Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress. Am. J. Physiol. Cell. Physiol. 2007, 293, C584–C596. [Google Scholar] [CrossRef]
- Nishikawa, T.; Nagata, N.; Shimakami, T.; Shirakura, T.; Matsui, C.; Ni, Y.; Zhuge, F.; Xu, L.; Chen, G.; Nagashimada, M.; et al. Xanthine oxidase inhibition attenuates insulin resistance and diet-induced steatohepatitis in mice. Sci. Rep. 2020, 10, 815. [Google Scholar] [CrossRef]
- Liu, W.; Struik, D.; Nies, V.J.; Jurdzinski, A.; Harkema, L.; de Bruin, A.; Verkade, H.J.; Downes, M.; Evans, R.M.; van Zutphen, T.; et al. Effective treatment of steatosis and steatohepatitis by fibroblast growth factor 1 in mouse models of nonalcoholic fatty liver disease. Proc. Natl. Acad. Sci. U S A. 2016, 113, 2288–2293. [Google Scholar] [CrossRef] [PubMed]
- Fisher, E.A. The degradation of apolipoprotein B100: multiple opportunities to regulate VLDL triglyceride production by different proteolytic pathways. Biochim. Biophys. Acta. 2012, 1821, 778–781. [Google Scholar] [CrossRef] [PubMed]
- Nikkilä, E.A.; Taskinen, M.R.; Kekki, M. Relation of plasma high-density lipoprotein cholesterol to lipoprotein-lipase activity in adipose tissue and skeletal muscle of man. Atherosclerosis. 1978, 29, 497–501. [Google Scholar] [CrossRef]
- Fisher, E.A. The degradation of apolipoprotein B100: Multiple opportunities to regulate VLDL triglyceride production by different proteolytic pathways. Biochim. Biophys. Acta. 2012, 1821, 778–781. [Google Scholar] [CrossRef] [PubMed]
- Avramoglu, R.K.; Basciano, H.; Adeli, K. Lipid and lipoprotein dysregulation in insulin resistant states. Clin. Chim. Acta. 2006, 368, 1–19. [Google Scholar] [CrossRef]
- Van Rooyen, D.M.; Farrell, G.C. SREBP-2: A link between insulin resistance, hepatic cholesterol, and inflammation in NASH. J. Gastroenterol. Hepatol. 2011, 26, 789–792. [Google Scholar] [CrossRef]
- Hong, S.; Gordon, D.; Stec, D.E.; Hinds, T.D. Bilirubin: A Ligand of the PPARα Nuclear Receptor. In Nuclear Receptors: The Art and Science of Modulator Design and Discovery; Badr, M.Z., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 463–482. [Google Scholar]
- Hinds, T.D., Jr.; Hosick, P.A.; Chen, S.; Tukey, R.H.; Hankins, M.W.; Nestor-Kalinoski, A.; Stec, D.E. Mice with hyperbilirubinemia due to Gilbert’s syndrome polymorphism are resistant to hepatic steatosis by decreased serine 73 phosphorylation of PPARα. Am. J. Physiol. Endocrinol. Metab. 2017, 312, E244–E252. [Google Scholar] [CrossRef]
- Stec, D.E.; John, K.; Trabbic, C.J.; Luniwal, A.; Hankins, M.W.; Baum, J.; Hinds, T.D., Jr. Bilirubin Binding to PPARα Inhibits Lipid Accumulation. PLoS. ONE. 2016, 11, e0153427. [Google Scholar] [CrossRef] [PubMed]
- Hinds, T.D., Jr.; Adeosun, S.O.; Alamodi, A.A.; Stec, D.E. Does bilirubin prevent hepatic steatosis through activation of the PPARα nuclear receptor? Med. Hypotheses. 2016, 95, 54–57. [Google Scholar] [CrossRef] [PubMed]
- Hinds, T.D., Jr.; Burns, K.A.; Hosick, P.A.; McBeth, L.; Nestor-Kalinoski, A.; Drummond, H.A.; AlAmodi, A.A.; Hankins, M.W.; Heuvel, J.P.V.; Stec, D.E. Biliverdin Reductase A Attenuates Hepatic Steatosis by Inhibition of Glycogen Synthase Kinase (GSK) 3β Phosphorylation of Serine 73 of Peroxisome Proliferator-activated Receptor (PPAR) α. J. Biol. Chem. 2016, 291, 25179–25191. [Google Scholar] [CrossRef] [PubMed]
- Francque, S.; Verrijken, A.; Caron, S.; Prawitt, J.; Paumelle, R.; Derudas, B.; Lefebvre, P.; Taskinen, M.R.; Van Hul, W.; Mertens, I.; et al. PPARα gene expression correlates with severity and histological treatment response in patients with non-alcoholic steatohepatitis. J. Hepatol. 2015, 63, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Nakajima, T.; Gonzalez, F.J.; Tanaka, N. PPARs as Metabolic Regulators in the Liver: Lessons from Liver-Specific PPAR-Null Mice. Int. J. Mol. Sci. 2020, 21, 2061. [Google Scholar] [CrossRef] [PubMed]
- Takae, K.; Nagata, M.; Hata, J.; Mukai, N.; Hirakawa, Y.; Yoshida, D.; Kishimoto, H.; Tsuruya, K.; Kitazono, T.; Kiyohara, Y.; et al. Serum Uric Acid as a Risk Factor for Chronic Kidney Disease in a Japanese Community—The Hisayama Study. Circ. J. 2016, 80, 1857–1862. [Google Scholar] [CrossRef]
- Russo, E.; Verzola, D.; Cappadona, F.; Leoncini, G.; Garibotto, G.; Pontremoli, R.; Viazzi, F. The role of uric acid in renal damage—a history of inflammatory pathways and vascular remodeling. Vessel. Plus. 2021, 5, 15. [Google Scholar] [CrossRef]
- Enomoto, A.; Kimura, H.; Chairoungdua, A.; Shigeta, Y.; Jutabha, P.; Cha, S.H.; Hosoyamada, M.; Takeda, M.; Sekine, T.; Igarashi, T. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature. 2002, 417, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Caulfield, M.J.; Munroe, P.B.; O’Neill, D.; Witkowska, K.; Charchar, F.J.; Doblado, M.; Evans, S.; Eyheramendy, S.; Onipinla, A.; Howard, P.; et al. SLC2A9 is a high-capacity urate transporter in humans. PLoS. Med. 2008, 5, e197. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Sanna, S.; Maschio, A.; Busonero, F.; Usala, G.; Mulas, A.; Lai, S.; Dei, M.; Orrù, M.; Albai, G. The GLUT9 gene is associated with serum uric acid levels in Sardinia and Chianti cohorts. PLoS. Genet. 2007, 3, e194. [Google Scholar] [CrossRef]
- Vitart, V.; Rudan, I.; Hayward, C.; Gray, N.K.; Floyd, J.; Palmer, C.N.; Knott, S.A.; Kolcic, I.; Polasek, O.; Graessler, J.; et al. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat. Genet. 2008, 40, 437–442. [Google Scholar] [CrossRef]
- Woodward, O.M.; Köttgen, A.; Coresh, J.; Boerwinkle, E.; Guggino, W.B.; Köttgen, M. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc. Natl. Acad. Sci. USA. 2009, 106, 10338–10342. [Google Scholar] [CrossRef]
- Matsuo, H.; Takada, T.; Ichida, K.; Nakamura, T.; Nakayama, A.; Ikebuchi, Y.; Ito, K.; Kusanagi, Y.; Chiba, T.; Tadokoro, S. Common defects of ABCG2, a high-capacity urate exporter, cause gout: A function-based genetic analysis in a Japanese population. Sci. Transl. Med. 2009, 1, 5ra11. [Google Scholar] [CrossRef] [PubMed]
- Takada, T.; Yamamoto, T.; Matsuo, H.; Tan, J.K.; Ooyama, K.; Sakiyama, M.; Miyata, H.; Yamanashi, Y.; Toyoda, Y.; Higashino, T.; et al. Identification of ABCG2 as an Exporter of Uremic Toxin Indoxyl Sulfate in Mice and as a Crucial Factor Influencing CKD Progression. Sci. Rep. 2018, 8, 11147. [Google Scholar] [CrossRef] [PubMed]
- Uchida, S.; Kumagai, T.; Chang, W.X.; Tamura, Y.; Shibata, S. Time to Target Uric Acid to Retard Chronic Kidney Disease Progression. Contrib. Nephrol. 2018, 192, 56–68. [Google Scholar]
- Lin, C.J.; Chen, H.H.; Pan, C.F.; Chuang, C.K.; Wang, T.J.; Sun, F.J.; Wu, C.J. p-Cresylsulfate and indoxyl sulfate level at different stages of chronic kidney disease. J. Clin. Lab. Anal. 2011, 25, 191–197. [Google Scholar] [CrossRef]
- Holle, J.; Kirchner, M.; Okun, J.; Bayazit, A.K.; Obrycki, L.; Canpolat, N.; Bulut, I.K.; Azukaitis, K.; Duzova, A.; Ranchin, B.; et al. Serum indoxyl sulfate concentrations associate with progression of chronic kidney disease in children. PLoS. ONE. 2020, 15, e0240446. [Google Scholar] [CrossRef]
- Miyata, H.; Takada, T.; Toyoda, Y.; Matsuo, H.; Ichida, K.; Suzuki, H. Identification of Febuxostat as a New Strong ABCG2 Inhibitor: Potential Applications and Risks in Clinical Situations. Front. Pharmacol. 2016, 7, 518. [Google Scholar] [CrossRef] [PubMed]
- Kurihara, O.; Yamada, T.; Kato, K.; Miyauchi, Y. Efficacy of dotinurad in patients with severe renal dysfunction. Clin. Exp. Nephrol. 2024, 28, 208–216. [Google Scholar] [CrossRef]
- Kim, Y.E.; Ahn, S.M.; Oh, J.S.; Kim, Y.G.; Lee, C.K.; Yoo, B.; Hong, S. Febuxostat dose requirement according to renal function in patients who achieve target serum urate levels: A retrospective cohort study. Jt. Bone. Spine. 2024, 91, 105668. [Google Scholar] [CrossRef]




| Clinical characteristics | ||
|---|---|---|
| Gender (male/female) | 50/23 | |
| Age (years) | 66.1±14.6 | |
| Body height (cm) | 162.7±19.9 | |
| Body weight (kg) | 76.7±17.4 | |
| Body mass index (kg/m2) | 28.3±5.5 | |
| Patients with body mass index ≧ 25 kg/m2 (n, %) | 48, 65.8% | |
| Systolic blood pressure (mmHg) | 133.8±20.1 | |
| Diastolic blood pressure (mmHg) | 76.6±12.4 | |
| Comorbidities | ||
| Type 2 diabetes | 48, 65.8% | |
| Hypertension | 40, 54.8% | |
| Dyslipidemia | 44, 60.3% | |
| Laboratory characteristics | ||
| Data at baseline | Normal range | |
| Serum UA (mg/dl) | 6.8±1.6 | < 7 |
| AST (IU/l) | 25.9±9.7 | 13-30 |
| ALT (IU/l) | 28.2±19.6 | Male 10-42 Female 7-23 |
| GGT (IU/l) | 50.6±49.0 | Male 13-64 Female 9-32 |
| HDL-C (mg/dl) | 53.7±15.6 | < 40 |
| LDL-C (mg/dl) | 100.1±26.8 | < 140 |
| TG (mg/dl) | 182.6±126.2 | Non-fasting value < 175 |
| Non-HDL-C (mg/dl) | 130.9±29.7 | < 170 |
| HbA1c (%) | 6.7±1.6 | 4.9-6.0 |
| eGFR (ml/min/1.73m2) | 61.2±20.4 | 60 < |
| Daily doses of dotinurad | n (%) |
|---|---|
| 0.5 mg | 23 (31.5%) |
| 1.0 mg | 28 (38.4%) |
| 2.0 mg | 20 (27.4%) |
| 4.0 mg | 2 (2.7%) |
| Kind of UA-lowering drugs | n (%) |
|---|---|
| Febuxostat | 26 (36%) |
| Topiroxostat | 3 (4%) |
| Allopurinol | 6 (8%) |
| No drugs | 38 (52%) |
| N | Baseline | After 6 m. | N | Baseline | After 12 m. | N | Baseline | After 18 m. | N | Baseline | After 24 m. | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Body weight (kg) | 67 | 76.6±17.0 | 75.6±16.4* | 66 | 76.2±17.2 | 75.7±17.3 | 67 | 76.7±17.6 | 76.3±18.1 | 66 | 76.7±17.7 | 75.4±18.0* |
| Systolic BP (mmHg) | 69 | 133.1±19.5 | 133.1±14.7 | 68 | 132.9±19.6 | 131.6±16.2 | 67 | 132.4±19.0 | 130.8±13.8 | 67 | 133.2±19.9 | 128.4±14.1* |
| Diastolic BP (mmHg) | 69 | 76.5±12.4 | 77.4±11.7 | 68 | 76.2±12.3 | 74.4±12.5 | 67 | 76.3±12.5 | 76.3±13.0 | 67 | 76.3±12.5 | 73.9±13.1 |
| Serum UA (mg/dl) | 72 | 6.7±1.6 | 5.8±1.2* | 73 | 6.8±1.6 | 5.7±1.0* | 73 | 6.8±1.6 | 5.5±1.3* | 71 | 6.7±1.6 | 6.7±5.5* |
| Urine UA (/creatinine) | 47 | 0.34±0.16 | 0.46±0.25* | 49 | 0.35±0.17 | 0.44±0.24* | 47 | 0.36±0.17 | 0.45±0.12* | 46 | 0.35±0.17 | 0.52±0.23* |
| HbA1c (%) | 67 | 6.7±1.1 | 6.7±0.9 | 69 | 6.7±1.1 | 6.7±0.9 | 69 | 6.7±1.1 | 6.7±0.9 | 66 | 6.7±1.1 | 6.7±0.9 |
| AST (IU/l) | 72 | 26.0±9.8 | 24.8±10.0 | 73 | 25.9±9.7 | 25.1±9.7 | 73 | 25.9±9.7 | 26.4±14.1 | 73 | 25.5±9.0 | 25.0±8.2 |
| ALT (IU/l) | 72 | 28.4±19.7 | 26.2±19.7 | 73 | 28.2±19.6 | 25.5±15.7* | 73 | 28.2±19.6 | 27.3±22.4 | 71 | 27.9±19.8 | 24.7±13.4* |
| GGT (IU/l) | 67 | 50.9±49.6 | 49.6±60.8 | 69 | 50.6±49.0 | 43.7±48.1* | 69 | 50.6±49.0 | 44.4±56.2 | 67 | 48.4±46.9 | 39.4±29.5* |
| TG (mg/dl) | 72 | 181.6±126.8 | 159.2±90.1 | 73 | 182.6±126.2 | 164.8±105.6 | 73 | 182.6±126.2 | 164.0±97.0 | 73 | 182.2±128.8 | 162.9±129.5 |
| HDL-C (mg/dl) | 72 | 53.9±15.7 | 56.6±15.7* | 73 | 53.7±15.6 | 53.3±15.7 | 73 | 53.7±15.6 | 54.4±15.5 | 70 | 53.2±15.1 | 53.0±14.0 |
| LDL-C (mg/dl) | 65 | 99.9±26.7 | 100.8±25.5 | 65 | 99.9±26.7 | 96.8±23.3 | 66 | 100.5±26.9 | 96.8±26.6 | 63 | 100.7±26.3 | 95.9±25.2 |
| Non-HDL-C (mg/dl) | 63 | 130.5±29.5 | 124.1±28.2* | 63 | 131.2±30.3 | 120.9±25.2* | 63 | 131.2±30.3 | 120.3±25.7* | 61 | 132.3±30.1 | 121.8±26.4* |
| eGFR (ml/min/1.73m2) | 72 | 61.8±20.0 | 60.4±20.2 | 73 | 61.2±20.4 | 59.2±19.6* | 73 | 61.2±20.4 | 58.1±18.4* | 71 | 60.7±20.1 | 57.4±20.2* |
| UACR (/creatinine) | 42 | 240.1±444.7 | 134.0±335.1* | 45 | 309.3±541.6 | 334.5±672.9 | 44 | 270.3±477.2 | 204.7±395.4 | 40 | 278.4±492.3 | 180.3±435.0 |
| N | Baseline | After 6 m. | N | Baseline | After 12 m. | N | Baseline | After 18 m. | N | Baseline | After 24 m. | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Body weight (kg) | 35 | 71.9±17.0 | 71.1±16.2 | 35 | 71.6±17.3 | 71.2±17.1 | 35 | 71.6±17.3 | 71.3±17.6 | 33 | 70.9±17.5 | 69.5±17.6 |
| Systolic BP (mmHg) | 36 | 133.3±20.2 | 133.9±15.0 | 36 | 133.4±20.4 | 131.8±16.4 | 35 | 132.1±19.1 | 130.5±14.5 | 34 | 133.5±21.0 | 127.9±12.9 |
| Diastolic BP (mmHg) | 36 | 75.9±13.6 | 77.4±11.4 | 36 | 75.6±13.5 | 73.4±12.8 | 35 | 75.5±13.6 | 76.5±12.3 | 34 | 75.5±13.8 | 72.3±11.1 |
| Serum UA (mg/dl) | 37 | 7.7±1.4 | 5.8±1.1* | 38 | 7.7±1.4 | 5.8±0.9* | 38 | 7.7±1.4 | 5.5±1.2* | 36 | 7.7±1.4 | 5.6±1.5* |
| Urine UA (/creatinine) | 20 | 0.41±0.18 | 0.45±0.23 | 22 | 0.43±0.19 | 0.42±0.22 | 22 | 0.43±0.19 | 0.42±0.21 | 20 | 0.44±0.20 | 0.52±0.23 |
| HbA1c (%) | 35 | 6.8±1.2 | 6.8±0.9 | 36 | 6.8±1.2 | 6.7±0.8 | 36 | 6.8±1.2 | 6.8±0.9 | 34 | 6.9±1.2 | 6.9±0.8 |
| AST (IU/l) | 37 | 25.2±8.6 | 24.6±8.1 | 38 | 25.0±8.5 | 23.9±7.8 | 38 | 25.0±8.5 | 25.1±12.6 | 36 | 24.2±6.6 | 24.1±7.2 |
| ALT (IU/l) | 37 | 25.7±16.7 | 22.9±11.4 | 38 | 25.5±16.5 | 22.3±11.8 | 38 | 25.5±16.5 | 24.1±15.2 | 36 | 24.8±16.7 | 22.4±12.0 |
| GGT (IU/l) | 37 | 45.0±36.8 | 41.4±31.4 | 38 | 44.6±36.3 | 38.9±38.1 | 38 | 44.6±36.3 | 35.4±22.3 | 36 | 40.3±28.6 | 34.7±19.1 |
| TG (mg/dl) | 37 | 192.2±157.3 | 162.2±96.7 | 38 | 194.0±155.5 | 174.0±126.1 | 38 | 194.0±155.5 | 166.4±92.6 | 36 | 193.4±160.0 | 180.6±157.0 |
| HDL-C (mg/dl) | 37 | 51.3±15.8 | 54.9±17.0 | 38 | 51.1±15.6 | 48.6±12.0 | 38 | 51.1±15.6 | 51.5±13.0 | 36 | 50.8±15.1 | 48.8±12.9 |
| LDL-C (mg/dl) | 37 | 105.1±32.0 | 101.5±24.0 | 38 | 105.9±32.0 | 96.7±21.7* | 38 | 105.9±32.0 | 96.4±26.1* | 36 | 105.6±31.7 | 96.4±28.3* |
| Non-HDL-C (mg/dl) | 37 | 122.6±39.4 | 112.0±37.0* | 38 | 124.3±40.2 | 108.6±34.9* | 38 | 124.3±40.2 | 107.6±34.0* | 36 | 127.1±38.4 | 113.1±32.4* |
| eGFR (ml/min/1.73m2) | 37 | 58.6±17.9 | 55.8±14.1* | 38 | 57.6±18.6 | 55.0±16.0 | 38 | 57.6±18.6 | 53.9±14.5* | 36 | 56.4±17.5 | 51.4±14.7* |
| UACR (/creatinine) | 21 | 276.1±471.7 | 181.3±435.5* | 26 | 323.7±584.1 | 338.1±649.2 | 24 | 269.2±484.2 | 195.0±397.0 | 23 | 252.9±486.7 | 125.9±256.8* |
| N | Baseline | After 6 m. | N | Baseline | After 12 m. | N | Baseline | After 18 m. | N | Baseline | After 24 m. | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Body weight (kg) | 32 | 81.7±15.8 | 80.6±15.2* | 31 | 81.3±16.0 | 80.8±16.3 | 32 | 82.4±16.3 | 82.0±17.2 | 33 | 82.4±16.1 | 81.3±16.6 |
| Systolic BP (mmHg) | 33 | 133.0±19.0 | 132.2±14.6 | 32 | 132.4±19.0 | 131.3±16.2 | 33 | 132.6±19.2 | 131.2±13.3 | 33 | 132.9±19.0 | 128.9±15.5 |
| Diastolic BP (mmHg) | 33 | 77.2±11.2 | 77.5±12.2 | 32 | 76.8±11.1 | 75.5±12.2 | 33 | 77.3±11.3 | 76.1±14.0 | 33 | 77.2±11.2 | 75.5±14.8 |
| Serum UA (mg/dl) | 35 | 5.8±1.2 | 5.8±1.3 | 35 | 5.8±1.2 | 5.7±1.2 | 35 | 5.8±1.2 | 5.6±1.4 | 35 | 5.8±1.2 | 5.5±1.3 |
| Urine UA (/creatinine) | 27 | 0.29±0.12 | 0.46±0.27* | 27 | 0.29±0.12 | 0.47±0.26* | 25 | 0.29±0.12 | 0.48±0.19* | 26 | 0.29±0.12 | 0.53±0.23* |
| HbA1c (%) | 32 | 6.5±0.9 | 6.6±1.0 | 33 | 6.5±0.9 | 6.7±1.0* | 33 | 6.5±0.9 | 6.6±1.0 | 32 | 6.5±1.0 | 6.6±0.9 |
| AST (IU/l) | 35 | 26.8±10.9 | 25.1±11.8 | 35 | 26.8±10.9 | 26.4±11.5 | 35 | 26.8±10.9 | 27.8±15.6 | 35 | 26.8±10.9 | 26.0±9.2 |
| ALT (IU/l) | 35 | 31.1±22.3 | 29.6±25.6 | 35 | 31.1±22.3 | 29.0±18.7 | 35 | 31.1±22.3 | 30.8±28.1 | 35 | 31.1±22.3 | 27.0±14.5 |
| GGT (IU/l) | 30 | 58.2±61.9 | 59.8±83.6 | 31 | 57.9±60.9 | 49.6±58.1* | 31 | 57.9±60.9 | 55.6±79.5 | 31 | 57.9±60.9 | 44.9±38.0* |
| TG (mg/dl) | 35 | 170.3±84.2 | 155.9±83.8 | 35 | 170.4±84.2 | 154.8±78.1 | 35 | 170.3±84.2 | 161.4±103.1 | 34 | 170.4±85.5 | 144.1±90.6 |
| HDL-C (mg/dl) | 35 | 56.6±15.3 | 58.3±14.2 | 35 | 56.6±15.3 | 58.5±17.8 | 35 | 56.6±15.3 | 57.6±17.5 | 34 | 55.8±14.8 | 57.2±14.1 |
| LDL-C (mg/dl) | 33 | 99.6±27.3 | 102.2±27.1 | 33 | 99.6±27.3 | 99.2±26.4 | 33 | 99.6±27.3 | 97.3±27.3 | 32 | 100.7±27.0 | 97.7±25.0 |
| Non-HDL-C (mg/dl) | 32 | 128.5±27.8 | 125.2±27.8 | 32 | 128.5±27.8 | 120.5±26.4 | 32 | 128.5±27.8 | 121.7±25.5 | 31 | 129.8±27.1 | 121.4±27.3 |
| eGFR (ml/min/1.73m2) | 35 | 65.1±21.8 | 65.3±24.2 | 35 | 65.1±21.8 | 63.7±22.2 | 35 | 65.1±21.8 | 62.6±21.1 | 35 | 65.1±21.8 | 63.5±23.4 |
| UACR (/creatinine) | 21 | 204.1±424.5 | 86.7±189.4 | 19 | 282.7±491.9 | 329.6±722.0 | 20 | 271.6±481.3 | 216.3±403.7 | 17 | 312.9±512.8 | 253.9±600.4 |
| N | Baseline | After 6 m. | N | Baseline | After 12 m. | N | Baseline | After 18 m. | N | Baseline | After 24 m. | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Body weight (kg) | 23 | 82.9±15.7 | 81.5±15.1 | 22 | 82.4±15.9 | 81.1±16.4 | 23 | 83.8±16.4 | 82.8±17.3 | 24 | 83.8±16.0 | 82.1±17.0 |
| Systolic BP (mmHg) | 25 | 131.3±19.5 | 129.6±10.7 | 24 | 130.5±19.5 | 129.0±16.1 | 24 | 130.8±19.8 | 129.9±13.9 | 25 | 131.3±19.5 | 126.1±15.6 |
| Diastolic BP (mmHg) | 25 | 76.1±11.8 | 75.6±11.0 | 24 | 75.5±11.7 | 72.9±11.0 | 24 | 76.2±12.1 | 75.1±13.8 | 25 | 76.1±11.8 | 73.8±15.4 |
| HbA1c (%) | 23 | 6.3±0.9 | 6.4±0.9 | 24 | 6.3±0.9 | 6.5±0.9 | 24 | 6.3±0.9 | 6.5±1.0 | 24 | 6.3±0.9 | 6.5±0.8 |
| AST (IU/l) | 26 | 28.2±12.1 | 26.7±13.2 | 26 | 28.2±12.1 | 27.6±12.9 | 26 | 28.2±12.1 | 29.0±17.6 | 26 | 28.2±12.2 | 26.4±9.7 |
| Serum UA (mg/dl) | 26 | 5.5±1.0 | 5.6±1.3 | 26 | 5.5±1.0 | 5.6±1.1 | 26 | 5.5±1.0 | 5.2±1.4 | 26 | 5.5±1.0 | 5.4±1.0 |
| Urine UA (/creatinine) | 23 | 0.27±0.11 | 0.46±0.27* | 23 | 0.27±0.11 | 0.48±0.27* | 21 | 0.27±0.12 | 0.48±0.20* | 22 | 0.27±0.12 | 0.55±0.22* |
| ALT (IU/l) | 26 | 34.1±24.8 | 32.2±28.8 | 26 | 34.1±24.8 | 30.7±20.9 | 26 | 34.1±24.8 | 32.6±32.1 | 26 | 34.1±24.8 | 28.1±15.5* |
| GGT (IU/l) | 22 | 56.5±60.5 | 52.1±68.1 | 23 | 56.1±59.2 | 48.3±59.6* | 23 | 56.1±59.2 | 45.8±41.2 | 23 | 56.1±59.2 | 44.1±36.4* |
| TG (mg/dl) | 26 | 170.1±84.9 | 143.1±64.1 | 26 | 170.1±84.9 | 145.6±72.0 | 26 | 170.1±84.9 | 146.9±84.0 | 26 | 170.1±84.9 | 132.8±67.8* |
| HDL-C (mg/dl) | 26 | 55.5±13.7 | 57.9±13.6 | 26 | 55.5±13.7 | 58.3±18.5 | 26 | 55.5±13.7 | 57.5±18.0 | 26 | 55.5±13.7 | 57.2±13.9 |
| LDL-C (mg/dl) | 25 | 96.6±21.0 | 98.6±26.9 | 25 | 96.6±21.0 | 96.7±24.7 | 25 | 96.6±21.0 | 95.9±27.0 | 25 | 96.6±21.0 | 95.0±25.1 |
| Non-HDL-C (mg/dl) | 23 | 124.9±24.2 | 119.6±27.2 | 23 | 124.9±24.2 | 114.8±23.1* | 23 | 124.9±24.2 | 116.0±22.6 | 23 | 124.9±24.2 | 116.6±26.6 |
| eGFR (ml/min/1.73m2) | 26 | 64.4±19.8 | 63.8±19.7 | 26 | 64.4±19.8 | 63.0±18.6 | 26 | 64.4±19.8 | 62.0±18.3 | 26 | 64.4±19.8 | 62.0±18.9 |
| UACR (/creatinine) | 15 | 200.1±452.2 | 58.4±84.6 | 12 | 242.1±500.6 | 201.2±322.1 | 13 | 228.1±481.9 | 153.4±195.5 | 11 | 260.9±520.6 | 98.6±105.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
